Interactions between climate change and urbanization will shape the future of biodiversity

Interactions between climate change and urbanization will shape the future of biodiversity

Play all audios:

Loading...

ABSTRACT Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological


impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for


understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and


then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research


opportunities and ways to design resilient landscapes that address both biological and societal concerns. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS URBANIZATION, CLIMATE AND SPECIES TRAITS SHAPE MAMMAL COMMUNITIES


FROM LOCAL TO CONTINENTAL SCALES Article 04 September 2023 ANTHROPOGENIC CLIMATE AND LAND-USE CHANGE DRIVE SHORT- AND LONG-TERM BIODIVERSITY SHIFTS ACROSS TAXA Article Open access 12


February 2024 TROPICAL AND MEDITERRANEAN BIODIVERSITY IS DISPROPORTIONATELY SENSITIVE TO LAND-USE AND CLIMATE CHANGE Article 14 September 2020 REFERENCES * IPCC _Climate Change 2013: The


Physical Science Basis_ (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013). * _World Urbanization Prospects: The 2018 Revision_ (United Nations, 2018). * Moreno-Monroy, A. I.,


Schiavina, M. & Veneri, P. Metropolitan areas in the world: delineation and population trends. _J. Urban Econ._ 125, 103242 (2021). Article  Google Scholar  * Elmqvist, T. et al.


_Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment_ (Springer Nature, 2013). * Szulkin, M., Munshi-South, J. & Charmantier, A. _Urban


Evolutionary Biology_ (Oxford Univ. Press, 2020). * Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. _Nature_ 438,


310–317 (2005). Article  CAS  Google Scholar  * Grimm, N. B. et al. Global change and the ecology of cities. _Science_ 319, 756–760 (2008). Article  CAS  Google Scholar  * Scheffers, B. R.


et al. The broad footprint of climate change from genes to biomes to people. _Science_ 354, aaf7671 (2016). Article  Google Scholar  * Des Roches, S. et al. Socio-eco-evolutionary dynamics


in cities. _Evol. Appl._ 14, 248–267 (2021). THIS PAPER DEFINES THE SOCIO-ECO-EVOLUTIONARY DYNAMICS THAT NEED TO BE UNDERSTOOD IN CITIES; THIS CONCEPT PROVIDES THE UNDERLYING BASIS FOR THIS


PERSPECTIVE. * Urban, M. C. Accelerating extinction risk from climate change. _Science_ 348, 571–573 (2015). Article  CAS  Google Scholar  * Merilä, J. & Hendry, A. P. Climate change,


adaptation, and phenotypic plasticity: the problem and the evidence. _Evol. Appl._ 7, 1–14 (2014). Article  Google Scholar  * Geerts, A. et al. Rapid evolution of thermal tolerance in the


water flea _Daphnia_. _Nat. Clim. Change_ 5, 665–668 (2015). Article  Google Scholar  * Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in


response to a climate fluctuation. _Proc. Natl Acad. Sci. USA_ 104, 1278–1282 (2007). Article  CAS  Google Scholar  * Donihue, C. M. et al. Hurricane effects on Neotropical lizards span


geographic and phylogenetic scales. _Proc. Natl Acad. Sci. USA_ 117, 10429–10434 (2020). Article  CAS  Google Scholar  * Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A.


Standing genetic variation fuels rapid adaptation to ocean acidification. _Nat. Commun._ 10, 5821 (2019). Article  CAS  Google Scholar  * Alberti, M. et al. The complexity of urban


eco-evolutionary dynamics. _Bioscience_ 70, 772–793 (2020). Article  Google Scholar  * Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. _Science_ 358, eaam8327


(2017). Article  Google Scholar  * Sidemo‐Holm, W., Ekroos, J., Reina García, S., Söderström, B. & Hedblom, M. Urbanization causes biotic homogenization of woodland bird communities at


multiple spatial scales. _Glob. Change Biol._ 28, 6152–6164 (2022). Article  Google Scholar  * McKinney, M. L. Urbanization as a major cause of biotic homogenization. _Biol. Conserv._ 127,


247–260 (2006). Article  Google Scholar  * McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. _Nat. Sustain._ 3, 16–24 (2020). Article  Google


Scholar  * van Vliet, J. Direct and indirect loss of natural area from urban expansion. _Nat. Sustain._ 2, 755–763 (2019). Article  Google Scholar  * Piano, E. et al. Urbanization drives


cross‐taxon declines in abundance and diversity at multiple spatial scales. _Glob. Change Biol._ 26, 1196–1211 (2020). Article  Google Scholar  * Hendry, A. P. _Eco-evolutionary Dynamics_


(Princeton Univ. Press, 2016). * Chapman, S., Watson, J. E., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: a systematic


review. _Landsc. Ecol._ 32, 1921–1935 (2017). THIS REVIEW FINDS THAT MOST STUDIES EVALUATE EITHER URBAN HEAT ISLAND EFFECTS OR CLIMATE CHANGE BUT RARELY CONSIDER THEIR JOINT IMPACTS, AND IT


ISSUES A CALL TO ACTION. Article  Google Scholar  * Nelson, K. C. et al. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management


options. _J. Appl. Ecol._ 46, 154–163 (2009). Article  Google Scholar  * Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to


regional biodiversity. _Bioscience_ 71, 148–160 (2021). Article  Google Scholar  * Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. _Trends Ecol. Evol._ 37,


1006–1019 (2022). THIS PAPER SUPPLIES 30 QUESTIONS AT THE INTERFACE OF URBANIZATION AND ECO-EVOLUTION, INCLUDING THE NEED TO CONSIDER INTERACTIONS BETWEEN URBANIZATION AND CLIMATE CHANGE. *


Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. _Nature_ 470, 479–485 (2011). Article  CAS  Google Scholar  * Riahi, K. et al. The Shared Socioeconomic Pathways


and their energy, land use, and greenhouse gas emissions implications: an overview. _Glob. Environ. Change_ 42, 153–168 (2017). Article  Google Scholar  * O’Neill, B. C. et al. The Scenario


Model Intercomparison Project (ScenarioMIP) for CMIP6. _Geosci. Model Dev._ 9, 3461–3482 (2016). Article  Google Scholar  * Schell, C. J. et al. The ecological and evolutionary consequences


of systemic racism in urban environments. _Science_ 369, eaay4497 (2020). THIS REVIEW HIGHLIGHTS HOW STRUCTURAL RACISM AND CLASSISM AFFECT THE DISTRIBUTION OF ECOSYSTEM BENEFITS IN CITIES.


Article  CAS  Google Scholar  * Niinemets, Ü. et al. Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and


scaling. _Reg. Environ. Change_ 17, 2061–2077 (2017). Article  Google Scholar  * Xu, D., Gao, J., Lin, W. & Zhou, W. Differences in the ecological impact of climate change and


urbanization. _Urban Clim._ 38, 100891 (2021). Article  Google Scholar  * Liu, J. et al. Framing sustainability in a telecoupled world. _Ecol. Soc._ 18, 1–19 (2013). Article  Google Scholar


  * Albert, C., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change. _Conserv.


Biol._ 31, 1383–1396 (2017). Article  Google Scholar  * Lian, X. et al. Artificial light pollution inhibits plant phenology advance induced by climate warming. _Environ. Pollut._ 291, 118110


(2021). Article  CAS  Google Scholar  * Hillier, A. E. Redlining and the Home Owners’ Loan Corporation. _J. Urban Hist._ 29, 394–420 (2003). Article  Google Scholar  * Urban, M. C. et al.


Evolutionary origins for ecological patterns in space. _Proc. Natl Acad. Sci. USA_ 117, 17482–17490 (2020). Article  CAS  Google Scholar  * Varquez, A. C. G. & Kanda, M. Global urban


climatology: a meta-analysis of air temperature trends (1960–2009). _NPJ Clim. Atmos. Sci._ 1, 32 (2018). Article  Google Scholar  * Peng, S. et al. Surface urban heat island across 419


global big cities. _Environ. Sci. Technol._ 46, 696–703 (2012). Article  CAS  Google Scholar  * Oleson, K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios.


_J. Clim._ 25, 1390–1412 (2012). Article  Google Scholar  * Chen, A., Yao, X. A., Sun, R. & Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal


variations. _Urban For. Urban Green._ 13, 646–654 (2014). Article  Google Scholar  * Zhao, L. et al. Global multi-model projections of local urban climates. _Nat. Clim. Change_ 11, 152–157


(2021). Article  Google Scholar  * Burley, H. et al. Substantial declines in urban tree habitat predicted under climate change. _Sci. Total Environ._ 685, 451–462 (2019). Article  CAS 


Google Scholar  * Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. _Sci. Rep._ 7, 15403 (2017). Article  Google Scholar  * Tryjanowski, P.,


Sparks, T. H., Kuźniak, S., Czechowski, P. & Jerzak, L. Bird migration advances more strongly in urban environments. _PLoS ONE_ 8, e63482 (2013). Article  CAS  Google Scholar  * Meng, L.


et al. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. _Proc. Natl Acad. Sci. USA_ 117, 4228–4233 (2020).


THIS STUDY EVALUATES PHENOLOGICAL RESPONSES IN RESPONSE TO BOTH URBANIZATION AND CLIMATE CHANGE AND FINDS A SLOWING OF TEMPERATURE-DRIVEN RESPONSES IN URBAN PLANTS THAT MIGHT REDUCE THEIR


CAPACITY TO RESPOND TO FUTURE TEMPERATURE EXTREMES. Article  CAS  Google Scholar  * Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. _Glob.


Change Biol._ 27, 892–903 (2021). Article  CAS  Google Scholar  * Fisogni, A. et al. Urbanization drives an early spring for plants but not for pollinators. _Oikos_ 129, 1681–1691 (2020).


Article  CAS  Google Scholar  * Meineke, E. K., Dunn, R. R. & Frank, S. D. Early pest development and loss of biological control are associated with urban warming. _Biol. Lett._ 10,


20140586 (2014). Article  Google Scholar  * Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. _Nat. Ecol. Evol._ 3, 879–885 (2019).


Article  Google Scholar  * Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. _Glob. Change Biol._ 23, 5218–5227 (2017).


EXAMPLE OF HOW URBAN HEAT ISLANDS CAN LEAD TO ADAPTATION IN AQUATIC ENVIRONMENTS. Article  Google Scholar  * Winchell, K. M. et al. Genome-wide parallelism underlies contemporary adaptation


in urban lizards. _Proc. Natl Acad. Sci. USA_ 120, e2216789120 (2023). Article  CAS  Google Scholar  * Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid


evolution of ant thermal tolerance across an urban–rural temperature cline. _Biol. J. Linn. Soc._ 121, 248–257 (2017). Article  Google Scholar  * Iknayan, K. J. & Beissinger, S. R.


Collapse of a desert bird community over the past century driven by climate change. _Proc. Natl Acad. Sci. USA_ 115, 8597–8602 (2018). Article  CAS  Google Scholar  * Buyantuyev, A. &


Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: a case study of the Phoenix metropolitan region, USA. _J. Arid Environ._ 73, 512–520 (2009). Article 


Google Scholar  * Roach, W. J. et al. Unintended consequences of urbanization for aquatic ecosystems: a case study from the Arizona desert. _Bioscience_ 58, 715–727 (2008). Article  Google


Scholar  * Siepielski, A. M. et al. Precipitation drives global variation in natural selection. _Science_ 355, 959–962 (2017). Article  CAS  Google Scholar  * Mayrose, M., Kane, N. C.,


Mayrose, I., Dlugosch, K. M. & Rieseberg, L. H. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. _Mol.


Ecol._ 20, 4683–4694 (2011). Article  Google Scholar  * Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. _Curr. Opin. Environ. Sustain._ 14, 101–108 (2015).


Article  Google Scholar  * Pumo, D., Arnone, E., Francipane, A., Caracciolo, D. & Noto, L. Potential implications of climate change and urbanization on watershed hydrology. _J. Hydrol._


554, 80–99 (2017). Article  Google Scholar  * Zhou, Q., Leng, G., Su, J. & Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: importance of urban


planning and drainage adaptation. _Sci. Total Environ._ 658, 24–33 (2019). Article  CAS  Google Scholar  * Liu, J. & Niyogi, D. Meta-analysis of urbanization impact on rainfall


modification. _Sci. Rep._ 9, 7301 (2019). Article  Google Scholar  * Palmer, T. & Räisänen, J. Quantifying the risk of extreme seasonal precipitation events in a changing climate.


_Nature_ 415, 512–514 (2002). Article  CAS  Google Scholar  * McGrane, S. J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review.


_Hydrol. Sci. J._ 61, 2295–2311 (2016). Article  Google Scholar  * Des Roches, S., Bell, M. A. & Palkovacs, E. P. Climate‐driven habitat change causes evolution in threespine


stickleback. _Glob. Change Biol._ 26, 597–606 (2020). Article  Google Scholar  * King, R. S., Scoggins, M. & Porras, A. Stream biodiversity is disproportionately lost to urbanization


when flow permanence declines: evidence from southwestern North America. _Freshw. Sci._ 35, 340–352 (2016). Article  Google Scholar  * Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. &


Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis. _Glob. Change Biol._ 22, 180–189 (2016). Article  Google Scholar  * Urban, M. C., Zarnetske, P.


L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. _Ann. N. Y. Acad. Sci._ 1297, 44–60 (2013). Article  Google Scholar  *


Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. _Ecography_ 42, 1280–1297 (2019). Article  Google Scholar  * McDonald, R. I., Kareiva, P. & Forman, R.


T. The implications of current and future urbanization for global protected areas and biodiversity conservation. _Biol. Conserv._ 141, 1695–1703 (2008). Article  Google Scholar  * Benson, J.


F. et al. Extinction vortex dynamics of top predators isolated by urbanization. _Ecol. Appl._ 29, e01868 (2019). Article  Google Scholar  * McGuire, J. L., Lawler, J. J., McRae, B. H.,


Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. _Proc. Natl Acad. Sci. USA_ 113, 7195–7200 (2016). Article  CAS  Google Scholar  * Piano, E. et


al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. _Glob. Change Biol._ 23, 2554–2564 (2017). Article  Google Scholar  *


Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. _Nature_ 558, 113–116 (2018). Article  CAS  Google Scholar  * Bullock, J. M. et al. Human-mediated dispersal


and the rewiring of spatial networks. _Trends Ecol. Evol._ 33, 958–970 (2018). Article  Google Scholar  * Richardson, J. L. et al. Dispersal ability predicts spatial genetic structure in


native mammals persisting across an urbanization gradient. _Evol. Appl._ 14, 163–177 (2021). Article  CAS  Google Scholar  * Miles, L. S., Breitbart, S. T., Wagner, H. H. & Johnson, M.


T. Urbanization shapes the ecology and evolution of plant–arthropod herbivore interactions. _Front. Ecol. Evol._ 7, 310 (2019). Article  Google Scholar  * Miles, L. S., Rivkin, L. R.,


Johnson, M. T., Munshi‐South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. _Mol. Ecol._ 28, 4138–4151 (2019). Article  Google Scholar  * Miles, L. S., Johnson,


J. C., Dyer, R. J. & Verrelli, B. C. Urbanization as a facilitator of gene flow in a human health pest. _Mol. Ecol._ 27, 3219–3230 (2018). THIS STUDY DEMONSTRATES HIGHER GENE FLOW IN


URBAN POPULATIONS OF THE BLACK WIDOW SPIDER THAN IN RURAL AREAS, SUGGESTING THAT CITIES NOT ONLY LIMIT CONNECTIVITY BUT ALSO CAN SOMETIMES ENHANCE IT. * Yakub, M. & Tiffin, P. Living in


the city: urban environments shape the evolution of a native annual plant. _Glob. Change Biol._ 23, 2082–2089 (2017). Article  Google Scholar  * Cheptou, P.-O., Carrue, O., Rouifed, S. &


Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed _Crepis sancta_. _Proc. Natl Acad. Sci. USA_ 105, 3796–3799 (2008). Article  CAS  Google Scholar  * Tüzün,


N., Op de Beeck, L. & Stoks, R. Sexual selection reinforces a higher flight endurance in urban damselflies. _Evol. Appl._ 10, 694–703 (2017). Article  Google Scholar  * Henry, R. C.,


Bocedi, G. & Travis, J. M. J. Eco-evolutionary dynamics of range shifts: elastic margins and critical thresholds. _J. Theor. Biol._ 321, 1–7 (2013). Article  Google Scholar  * Waajen, G.


W. A. M., Faassen, E. J. & Lürling, M. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. _Environ. Sci. Pollut. Res._ 21, 9983–9994 (2014). Article  CAS  Google


Scholar  * Jeppesen, E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. _J. Environ. Qual._ 38, 1930–1941 (2009).


Article  CAS  Google Scholar  * Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. _Glob. Change Biol._ 18, 118–126 (2012). Article  Google Scholar  * Reid,


A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. _Biol. Rev._ 94, 849–873 (2019). Article  Google Scholar  * Chislock, M. F., Sarnelle, O.,


Olsen, B. K., Doster, E. & Wilson, A. E. Large effects of consumer offense on ecosystem structure and function. _Ecology_ 94, 2375–2380 (2013). Article  Google Scholar  * Jiang, X.,


Liang, H., Chen, Y., Xu, X. & Huang, D. Microgeographic adaptation to toxic cyanobacteria in two aquatic grazers. _Limnol. Oceanogr._ 60, 947–956 (2015). Article  Google Scholar  *


Spear, J. E., Grijalva, E. K., Michaels, J. S. & Parker, S. S. Ecological spillover dynamics of organisms from urban to natural landscapes. _J. Urban Ecol._ 4, juy008 (2018). Article 


Google Scholar  * Borden, J. B. & Flory, S. L. Urban evolution of invasive species. _Front. Ecol. Environ._ 19, 184–191 (2021). Article  Google Scholar  * Menke, S. B. et al. Urban areas


may serve as habitat and corridors for dry-adapted, heat tolerant species: an example from ants. _Urban Ecosyst._ 14, 135–163 (2011). Article  Google Scholar  * Van der Veken, S., Hermy,


M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. _Front. Ecol. Environ._ 6, 212–216 (2008). Article  Google Scholar  * Martin, R. A., Chick,


L. D., Yilmaz, A. R. & Diamond, S. E. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban–rural temperature


cline. _Evol. Appl._ 12, 1678–1687 (2019). Article  Google Scholar  * Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards


to urban heat islands. _Nat. Ecol. Evol._ 4, 652–658 (2020). Article  Google Scholar  * Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world.


_Trends Ecol. Evol._ 29, 521–530 (2014). Article  Google Scholar  * Altermatt, F., Pajunen, V. I. & Ebert, D. Climate change affects colonization dynamics in a metacommunity of three


_Daphnia_ species. _Glob. Change Biol._ 14, 1209–1220 (2008). Article  Google Scholar  * De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on


monopolization and priority effects. _Trends Ecol. Evol._ 31, 136–146 (2016). Article  Google Scholar  * Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential


consequences of climate change for invasive species. _Conserv. Biol._ 22, 534–543 (2008). Article  Google Scholar  * Jansen, M., Stoks, R., Coors, A., Van Doorslaer, W. & De Meester, L.


Collateral damage: rapid exposure‐induced evolution of pesticide resistance leads to increased susceptibility to parasites. _Evolution_ 65, 2681–2691 (2011). Article  Google Scholar  *


Padayachee, A. L. et al. How do invasive species travel to and through urban environments? _Biol. Invasions_ 19, 3557–3570 (2017). Article  Google Scholar  * Wilson, C. J. & Jamieson, M.


A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. _PLoS ONE_ 14, e0225852 (2019). Article  CAS  Google Scholar  *


Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (_Bombus lapidarius_ L.). _Proc.


R. Soc. B_ 285, 20172806 (2018). Article  Google Scholar  * Wilke, A. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure


future for predicting increases in vector-borne infectious diseases. _Curr. Opin. Insect Sci._ 35, 1–9 (2019). Article  Google Scholar  * Nadeau, C. P., Farkas, T. E., Makkay, A. M., Papke,


R. T. & Urban, M. C. Adaptation reduces competitive dominance and alters community assembly. _Proc. R. Soc. B_ 288, 20203133 (2021). Article  Google Scholar  * Gillespie, R. Community


assembly through adaptive radiation in Hawaiian spiders. _Science_ 303, 356–359 (2004). Article  CAS  Google Scholar  * Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. &


Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. _Science_ 322, 258–261 (2008). Article  CAS  Google Scholar  * Norberg, J., Urban,


M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. _Nat. Clim. Change_ 2, 747–751 (2012). Article  Google Scholar  * Qiu,


T., Song, C., Zhang, Y., Liu, H. & Vose, J. M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. _Remote Sens. Environ._


236, 111477 (2020). Article  Google Scholar  * Zhou, Y. Understanding urban plant phenology for sustainable cities and planet. _Nat. Clim. Change_ 12, 302–304 (2022). Article  Google Scholar


  * Egert-Berg, K. et al. Fruit bats adjust their foraging strategies to urban environments to diversify their diet. _BMC Biol._ 19, 123 (2021). Article  Google Scholar  * Zaninotto, V. et


al. Broader phenology of pollinator activity and higher plant reproductive success in an urban habitat compared to a rural one. _Ecol. Evol._ 10, 11607–11621 (2020). Article  Google Scholar


  * Rivkin, L. R., Nhan, V. J., Weis, A. E. & Johnson, M. T. Variation in pollinator-mediated plant reproduction across an urbanization gradient. _Oecologia_ 192, 1073–1083 (2020).


Article  Google Scholar  * Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. _Ecol. Lett._ 10, 710–717 (2007).


Article  Google Scholar  * Gorton, A. J., Moeller, D. A. & Tiffin, P. Little plant, big city: a test of adaptation to urban environments in common ragweed (_Ambrosia artemisiifolia_).


_Proc. R. Soc. B_ 285, 20180968 (2018). Article  Google Scholar  * Synes, N. W. et al. Coupled land use and ecological models reveal emergence and feedbacks in socio‐ecological systems.


_Ecography_ 42, 814–825 (2019). Article  Google Scholar  * McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for


ecology. _Ecology_ 71, 1232–1237 (1990). Article  Google Scholar  * Winchell, K. M. et al. Moving past the challenges and misconceptions in urban adaptation research. _Ecol. Evol._ 12, e9552


(2022). Article  Google Scholar  * Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: cities as surrogates for global change. _Proc. R. Soc. B_ 285, 20180643 (2018).


Article  Google Scholar  * Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R. & Frank, S. D. Do cities simulate climate change? A comparison of herbivore response to urban and


global warming. _Glob. Change Biol._ 21, 97–105 (2015). THIS EMPIRICAL STUDY DEMONSTRATES THAT A SCALE INSECT RESPONDS SIMILARLY TO TEMPERATURE INCREASES IN CITIES AND RURAL AREAS,


SUGGESTING THE ABILITY TO USE URBAN SYSTEMS TO LEARN ABOUT CLIMATE CHANGE RESPONSES. * Sharkey, P. _Stuck in Place: Urban Neighborhoods and the End of Progress toward Racial Equality_ (Univ.


Chicago Press, 2013). * Pinna, F., Garau, C. & Annunziata, A. A Literature review on urban usability and accessibility to investigate the related criteria for equality in the city. In


_International Conference on Computational Science and Its Applications_ (eds Gervasi, O. et al.) 525–541 (Springer, 2021). * Hobbie, S. E. & Grimm, N. B. Nature-based approaches to


managing climate change impacts in cities. _Phil. Trans. R. Soc. B_ 375, 20190124 (2020). THIS PERSPECTIVE CALLS FOR USING LIVING ORGANISMS AND ECOSYSTEM FEATURES TO LESSEN CLIMATE CHANGE


IMPACTS IN URBAN AREAS. Article  Google Scholar  * Goddard, M. A. et al. A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. _Nat. Ecol.


Evol._ 5, 219–230 (2021). Article  Google Scholar  * Andersson, E., Borgström, S. & McPhearson, T. in _Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Theory and


Practice of Urban Sustainability Transitions_ (eds Kabisch, N. et al.) 51–64 (Springer, 2017). * Depietri, Y. & McPhearson, T. in _Nature-Based Solutions to Climate Change Adaptation in


Urban Areas: Theory and Practice of Urban Sustainability Transitions_ (eds Kabisch, N. et al.) 91–109 (Springer, 2017). * Lambert, M. R. & Donihue, C. M. Urban biodiversity management


using evolutionary tools. _Nat. Ecol. Evol._ 4, 903–910 (2020). Article  Google Scholar  * Hostetler, N. E. & McIntyre, M. E. Effects of urban land use on pollinator (Hymenoptera:


Apoidea) communities in a desert metropolis. _Basic Appl. Ecol._ 2, 209–218 (2001). Article  Google Scholar  * Rosenzweig, M. L. Reconciliation ecology and the future of species diversity.


_Oryx_ 37, 194–205 (2003). Article  Google Scholar  * Iturbide, M. et al. Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository. _Sci. Data_ 9, 629 (2022). Article 


Google Scholar  * _Star Cloud Data Service Platform_ (Peng Cheng Laboratory, 2024); http://data.starcloud.pcl.ac.cn/ * Zhang, T., Zhou, Y., Zhu, Z., Li, X. & Asrar, G. _A Global Seamless


1 km Resolution Daily Land Surface Temperature Dataset (2003–2020)_ (Iowa State Univ., 2021); https://doi.org/10.25380/iastate.c.5078492.v3 Download references ACKNOWLEDGEMENTS This study


is a collaborative effort of the National Science Foundation Research Coordination Network: Eco-Evolutionary Dynamics in an Urban Planet: Underlying Mechanisms and Ecosystem Feedbacks (DEB


1840663). We acknowledge the many participants in this working group that directly and indirectly contributed to our development of the five presented hypotheses. M.C.U. was supported by NSF


award no. DEB-1119877, National Science Foundation NRT grant no. 2022036, NASA awards no. 80NSSC22K0883 and no. 80NSSC19K0476, the Arden Chair in Ecology and Evolutionary Biology, and a


Leverhulme visiting professorship. P.R. thanks the Max Planck Society for funding. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Ecology and Evolutionary Biology and Center of


Biological Risk, University of Connecticut, Storrs, CT, USA Mark C. Urban * Department of Urban Design and Planning, University of Washington, Seattle, WA, USA Marina Alberti & Anna N.


Malesis * Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany Luc De Meester * Institute of Biology, Freie Universität Berlin, Berlin, Germany Luc De Meester *


Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium Luc De Meester * Department of Geography and Urban Systems Institute, University of Hong Kong, Hong


Kong, China Yuyu Zhou * Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA Brian C. Verrelli * Institute of Evolutionary Biology, Faculty of Biology,


Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland Marta Szulkin * German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany


Chloé Schmidt * Department of Biology and Center for Computational and Integrative Biology, Rutgers University–Camden, Camden, NJ, US Amy M. Savage * isoTROPIC Research Group, Max Planck


Institute of Geoanthropology, Jena, Germany Patrick Roberts * Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada L. Ruth Rivkin & Colin J. Garroway *


Polar Bears International, Bozeman, MT, USA L. Ruth Rivkin * San Diego Zoo Wildlife Alliance, Escondido, CA, USA L. Ruth Rivkin * Department of Ecology and Evolutionary Biology, University


of California, Santa Cruz, CA, USA Eric P. Palkovacs * Louis Calder Center and Department of Biological Sciences, Fordham University, Armonk, NY, USA Jason Munshi-South * Applied Wildlife


Ecology Lab, Yale School of the Environment, Yale University, New Haven, CT, USA Nyeema C. Harris * Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada


Kiyoko M. Gotanda * Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada Kiyoko M. Gotanda * Department of Zoology, University of Cambridge, Cambridge, UK Kiyoko M.


Gotanda * Department of Biology, Case Western Reserve University, Cleveland, OH, USA Sarah E. Diamond * School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA


Simone Des Roches * CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France Anne Charmantier * Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium Kristien I. Brans *


Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium Kristien I. Brans Authors * Mark C. Urban View author publications You can also search for this author inPubMed Google


Scholar * Marina Alberti View author publications You can also search for this author inPubMed Google Scholar * Luc De Meester View author publications You can also search for this author


inPubMed Google Scholar * Yuyu Zhou View author publications You can also search for this author inPubMed Google Scholar * Brian C. Verrelli View author publications You can also search for


this author inPubMed Google Scholar * Marta Szulkin View author publications You can also search for this author inPubMed Google Scholar * Chloé Schmidt View author publications You can also


search for this author inPubMed Google Scholar * Amy M. Savage View author publications You can also search for this author inPubMed Google Scholar * Patrick Roberts View author


publications You can also search for this author inPubMed Google Scholar * L. Ruth Rivkin View author publications You can also search for this author inPubMed Google Scholar * Eric P.


Palkovacs View author publications You can also search for this author inPubMed Google Scholar * Jason Munshi-South View author publications You can also search for this author inPubMed 


Google Scholar * Anna N. Malesis View author publications You can also search for this author inPubMed Google Scholar * Nyeema C. Harris View author publications You can also search for this


author inPubMed Google Scholar * Kiyoko M. Gotanda View author publications You can also search for this author inPubMed Google Scholar * Colin J. Garroway View author publications You can


also search for this author inPubMed Google Scholar * Sarah E. Diamond View author publications You can also search for this author inPubMed Google Scholar * Simone Des Roches View author


publications You can also search for this author inPubMed Google Scholar * Anne Charmantier View author publications You can also search for this author inPubMed Google Scholar * Kristien I.


Brans View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.C.U., M.A., L.D.M. and K.I.B. conceived of the overall idea. All authors wrote the


paper. Y.Z. provided data used in the heat island calculations. A.N.M. developed Fig. 1. M.A. led the research coordination network that brought these authors together. CORRESPONDING AUTHOR


Correspondence to Mark C. Urban. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Climate Change_ thanks Jie


Liang, Robert McDonald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral


with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods. RIGHTS AND PERMISSIONS


Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author


self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Urban, M.C., Alberti, M., De Meester, L. _et al._ Interactions between climate change and urbanization will shape the future of biodiversity. _Nat. Clim. Chang._ 14,


436–447 (2024). https://doi.org/10.1038/s41558-024-01996-2 Download citation * Received: 13 March 2023 * Accepted: 22 March 2024 * Published: 26 April 2024 * Issue Date: May 2024 * DOI:


https://doi.org/10.1038/s41558-024-01996-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative