Structural insights into photoactivation and signalling in plant phytochromes

Structural insights into photoactivation and signalling in plant phytochromes

Play all audios:

Loading...

ABSTRACT Plant phytochromes are red/far-red photochromic photoreceptors that act as master regulators of development, controlling the expression of thousands of genes. Here, we describe the


crystal structures of four plant phytochrome sensory modules, three at about 2 Å resolution or better, including the first of an A-type phytochrome. Together with extensive spectral data,


these structures provide detailed insight into the structure and function of plant phytochromes. In the Pr state, the substitution of phycocyanobilin and phytochromobilin cofactors has no


structural effect, nor does the amino-terminal extension play a significant functional role. Our data suggest that the chromophore propionates and especially the phytochrome-specific domain


tongue act differently in plant and prokaryotic phytochromes. We find that the photoproduct in period–ARNT–single-minded (PAS)–cGMP-specific phosphodiesterase–adenylyl cyclase–FhlA (GAF)


bidomains might represent a novel intermediate between MetaRc and Pfr. We also discuss the possible role of a likely nuclear localization signal specific to and conserved in the phytochrome


A lineage. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital


issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS STRUCTURAL INSIGHT INTO PIF6-MEDIATED RED LIGHT SIGNAL TRANSDUCTION OF PLANT PHYTOCHROME B Article Open access 22 May 2025 RED LIGHT-INDUCED STRUCTURE CHANGES


IN PHYTOCHROME A FROM _PISUM SATIVUM_ Article Open access 02 February 2021 THE STRUCTURE OF _ARABIDOPSIS_ PHYTOCHROME A REVEALS TOPOLOGICAL AND FUNCTIONAL DIVERSIFICATION AMONG THE PLANT


PHOTORECEPTOR ISOFORMS Article 08 June 2023 DATA AVAILABILITY The three-dimensional structural data that support the findings of this study have been deposited in wwPDB with the accession


codes 6TBY, 6TC5, 6TL4 and 6TC7. The authors declare that all other data supporting the findings of this study are available within the paper and its Supplementary Information files.


REFERENCES * Anders, K., Daminelli-Widany, G., Mroginski, M. A., von Stetten, D. & Essen, L. O. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for


phytochrome signaling. _J. Biol. Chem._ 288, 35714–35725 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Takala, H. et al. Signal amplification and transduction in phytochrome


photosensors. _Nature_ 509, 245–248 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Oka, Y. et al. Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in


_Arabidopsis_. _Plant Cell_ 16, 2104–2116 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Matsushita, T., Mochizuki, N. & Nagatani, A. Dimers of the N-terminal domain of


phytochrome B are functional in the nucleus. _Nature_ 424, 571–574 (2003). CAS  PubMed  Google Scholar  * Qiu, Y. et al. Mechanism of early light signaling by the carboxy-terminal output


module of _Arabidopsis_ phytochrome B. _Nat. Commun._ 8, 1905 (2017). PubMed  PubMed Central  Google Scholar  * Viczian, A. et al. A short amino-terminal part of _Arabidopsis_ phytochrome A


induces constitutive photomorphogenic response. _Mol. Plant_ 5, 629–641 (2012). PubMed  Google Scholar  * Song, C. et al. 3D structures of plant phytochrome A as Pr and Pfr from solid-state


NMR: implications for molecular function. _Front. Plant Sci._ 9, 498 (2018). PubMed  PubMed Central  Google Scholar  * Sharrock, R. A. & Quail, P. H. Novel phytochrome sequences in


_Arabidopsis thaliana_: structure, evolution, and differential expression of a plant regulatory photoreceptor family. _Genes Dev._ 3, 1745–1757 (1989). CAS  PubMed  Google Scholar  *


Rockwell, N. C., Shang, L., Martin, S. S. & Lagarias, J. C. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. _Proc. Natl Acad. Sci. USA_ 106, 6123–6127


(2009). CAS  PubMed  PubMed Central  Google Scholar  * Mailliet, J. et al. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. _J. Mol.


Biol._ 413, 115–127 (2011). CAS  PubMed  Google Scholar  * Song, C. et al. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a


canonical phytochrome. _Proc. Natl Acad. Sci. USA_ 108, 3842–3847 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Essen, L.-O., Mailliet, J. & Hughes, J. The structure of a


complete phytochrome sensory module in the Pr ground state. _Proc. Natl Acad. Sci. USA_ 105, 14709–14714 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Burgie, E. S., Bussell, A. N.,


Walker, J. M., Dubiel, K. & Vierstra, R. D. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. _Proc. Natl Acad. Sci. USA_ 111,


10179–10184 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Kneip, C. et al. Effect of chromophore exchange on the resonance Raman spectra of recombinant phytochromes. _FEBS_ 414,


23–26 (1997). CAS  Google Scholar  * Remberg, A. et al. Raman spectroscopic and light-induced-kinetic characterization of a recombinant phytochrome of the cyanobacterium _Synechocystis_.


_Biochemistry_ 36, 13389–13395 (1997). CAS  PubMed  Google Scholar  * Mroginski, M. A. et al. Structure of the chromophore binding pocket in the Pr state of plant phytochrome phyA. _J. Phys.


Chem. B_ 115, 1220–1231 (2011). CAS  PubMed  Google Scholar  * Wahleithner, J. A., Li, L. M. & Lagarias, J. C. Expression and assembly of spectrally active recombinant holophytochrome.


_Proc. Natl Acad. Sci. USA_ 88, 10387–10391 (1991). CAS  PubMed  PubMed Central  Google Scholar  * Elich, T. D. & Lagarias, J. C. Formation of a photoreversible


phycocyanobilin-apophytochrome adduct in vitro. _J. Biol. Chem._ 264, 12902–12908 (1989). CAS  PubMed  Google Scholar  * Song, C., Essen, L. O., Gärtner, W., Hughes, J. & Matysik, J.


Solid-state NMR spectroscopic study of chromophore–protein interactions in the Pr ground state of plant phytochrome A. _Mol. Plant_ 5, 698–715 (2012). CAS  PubMed  Google Scholar  *


Velazquez Escobar, F. et al. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB. _FEBS Lett._ 591, 1258–1265 (2017). CAS 


PubMed  Google Scholar  * Parker, W., Partis, M. & Song, P. S. N-terminal domain of _Avena_ phytochrome: interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated


phytochrome. _Biochemistry_ 31, 9413–9420 (1992). CAS  PubMed  Google Scholar  * Litts, J. C., Kelly, J. M. & Lagarias, J. C. Structure–function studies on phytochrome: preliminary


characterization of highly purified phytochrome from _Avena sativa_ enriched in the 124-kilodalton species. _J. Biol. Chem._ 258, 11025–11031 (1983). CAS  PubMed  Google Scholar  * Claesson,


E. et al. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. _eLife_ 9, e53514 (2020). PubMed  PubMed Central  Google Scholar  * Wagner, J.


R., Brunzelle, J. S., Forest, K. T. & Vierstra, R. D. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. _Nature_ 438, 325–331 (2005). CAS 


PubMed  Google Scholar  * Eilfeld, P. & Rüdiger, W. Absorption spectra of phytochrome intermediates. _Z. Naturforsch._ 40C, 109–114 (1985). CAS  Google Scholar  * Kneip, C. et al.


Protonation state and structural changes of the tetrapyrrole chromophore during the Pr → Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. _Biochemistry_ 38,


15185–15192 (1999). CAS  PubMed  Google Scholar  * Mizutani, Y., Tokutomi, S. & Kitagawa, T. Resonance Raman spectra of the intermediates in phototransformation of large phytochrome:


deprotonation of the chromophore in the bleached intermediate. _Biochemistry_ 33, 153–158 (1994). CAS  PubMed  Google Scholar  * Mroginski, M. A. et al. Elucidating photoinduced structural


changes in phytochromes by the combined application of resonance Raman spectroscopy and theoretical methods. _J. Mol. Struct._ 993, 15–25 (2011). CAS  Google Scholar  * Ulijasz, A. T. et al.


Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. _J. Biol. Chem._ 283, 21251–21266 (2008).


CAS  PubMed  PubMed Central  Google Scholar  * Song, C. et al. The D-ring, not the A-ring, rotates in _Synechococcus_ OS-B’ phytochrome. _J. Biol. Chem._ 289, 2552–2562 (2014). CAS  PubMed


  Google Scholar  * Auldridge, M. E., Satyshur, K. A., Anstrom, D. M. & Forest, K. T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. _J. Biol.


Chem._ 287, 7000–7009 (2012). CAS  PubMed  Google Scholar  * Ihalainen, J. A. et al. Chromophore–protein interplay during the phytochrome photocycle revealed by step-scan FTIR spectroscopy.


_J. Am. Chem. Soc._ 140, 12396–12404 (2018). CAS  PubMed  Google Scholar  * Kacprzak, S. et al. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by


pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion. _J. Biol. Chem._ 292, 7598–7606 (2017). CAS  PubMed  PubMed


Central  Google Scholar  * Park, E. et al. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. _Plant J._ 72, 537–546 (2012). CAS  PubMed  PubMed


Central  Google Scholar  * Oka, Y., Matsushita, T., Mochizuki, N., Quail, P. H. & Nagatani, A. Mutant screen distinguishes between residues necessary for light-signal perception and


signal transfer by phytochrome B. _PLoS Genet._ 4, e1000158 (2008). PubMed  PubMed Central  Google Scholar  * Kikis, E. A., Oka, Y., Hudson, M. E., Nagatani, A. & Quail, P. H. Residues


clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. _PLoS Genet._ 5, e1000352 (2009). PubMed  PubMed Central  Google


Scholar  * Viczian, A., Klose, C., Adam, E. & Nagy, F. New insights of red light-induced development. _Plant Cell Environ._ 40, 2457–2468 (2017). CAS  PubMed  Google Scholar  * Burgie,


E. S., Zhang, J. & Vierstra, R. D. Crystal structure of _Deinococcus_ phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion.


_Structure_ 24, 448–457 (2016). CAS  PubMed  Google Scholar  * Yang, X., Kuk, J. & Moffat, K. Conformational differences between the Pfr and Pr states in _Pseudomonas aeruginosa_


bacteriophytochrome. _Proc. Natl Acad. Sci. USA_ 106, 15639–15644 (2009). CAS  PubMed  PubMed Central  Google Scholar  * van Thor, J. J. et al. Light-induced proton release and proton uptake


reactions in the cyanobacterial phytochrome Cph1. _Biochemistry_ 40, 11460–11471 (2001). PubMed  Google Scholar  * Borucki, B. et al. Light-induced proton release of phytochrome is coupled


to the transient deprotonation of the tetrapyrrole chromophore. _J. Biol. Chem._ 280, 34358–34364 (2005). CAS  PubMed  Google Scholar  * Viczian, A. et al. Differential phosphorylation of


the N-terminal extension regulates phytochrome B signaling. _New Phytol._ 225, 1635–1650 (2020). CAS  PubMed  Google Scholar  * Remberg, A., Ruddat, A., Braslavsky, S. E., Gärtner, W. &


Schaffner, K. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins. _Biochemistry_ 37, 9983–9990


(1998). CAS  PubMed  Google Scholar  * Cherry, J. R., Hondred, D., Walker, J. M. & Vierstra, R. D. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. _Proc.


Natl Acad. Sci. USA_ 89, 5039–5043 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Sweere, U. et al. Interaction of the response regulator ARR4 with phytochrome B in modulating red


light signaling. _Science_ 294, 1108–1111 (2001). CAS  PubMed  Google Scholar  * Kosugi, S. et al. Six classes of nuclear localization signals specific to different binding grooves of


importin alpha. _J. Biol. Chem._ 284, 478–485 (2009). CAS  PubMed  Google Scholar  * Mathews, S., Lavin, M. & Sharrock, R. A. Evolution of the phytochrome gene family and its utility for


phylogenetic analyses of angiosperms. _Ann. Missouri Bot. Gard._ 82, 296–321 (1995). Google Scholar  * Chen, M. & Chory, J. Phytochrome signaling mechanisms and the control of plant


development. _Trends Cell Biol._ 21, 664–671 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Zeidler, M., Zhou, Q., Sarda, X., Yau, C. P. & Chua, N. H. The nuclear localization


signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals. _Plant J._ 40, 355–365 (2004). CAS  PubMed  Google Scholar  * Oka, Y. et al. Arabidopsis


phytochrome A is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. _Plant Cell_ 24, 2949–2962 (2012). CAS  PubMed  PubMed Central


  Google Scholar  * Song, C. et al. On the collective nature of phytochrome photoactivation. _Biochemistry_ 50, 10987–10989 (2011). CAS  PubMed  Google Scholar  * Kim, P. W. et al.


Unraveling the primary isomerization dynamics in cyanobacterial phytochrome Cph1 with multi-pulse manipulations. _J. Phys. Chem. Lett._ 4, 2605–2609 (2013). CAS  PubMed  PubMed Central 


Google Scholar  * Gustavsson, E. et al. Modulation of structural heterogeneity controls phytochrome photoswitching. _Biophys. J._ 118, 415–421 (2020). CAS  PubMed  Google Scholar  * Takala,


H. et al. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. _J. Biol. Chem._ 293, 8161–8172 (2018). CAS  PubMed  PubMed


Central  Google Scholar  * Al-Sady, B., Ni, W. M., Kircher, S., Schäfer, E. & Quail, P. H. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasorne-mediated


degradation. _Mol. Cell_ 23, 439–446 (2006). CAS  PubMed  Google Scholar  * Khanna, R. et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling


to specific basic helix-loop-helix transcription factors. _Plant Cell_ 16, 3033–3044 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Landgraf, F. T., Forreiter, C., Hurtado, P. A.,


Lamparter, T. & Hughes, J. Recombinant holophytochrome in _Escherichia coli_. _FEBS Lett._ 508, 459–462 (2001). CAS  PubMed  Google Scholar  * Hirose, Y. et al. Green/red


cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. _Proc. Natl Acad. Sci. USA_ 110, 4974–4979 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Zhao, K. H. & Scheer, H. Type I and type II reversible photochemistry of phycoerythrocyanin α-subunit from _Mastigocladus laminosus_ both involve Z–E isomerization of


phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein. _Biochim. Biophys. Acta Bioenerg._ 1228, 244–253 (1995). Google Scholar  * Ishizuka, T., Narikawa, R., Kohchi,


T., Katayama, M. & Ikeuchi, M. Cyanobacteriochrome TePixJ of _Thermosynechococcus elongatus_ harbors phycoviolobilin as a chromophore. _Plant Cell Physiol._ 48, 1385–1390 (2007). CAS 


PubMed  Google Scholar  * Brandlmeier, T., Scheer, H. & Rudiger, W. Chromophore content and molar absorptivity of phytochrome in the Pr form. _Z. Naturforsch. C_ 36, 431–439 (1981).


Google Scholar  * Fernandez Lopez, M. et al. Role of the propionic side chains for the photoconversion of bacterial phytochromes. _Biochemistry_ 58, 3504–3519 (2019). CAS  PubMed  Google


Scholar  * Mailliet, J. et al. Dwelling in the dark: procedures for the crystallography of phytochromes and other photochromic proteins. _Acta Crystallogr. D_ 65, 1232–1235 (2009). CAS 


PubMed  Google Scholar  * Kabsch, W. XDS. _Acta Crystallogr. D_ 66, 125–132 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Evans, P. R. & Murshudov, G. N. How good are my data


and what is the resolution? _Acta Crystallogr. D_ 69, 1204–1214 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Winn, M. D. et al. Overview of the CCP4 suite and current developments.


_Acta Crystallogr. D_ 67, 235–242 (2011). CAS  PubMed  PubMed Central  Google Scholar  * McCoy, A. J. et al. Phaser crystallographic software. _J. Appl. Crystallogr._ 40, 658–674 (2007).


CAS  PubMed  PubMed Central  Google Scholar  * Emsley, P. B., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. _Acta Crystallogr. D_ 66, 486–501 (2010). CAS 


PubMed  PubMed Central  Google Scholar  * Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. _Acta Crystallogr. D_ 67, 355–367 (2011). CAS  PubMed 


PubMed Central  Google Scholar  * Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. _Acta Crystallogr. D_ 75,


861–877 (2019). CAS  Google Scholar  * Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. _Protein Sci._ 27, 293–315 (2018). CAS 


PubMed  Google Scholar  * Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. _J.


Appl. Crystallogr._ 42, 339–341 (2009). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank SFB 1078 for funding (subprojects B6 to P.H. and B8 to J.H.). The X-ray diffraction


measurements were carried out at BL14.1 at BESSY II (Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)) and at ID30-A3 at ESRF with support from CALIPSOplus (Grant Agreement 730872


of the EU Framework Programme HORIZON 2020) and HZB. We thank L.-O. Essen (University of Marburg) for collaboration in the early stages of the project, W. Wende (Giessen) for cooperation in


measuring the CD spectra and C. Lang (Giessen) for expert technical assistance. We dedicate this paper to the memory of Winslow Briggs. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany Soshichiro Nagano, Kaoling Guan, Sintayehu Manaye Shenkutie & Jon Hughes * BESSY II, Helmholtz-Zentrum Berlin


für Materialien und Energie, Berlin, Germany Christian Feiler & Manfred Weiss * Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany Anastasia Kraskov, David Buhrke 


& Peter Hildebrandt Authors * Soshichiro Nagano View author publications You can also search for this author inPubMed Google Scholar * Kaoling Guan View author publications You can also


search for this author inPubMed Google Scholar * Sintayehu Manaye Shenkutie View author publications You can also search for this author inPubMed Google Scholar * Christian Feiler View


author publications You can also search for this author inPubMed Google Scholar * Manfred Weiss View author publications You can also search for this author inPubMed Google Scholar *


Anastasia Kraskov View author publications You can also search for this author inPubMed Google Scholar * David Buhrke View author publications You can also search for this author inPubMed 


Google Scholar * Peter Hildebrandt View author publications You can also search for this author inPubMed Google Scholar * Jon Hughes View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS S.N., G.K. and S.M.S. designed, cloned, expressed, purified and crystallized the holophytochrome constructs. S.N. solved the structures with


suggestions from C.F. and M.W. S.N. and J.H. interpreted the structures. A.K., D.B. and P.H. measured and interpreted the vibrational spectra. J.H. wrote the manuscript with the


participation of P.H. and in discussion with all authors. J.H. devised and co-ordinated the project. CORRESPONDING AUTHOR Correspondence to Jon Hughes. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and


institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 RR AND IR DIFFERENCE SPECTRA OF PHYA AND PHYB CONSTRUCTS. Left, _Sorghum bicolor_; Right _Glycine max_. ABOVE: RR spectra of


the Pr states (blue traces) and their photoconversion products (red traces) obtained upon 670 and 750 nm irradiation at ambient temperature. All spectra were measured at 90 K with 1064 nm


excitation. The spectral regions labelled are indicative of (i) the methine bridge configurations and conformations (C=C stretching modes of the _A-B_ and _C-D_ methine bridges at _ca_.


1600–1650 cm−1), (ii) pyrrole nitrogen protonation state (N-H in-plane bending modes of rings _B_ and _C_ at _ca_. 1550 – 1580 cm−1) and (iii) the _C-D_ methine bridge torsion


(hydrogen-out-of-plane [HOOP] mode at _ca_. 795 - 825 cm−1). The broad feature at _ca_. 1460 cm−1 is largely due to non-resonant Raman bands of the protein. The high intensity of this


feature relative to the RR bands of the chromophore indicates that the latter experience a low resonance enhancement. BELOW: IR “photoproduct minus Pr” difference spectra obtained upon


irradiation with 670 and 750 nm at ambient temperature. The positive signals indicated by black lines and labels refer to the photoproduct, whereas the grey lines and labels mark the signals


of the Pr state. Representative spectra based on at least two samples are shown. Spectra for each sample were measured several times. Each spectrum is based on 1000 separate FT scans.


EXTENDED DATA FIG. 2 SB.PHYB(PG)-PCB AND -PΦB STRUCTURES ARE ALMOST IDENTICAL. ABOVE: Superimposition of peptide chains with chromophores. The N- and C-termini, the two unresolved loops and


the somewhat deviant R234-D236 regions are labelled. Inset: superimposition of the PCB (cyan) and P(B (green) _D_ rings. BELOW: Chemical structures of PCB, PΦB, and the incorrect model used


in 4OUR (PDB cofactor codes CYC, O6E and 2VO, respectively). Note that the uncharged structures are shown, whereas in both Pr and Pfr holoprotein states all four cofactor nitrogens are


protonated. EXTENDED DATA FIG. 3 GM.PHYA(PG)-PCB 2.1 Å STRUCTURE (PDB 6TC7) OF SUBUNIT B. PCB (cyan), PAS (slate), GAF (gold), PCB (cyan), waters (red spheres). PW, pyrrole water. Subunit A


(grey) is superimposed. EXTENDED DATA FIG. 4 GM.PHYA(PG)-PCB 2.1 Å STRUCTURE (PDB 6TC7) OF SUBUNIT B INCLUDING SIDE CHAINS AND HYDROGEN BONDING NETWORK. Note that the weak (3.1 Å) _D_-ring


carbonyl – H370 hydrogen bond in subunit B is somewhat stronger (3.0 Å) in subunit A. PCB (cyan), PAS (slate), GAF (gold), PCB (cyan), waters (red spheres). PW, pyrrole water. EXTENDED DATA


FIG. 5 PUTATIVE CLASS I NLS SPECIFIC TO A-TYPE PLANT PHYTOCHROMES. ABOVE. Superimposition of Gm.phyA(PG)-PCB subunit B (GAF domain, gold) with subunit A (grey) superimposed. Although the


more mobile N-terminal section of the “380s” loop is missing (gold dashes), the final triad of the putative NLS (R360-R362) is resolved. BELOW. Alignment of the “380s” loop region in plant


phytochromes (from Mathews _et al_. 47). sm, _Selaginella martensii_; cp, _Ceratodon purpureus_; ac, _Adiantum caperis-veneris_; atA-D, _Arabidopsis thaliana_ PHYA-D; cpA, _Curcurbita pepo_


PHYA; psA, _Pisum sativum_ PHYA; stA/B, _Solanum tuberosum_ PHYA/B, asA-D, _Avena sativa_ PHYA; osA/B, _Oryza sativa_ PHYA/B; zmA, _Zea mais_ PHYA. The K(R/K)K(R/K) consensus is boxed red.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–3, Tables 1 and 2, and references. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Nagano, S., Guan, K., Shenkutie, S.M. _et al._ Structural insights into photoactivation and signalling in plant phytochromes. _Nat. Plants_ 6, 581–588 (2020).


https://doi.org/10.1038/s41477-020-0638-y Download citation * Received: 17 December 2019 * Accepted: 16 March 2020 * Published: 04 May 2020 * Issue Date: May 2020 * DOI:


https://doi.org/10.1038/s41477-020-0638-y SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative