Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors tlr4 and cd1d

Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors tlr4 and cd1d

Play all audios:

Loading...

ABSTRACT Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure–activity relationships focused on


formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable


lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft


formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour


necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM


antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the


structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature


Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to


articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS IONIZATION AND STRUCTURAL PROPERTIES OF MRNA LIPID NANOPARTICLES INFLUENCE EXPRESSION IN INTRAMUSCULAR AND INTRAVASCULAR ADMINISTRATION Article Open access 11 August 2021


IMMUNOGENICITY OF LIPID NANOPARTICLES AND ITS IMPACT ON THE EFFICACY OF MRNA VACCINES AND THERAPEUTICS Article Open access 02 October 2023 POLY(CARBOXYBETAINE) LIPIDS ENHANCE MRNA


THERAPEUTICS EFFICACY AND REDUCE THEIR IMMUNOGENICITY Article 29 May 2025 DATA AVAILABILITY The main data supporting the results in this study are available within the paper and its


Supplementary Information. The raw and analysed datasets and simulation data are available for research purposes from the corresponding author on reasonable request. Source data for the


figures are provided with this paper. REFERENCES * Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. _Nat. Rev. Mater._ 6, 1078–1094 (2021). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. _Nat. Rev.


Drug Discov._ 20, 817–838 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA


delivery. _Nat. Rev. Mater._ 2, 17056 (2017). Article  CAS  Google Scholar  * Melo, M. et al. Immunogenicity of RNA replicons encoding HIV Env immunogens designed for self-assembly into


nanoparticles. _Mol. Ther._ 27, 2080–2090 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine


candidate induces high neutralizing antibody titers in mice. _Nat. Commun._ 11, 3523 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wesselhoeft, R. A. et al. RNA


circularization diminishes immunogenicity and can extend translation duration in vivo. _Mol. Cell_ 74, 508–520.e4 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wesselhoeft,


R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. _Nat. Commun._ 9, 2629 (2018). Article  PubMed  PubMed Central 


Google Scholar  * Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. _Sci. Adv._ 6, eabc2315 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. _Nat. Med._ 27, 2224–2233


(2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. _N. Engl. J. Med._ 385, 493–502 (2021).


Article  CAS  PubMed  Google Scholar  * Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. _Nat.


Biotechnol._ 40, 840–854 (2022). Article  CAS  PubMed  Google Scholar  * Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. _Nat. Immunol._


23, 532–542 (2022). Article  CAS  PubMed  Google Scholar  * Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. _Nature_ 534,


396–401 (2016). Article  PubMed  Google Scholar  * Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. _Nature_ 586, 594–599 (2020). Article  CAS 


PubMed  Google Scholar  * Ferraresso, F. et al. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA delivery to hepatocytes and hepatic stellate cells. _Mol. Pharm._ 19, 2175–2182 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune


reactions to PEGylated nano-biopharmaceuticals. _Adv. Drug Deliv. Rev._ 154–155, 163–175 (2020). Article  PubMed  Google Scholar  * Ju, Y. et al. Anti-PEG antibodies boosted in humans by


SARS-CoV-2 lipid nanoparticle mRNA vaccine. _ACS Nano_ 16, 11769–11780 (2022). Article  CAS  PubMed  Google Scholar  * Burris, H. A. et al. A phase I multicenter study to assess the safety,


tolerability and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. _J. Clin. Oncol._


37, 2523 (2019). Article  Google Scholar  * Walsh, E. E. et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. _N. Engl. J. Med._ 383, 2439–2450 (2020). Article  CAS


  PubMed  Google Scholar  * Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1


randomized clinical trials. _Vaccine_ 37, 3326–3334 (2019). Article  CAS  PubMed  Google Scholar  * Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in


preclinical vaccine studies is highly inflammatory. _iScience_ 24, 103479 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kleinman, M. E. et al. Sequence- and


target-independent angiogenesis suppression by siRNA via TLR3. _Nature_ 452, 591–597 (2008). Article  PubMed  PubMed Central  Google Scholar  * Hu, B. et al. Therapeutic siRNA: state of the


art. _Signal Transduct. Target. Ther._ 5, 101 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a


biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. _Immunohorizons_ 3, 282–293 (2019). Article  CAS  PubMed  Google Scholar  * Abu Lila, A. S.,


Kiwada, H. & Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. _J. Control. Release_ 172, 38–47 (2013). Article  CAS  PubMed 


Google Scholar  * Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. _Nat. Commun._ 5, 4277 (2014). Article  CAS  PubMed  Google Scholar


  * Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. _Angew. Chem. Int. Ed._ 51, 8529–8533 (2012). Article  CAS  Google Scholar  *


Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. _Nat. Immunol._ 23, 543–555 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. _Nature_ 596, 410–416 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * de Groot, A. M.


et al. Immunogenicity testing of lipidoids in vitro and in silico: modulating lipidoid-mediated TLR4 activation by nanoparticle design. _Mol. Ther. Nucleic Acids_ 11, 159–169 (2018). Article


  PubMed  PubMed Central  Google Scholar  * Pizzuto, M. et al. Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. _J. Control.


Release_ 247, 182–193 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles


and the role of Toll-like receptor 4 in immune activation. _Biomaterials_ 31, 6867–6875 (2010). Article  CAS  PubMed  Google Scholar  * Ozinsky, A. et al. The repertoire for pattern


recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. _Proc. Natl Acad. Sci. USA_ 97, 13766–13771 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Park, B. S. & Lee, J. O. Recognition of lipopolysaccharide pattern by TLR4 complexes. _Exp. Mol. Med._ 45, e66 (2013). Article  PubMed  PubMed Central  Google


Scholar  * Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. _Science_ 282, 2085–2088 (1998). Article  CAS  PubMed  Google Scholar  *


Okusawa, T. et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. _Infect. Immun._ 72,


1657–1665 (2004). Article  PubMed  PubMed Central  Google Scholar  * Irvine, K. L., Hopkins, L. J., Gangloff, M. & Bryant, C. E. The molecular basis for recognition of bacterial ligands


at equine TLR2, TLR1 and TLR6. _Vet. Res._ 44, 50 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by


binding of a tri-acylated lipopeptide. _Cell_ 130, 1071–1082 (2007). Article  CAS  PubMed  Google Scholar  * Ii, M. et al. A novel cyclohexene derivative, ethyl


(6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of


intracellular signaling. _Mol. Pharmacol._ 69, 1288–1295 (2006). Article  CAS  PubMed  Google Scholar  * Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the


TLR4–MD-2 complex. _Nature_ 458, 1191–1195 (2009). Article  CAS  PubMed  Google Scholar  * Patra, M. C., Kwon, H. K., Batool, M. & Choi, S. Computational insight into the structural


organization of full-length toll-like receptor 4 dimer in a model phospholipid bilayer. _Front. Immunol._ 9, 489 (2018). Article  PubMed  PubMed Central  Google Scholar  * Kim, H. M. et al.


Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist Eritoran. _Cell_ 130, 906–917 (2007). Article  CAS  PubMed  Google Scholar  * Tafazzol, A. & Duan, Y. Key


residues in TLR4–MD2 tetramer formation identified by free energy simulations. _PLoS Comput. Biol._ 15, e1007228 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, D. et


al. Regulation of protein-ligand binding affinity by hydrogen bond pairing. _Sci. Adv._ 2, e1501240 (2016). Article  PubMed  PubMed Central  Google Scholar  * Shimazu, R. et al. MD-2, a


molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. _J. Exp. Med._ 189, 1777–1782 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Triantafilou,


M., Miyake, K., Golenbock, D. T. & Triantafilou, K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell


activation. _J. Cell Sci._ 115, 2603–2611 (2002). Article  CAS  PubMed  Google Scholar  * Wong, S. W. et al. Fatty acids modulate toll-like receptor 4 activation through regulation of


receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. _J. Biol. Chem._ 284, 27384–27392 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Lee, J. Y. et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. _J. Lipid Res._ 44, 479–486 (2003).


Article  CAS  PubMed  Google Scholar  * Hwang, D. H., Kim, J. A. & Lee, J. Y. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by


docosahexaenoic acid. _Eur. J. Pharmacol._ 785, 24–35 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shaikh, S. R. et al. Oleic and docosahexaenoic acid differentially phase


separate from lipid raft molecules: a comparative NMR, DSC, AFM and detergent extraction study. _Biophys. J._ 87, 1752–1766 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L. & Kagan, J. C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal


bacteria. _Immunity_ 43, 909–922 (2015). Article  PubMed  PubMed Central  Google Scholar  * Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of


interferon-β. _Nat. Immunol._ 9, 361–368 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4.


_Cell_ 147, 868–880 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schappe, M. S. & Desai, B. N. Measurement of TLR4 and CD14 receptor endocytosis using flow cytometry.


_Bio Protoc._ 8, e2926 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force


field: coarse grained model for biomolecular simulations. _J. Phys. Chem. B_ 111, 7812–7824 (2007). Article  CAS  PubMed  Google Scholar  * Monticelli, L. et al. The MARTINI coarse-grained


force field: extension to proteins. _J. Chem. Theory Comput._ 4, 819–834 (2008). Article  CAS  PubMed  Google Scholar  * Barnoud, J., Rossi, G., Marrink, S. J. & Monticelli, L.


Hydrophobic compounds reshape membrane domains. _PLoS Comput. Biol._ 10, e1003873 (2014). Article  PubMed  PubMed Central  Google Scholar  * Raphael, I., Nalawade, S., Eagar, T. N. &


Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. _Cytokine_ 74, 5–17 (2015). Article  PubMed  Google Scholar  * Ross, S. H. &


Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. _Annu. Rev. Immunol._ 36, 411–433 (2018). Article  PubMed  PubMed Central  Google Scholar  * Saito, H. et al.


Expression and self-regulatory function of cardiac interleukin-6 during endotoxemia. _Am. J. Physiol. Hear. Circ. Physiol._ 279, 2241–2248 (2000). Article  Google Scholar  * Severgnini, M.


et al. Activation of the STAT pathway in acute lung injury. _Am. J. Physiol. Lung Cell. Mol. Physiol._ 286, 1282–1292 (2004). Article  Google Scholar  * Godfrey, D. I. & Rossjohn, J. New


ways to turn on NKT cells. _J. Exp. Med._ 208, 1121–1125 (2011). Article  PubMed  PubMed Central  Google Scholar  * Singh, A. Eliciting B cell immunity against infectious diseases using


nanovaccines. _Nat. Nanotechnol._ 16, 16–24 (2021). Article  CAS  PubMed  Google Scholar  * Lee, M. S. J. et al. B cell-intrinsic MyD88 signaling controls IFN-γ-mediated early IgG2c class


switching in mice in response to a particulate adjuvant. _Eur. J. Immunol._ 49, 1433–1440 (2019). Article  CAS  PubMed  Google Scholar  * Vidarsson, G., Dekkers, G. & Rispens, T. IgG


subclasses and allotypes: from structure to effector functions. _Front. Immunol._ 5, 520 (2014). Article  PubMed  PubMed Central  Google Scholar  * Stevens, T. L. et al. Regulation of


antibody isotype secretion by subsets of antigen-specific helper T cells. _Nature_ 334, 255–258 (1988). Article  CAS  PubMed  Google Scholar  * Snapper, C. M. & Paul, W. E.


Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. _Science_ 236, 944–947 (1987). Article  CAS  PubMed  Google Scholar  * Nimmerjahn, F. Divergent


immunoglobulin G subclass activity through selective Fc receptor binding. _Science_ 310, 1510–1512 (2005). Article  CAS  PubMed  Google Scholar  * Dams, E. T. M. et al. Accelerated blood


clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. _J. Pharmacol. Exp. Ther._ 292, 1071–1079 (2000). CAS  PubMed  Google Scholar  * Ishida, T.


et al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes.


_J. Control. Release_ 105, 305–317 (2005). Article  CAS  PubMed  Google Scholar  * Ishida, T. et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible


for rapid elimination of a second dose of PEGylated liposomes. _J. Control. Release_ 112, 15–25 (2006). Article  CAS  PubMed  Google Scholar  * Wang, X. Y., Ishida, T. & Kiwada, H.


Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. _J. Control. Release_ 119, 236–244 (2007). Article 


CAS  PubMed  Google Scholar  * Shimizu, T., Ishida, T. & Kiwada, H. Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the


accelerated blood clearance phenomenon. _Immunobiology_ 218, 725–732 (2013). Article  CAS  PubMed  Google Scholar  * Alabi, C. A. et al. Multiparametric approach for the evaluation of lipid


nanoparticles for siRNA delivery. _Proc. Natl Acad. Sci. USA_ 110, 12881–12886 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Estapé Senti, M. et al. Anti-PEG antibodies


compromise the integrity of PEGylated lipid-based nanoparticles via complement. _J. Control. Release_ 341, 475–486 (2022). Article  PubMed  Google Scholar  * Sharp, T. H. et al. Insights


into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. _Proc. Natl Acad. Sci. USA_ 116, 11900–11905 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. _Science_ 343, 1260–1263 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Abed, N. S., Chace, J. H., Fleming, A. L. & Cowdery, J. S. Interferon-γ regulation of B lymphocyte differentiation: activation of B cells is a prerequisite for IFN-γ-mediated inhibition


of B cell differentiation. _Cell. Immunol._ 153, 356–366 (1994). Article  CAS  PubMed  Google Scholar  * Finkelman, F. D., Katona, I. M., Mosmann, T. R. & Coffman, R. L. IFN-gamma


regulates the isotypes of Ig secreted during in vivo humoral immune responses. _J. Immunol._ 140, 1022–1027 (1988). Article  CAS  PubMed  Google Scholar  * Chen, B.-M., Cheng, T.-L. &


Roffler, S. R. Polyethylene glycol immunogenicity: theoretical, clinical and practical aspects of anti-polyethylene glycol antibodies. _ACS Nano._ https://doi.org/10.1021/acsnano.1c05922


(2021). * Mima, Y. et al. Ganglioside inserted into PEGylated liposome attenuates anti-PEG immunity. _J. Control. Release_ 250, 20–26 (2017). Article  CAS  PubMed  Google Scholar  * Hajj, K.


A. et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. _Nano Lett._ 20, 5167–5175 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Landrum, G. _RDKit: Open-Source Cheminformatics_ (Open-Source Chemoinformatics, 2006); http://rdkit.org * Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated


docking with selective receptor flexibility. _J. Comput. Chem._ 30, 2785–2791 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berman, H. M. et al. The Protein Data Bank.


_Nucleic Acids Res._ 28, 235–242 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with


a new scoring function, efficient optimization and multithreading. _J. Comput. Chem._ 31, 455–461 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schrödinger, L. _The PyMOL


Molecular Graphics System_, Version 2.5. (Schrödinger LLC, 2021); http://www.pymol.org/pymol * Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams


for drug discovery. _J. Chem. Inf. Model._ 51, 2778–2786 (2011). Article  CAS  PubMed  Google Scholar  * Lindahl, E., Abraham, M. J, Hess, B. & van der Spoel, D. GROMACS 2020.2 Source


code. _Zenodo_ https://doi.org/10.5281/zenodo.3773801 (2020). * Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P. & Marrink, S. J. Computational lipidomics with


insane: a versatile tool for generating custom membranes for molecular simulations. _J. Chem. Theory Comput._ 11, 2144–2155 (2015). Article  CAS  PubMed  Google Scholar  * Humphrey, W.,


Dalke, A. & Schulten, K. VMD: visual molecular dynamics. _J. Mol. Graph._ 14, 33–38 (1996). Article  CAS  PubMed  Google Scholar  * Reitman, S. & Frankel, S. A colorimetric method


for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. _Am. J. Clin. Pathol._ 28, 56–63 (1957). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS Funding for this research was provided by the NIH (grant number DP2-HD098860), the Wadhwani Foundation, and generous support from Jon Saxe and Myrna Marshall. M.L.A.


discloses support for the research described in this study from the NSF Graduate Research Fellowship Program (award number DGE1745016). J.R.M. discloses support for the research described in


this study from an NIH F32 fellowship (number 1F32EB029345). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA,


USA Namit Chaudhary, Lisa N. Kasiewicz, Alexandra N. Newby, Mariah L. Arral, Saigopalakrishna S. Yerneni, Jilian R. Melamed, Samuel T. LoPresti, Katherine C. Fein & Kathryn A. Whitehead


* Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA Daria M. Strelkova Petersen & Kathryn A. Whitehead * Department of Biosciences and Bioengineering,


Indian Institute of Technology Bombay, Mumbai, India Sushant Kumar & Rahul Purwar Authors * Namit Chaudhary View author publications You can also search for this author inPubMed Google


Scholar * Lisa N. Kasiewicz View author publications You can also search for this author inPubMed Google Scholar * Alexandra N. Newby View author publications You can also search for this


author inPubMed Google Scholar * Mariah L. Arral View author publications You can also search for this author inPubMed Google Scholar * Saigopalakrishna S. Yerneni View author publications


You can also search for this author inPubMed Google Scholar * Jilian R. Melamed View author publications You can also search for this author inPubMed Google Scholar * Samuel T. LoPresti View


author publications You can also search for this author inPubMed Google Scholar * Katherine C. Fein View author publications You can also search for this author inPubMed Google Scholar *


Daria M. Strelkova Petersen View author publications You can also search for this author inPubMed Google Scholar * Sushant Kumar View author publications You can also search for this author


inPubMed Google Scholar * Rahul Purwar View author publications You can also search for this author inPubMed Google Scholar * Kathryn A. Whitehead View author publications You can also


search for this author inPubMed Google Scholar CONTRIBUTIONS N.C., L.N.K., R.P. and K.A.W designed the research. N.C., L.N.K., A.N.N., M.L.A., S.S.Y, J.R.M., S.T.L., K.C.F., D.M.S. P. and


S.K. performed research. N.C., L.N.K., A.N.N., M.L.A., S.S.Y., J.R.M., S.T.L. and S.K. analysed data. K.A.W. secured funding and provided oversight of the project. N.C. and K.A.W. wrote the


paper. CORRESPONDING AUTHOR Correspondence to Kathryn A. Whitehead. ETHICS DECLARATIONS COMPETING INTERESTS K.A.W. is an inventor on US patents 9,227,917 (2016) and 9,439,968 (2016) related


to the materials described here, and is a consultant for several companies dealing with non-viral RNA delivery. PEER REVIEW PEER REVIEW INFORMATION _Nature Biomedical Engineering_ thanks Dan


Peer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 IMMUNE RESPONSE OF TAIL GROUPS VARIES WITH SAMPLING TIME, TYPE OF SAMPLE, AND


MEASURED ANALYTE. Mice were dosed twice, 30 days apart, with 1 mg/kg siGFP-LNPs. Proinflammatory cytokine levels were measured in serum (A, B) four hours after each dose, (C-F) two and seven


days after the second dose, and (G-J) in stimulated splenocyte supernatant seven days after the second dose (n = 3–4). Error bars represent s.e.m. Significance was determined according to


according to two-way ANOVA with Tukey’s post-hoc analysis. Source data EXTENDED DATA FIG. 2 313 LNPS ELICIT HIGHER LEVELS OF INFLAMMATORY CYTOKINES IN STIMULATED SPLENOCYTES. Mice were dosed


twice, 30 days apart, with 1 mg/kg siGFP-LNPs. Spleens were collected seven days after the second LNP dose. Isolated splenocytes were stimulated with either PMA/ionomycin or LPS for 24 


hours, and (A) TNFα, (B) IL-6, (C) IFNγ, and (D) IL-2 were measured from cell culture supernatant. PBS was used as a negative control (n = 3–4). Error bars represent s.e.m. Significance was


determined according to two-way ANOVA with Tukey’s post-hoc analysis. Source data EXTENDED DATA FIG. 3 CD1D AND TLR4 BLOCKADE INCREASES ANTI-PEG RESPONSES FOR 306OI10. Mice were injected


with 306Oi10 LNPs along with CD1d and TLR4 inhibitors and corresponding isotype and solvent controls 30 days apart, and (A) anti-PEG IgM and (B) anti-PEG IgG levels were measured weekly (n =


 5). Significance was determined according to two-way ANOVA with Tukey’s post-hoc analysis. Source data EXTENDED DATA FIG. 4 SM-102 ELICITS SIMILAR EFFICACY AND IMMUNE RESPONSE AS 306OI10.


(A) Mice were IV-injected twice with SM-102, 306Oi10, or 304Oi10 LNPs containing anti-Factor VII siRNA at a dose of 0.5 mg/kg one month apart, and Factor VII levels were measured two days


after each injection relative to PBS negative control (n = 3). In separate experiments, mice were IV-injected twice with LNPs containing anti-GFP siRNA one month apart at a dose of 1 mg/kg.


Blood was collected four hours after each dose, and (B) TNFα and (C) IL-6 levels were measured using ELISA. Two and seven days after the second dose, counts of (D) germinal center cells, (E)


plasma cells, (F) and memory B cells were assessed via flow cytometry, and (G) TNFα and (H) IL-6 levels were measured using ELISA (n = 4). Mice were IV-injected twice with LNPs containing


anti-GFP siRNA one month apart at a dose of 1 mg/kg. Blood was collected weekly for two months, and (I) anti-PEG IgM and (J) anti-PEG IgG levels were measured using ELISA (n = 4). Error bars


represent s.e.m. Significance was determined according to two-way ANOVA with Šidák’s post-hoc analysis (A-H) or Tukey’s post-hoc analysis (I, J). Source data SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION Supplementary Figs. 1–13 and Table 1. REPORTING SUMMARY SOURCE DATA SOURCE DATA FIGS. 1–6 Statistical source data. SOURCE DATA EXTENDED DATA FIGS. 1–4 Statistical


source data. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s)


or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chaudhary, N., Kasiewicz, L.N., Newby, A.N. _et al._ Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles


by binding to the receptors TLR4 and CD1d. _Nat. Biomed. Eng_ 8, 1483–1498 (2024). https://doi.org/10.1038/s41551-024-01256-w Download citation * Received: 04 November 2022 * Accepted: 05


September 2024 * Published: 03 October 2024 * Issue Date: November 2024 * DOI: https://doi.org/10.1038/s41551-024-01256-w SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative