The evo-devo of plant speciation

The evo-devo of plant speciation

Play all audios:

Loading...

ABSTRACT Speciation research bridges the realms of macro- and microevolution. Evolutionary developmental biology (evo-devo) has classically dealt with macroevolutionary questions through a


comparative approach to distantly related organisms, but the field later broadened in focus to address recent speciation and microevolution. Here we review available evidence of the power of


evo-devo approaches to understand speciation in plants at multiple scales. At a macroevolutionary scale, evidence is accumulating for evolutionary developmental mechanisms giving rise to


key innovations promoting speciation. At the macro microevolution transition, we review instances of evo-devo change underlying both the origin of reproductive barriers and phenotypic


changes distinguishing closely related species. At the microevolutionary scale, the study of developmental variation within species provides insight into the processes that generate the raw


material for evolution and speciation. We conclude by advocating a strong interaction between developmental biology and evolutionary biology at multiple scales to gain a deeper understanding


of plant speciation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12


digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS EVOLUTION OF PHENOTYPIC DISPARITY IN THE PLANT KINGDOM Article Open access 04 September 2023 AN INTEGRATIVE GENOMIC AND PHENOMIC ANALYSIS TO


INVESTIGATE THE NATURE OF PLANT SPECIES IN _ESCALLONIA_ (ESCALLONIACEAE) Article Open access 14 December 2021 GENE DUPLICATIONS AND PHYLOGENOMIC CONFLICT UNDERLIE MAJOR PULSES OF PHENOTYPIC


EVOLUTION IN GYMNOSPERMS Article 19 July 2021 REFERENCES * Coyne, J. A. & Orr, H. A. _Speciation_ (Sinauer Associates, 2004). Google Scholar  * Futuyma, D. J. _Evolution_ 2nd edn


(Sinauer Associates, 2009). Google Scholar  * Arthur, W. _Evolution: a Developmental Approach_ (Wiley-Blackwell, 2011). Google Scholar  * Theiβen, G., Melzer, R. & Rümpler, F.


MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. _Development_ 143, 3259–3271 (2016). Article  CAS  Google


Scholar  * Nunes, M. D. S., Arif, S., Schlötterer, C. & McGregor, A. P. A perspective on micro-evo-devo: progress and potential. _Genetics_ 195, 625–634 (2013). Article  PubMed  PubMed


Central  Google Scholar  * Minelli, A. & Fusco, G. On the evolutionary developmental biology of speciation. _Evol. Biol._ 39, 242–254 (2012). Article  Google Scholar  * Rieseberg, L. H.


& Willis, J. H. Plant speciation. _Science_ 317, 910–914 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rieseberg, L. H. & Blackman, B. K. Speciation genes in


plants. _Ann. Bot._ 106, 439–455 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Armbruster, W. S. & Muchhala, N. Associations between floral specialization and species


diversity: cause, effect, or correlation?. _Evol. Ecol._ 23, 159–179 (2009). Article  Google Scholar  * Dietrich, M. R. in _Contemporary Debates in Philosophy of Biology_ (eds Ayala, F. J.


& Arp, R. ) 169–179 (Wiley-Blackwell, 2010). Google Scholar  * Erwin, D. H. in _Contemporary Debates in the Philosophy of Biology_ (eds Ayala, F. J. & Arp, R. ) 180–193


(Wiley-Blackwell, 2010). Google Scholar  * Melzer, R. & Theißen, G. The significance of developmental robustness for species diversity. _Ann. Bot._ 117, 725–732 (2016). Article  PubMed 


PubMed Central  Google Scholar  * Heard, S. B. & Hauser, D. L. Key evolutionary innovations and their ecological mechanisms. _Hist. Biol._ 10, 151–173 (1995). Article  Google Scholar  *


Kay, K. M. _et al_. in _Ecology and Evolution of Flowers_ (eds Harder, L. D. & Barrett, S. C. H. ) 311–325 (Oxford Univ. Press, 2006). Google Scholar  * Soltis, D. E. _et al_. Polyploidy


and angiosperm diversification. _Am. J. Bot._ 96, 336–348 (2009). Article  PubMed  Google Scholar  * Jiao, Y. _et al_. Ancestral polyploidy in seed plants and angiosperms. _Nature_ 473,


97–100 (2011). Article  CAS  PubMed  Google Scholar  * Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation


Lag-Time Model. _Curr. Opin. Plant Biol._ 15, 147–153 (2012). Article  PubMed  Google Scholar  * Grimaldi, D. The co-radiations of pollinating insects and angiosperms in the Cretaceous.


_Ann. Missouri Bot. Gard._ 86, 373–406 (1999). Article  Google Scholar  * Kopp, A. Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways.


_Evolution_ 63, 2771–2789 (2009). Article  PubMed  Google Scholar  * Sargent, R. D. Floral symmetry affects speciation rates in angiosperms. _Proc. R. Soc. Lond. B_ 271, 603–608 (2004).


Article  Google Scholar  * Hileman, L. C. Bilateral flower symmetry—how, when and why? _Curr. Opin. Plant Biol_. 17, 146–152 (2014). Article  PubMed  Google Scholar  * Grotewold, E. The


genetics and biochemistry of floral pigments. _Annu. Rev. Plant Biol_. 57, 761–780 (2006). Article  CAS  PubMed  Google Scholar  * Rausher, M. D. Evolutionary transitions in floral color.


_Int. J. Plant Sci._ 169, 7–21 (2008). Article  CAS  Google Scholar  * Wessinger, C. A. & Rausher, M. D. Lessons from flower colour evolution on targets of selection. _J. Exp. Bot._ 63,


5741–5749 (2012). Article  CAS  PubMed  Google Scholar  * Raff, R. A. Written in stone: fossils, genes and evo–devo. _Nat. Rev. Genet._ 8, 911–920 (2007). Article  CAS  PubMed  Google


Scholar  * Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades?. _Ann. Bot._ 117, 859–879 (2015). Article  PubMed 


PubMed Central  Google Scholar  * Boyce, C. K. The evolution of plant development in a paleontological context. _Curr. Opin. Plant Biol._ 13, 102–107 (2010). Article  PubMed  Google Scholar


  * Hetherington, A. J., Dubrovsky, J. G. & Dolan, L. Unique cellular organization in the oldest root meristem. _Curr. Biol._ 26, 1629–1633 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Rothwell, G. W., Wyatt, S. E. & Tomescu, A. M. F. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. _Am. J.


Bot._ 101, 899–913 (2014). Article  PubMed  Google Scholar  * Rothwell, G. W., Sanders, H., Wyatt, S. E. & Lev-Yadun, S. A fossil record for growth regulation: the role of auxin in wood


evolution. _Ann. Missouri Bot. Gard_. 95, 121–134 (2008). Article  Google Scholar  * Yi, S. Y. & Kato, M. Basal meristem and root development in _Isoetes asiatica_ and _Isoetes


japonica_. _Int. J. Plant Sci._ 162, 1225–1235 (2001). Article  Google Scholar  * Arthur, W. The emerging conceptual framework of evolutionary developmental biology. _Nature_ 415, 757–764


(2002). Article  CAS  PubMed  Google Scholar  * Ellis, A. G., Weis, A. E. & Gaut, B. S. Evolutionary radiation of “stone plants” in the genus _Argyroderma_ (Aizoaceae): unraveling the


effects of landscape, habitat, and flowering time. _Evolution_ 60, 39–55 (2006). PubMed  Google Scholar  * Bradford, J. C. A cladistic analysis of species groups in _Weinmannia_


(Cunoniaceae) based on morphology and inflorescence architecture. _Ann. Missouri Bot. Gard._ 85, 565–593 (1998). Article  Google Scholar  * Puzey, J. R., Gerbode, S. J., Hodges, S. A.,


Kramer, E. M. & Mahadevan, L. Evolution of spur-length diversity in _Aquilegia_ petals is achieved solely through cell-shape anisotropy. _Proc. R. Soc. Lond. B_ 279, 1640–1645 (2012).


Article  Google Scholar  * Whibley, A. C. _et al_. Evolutionary paths underlying flower color variation in _Antirrhinum_. _Science_ 313, 963–966 (2006). Article  CAS  PubMed  Google Scholar


  * Ojeda, I. _et al_. Comparative micromorphology of petals in Macaronesian _Lotus_ (Leguminosae) reveals a loss of papillose conical cells during the evolution of bird pollination. _Int.


J. Plant Sci._ 173, 365–374 (2012). Article  Google Scholar  * Feng, X. _et al_. Evolution of allometry in _Antirrhinum_. _Plant Cell_ 21, 2999–3007 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. _Nature_ 426, 176–178 (2003).


Article  CAS  PubMed  Google Scholar  * Hoballah, M. E. _et al_. Single gene-mediated shift in pollinator attraction in _Petunia_. _Plant Cell_ 19, 779–790 (2007). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Hodges, S. A., Whittall, J. B., Fulton, M. & Yang, J. Y. Genetics of floral traits influencing reproductive isolation between _Aquilegia formosa_ and


_Aquilegia pubescens_. _Am. Nat._ 159, S51–S60 (2002). Article  PubMed  Google Scholar  * Reck-Kortmann, M. _et al_. Multilocus phylogeny reconstruction: new insights into the evolutionary


history of the genus _Petunia_. _Mol. Phylogenet. Evol._ 81, 19–28 (2014). Article  PubMed  Google Scholar  * Gübitz, T., Hoballah, M. E., Dell’Olivo, A. & Kuhlemeier, C. in _Petunia:


Evolutionary, Developmental and Physiological Genetics_ (eds Gerats, T. & Strommer, J. ) 29–49 (Springer-Verlag, 2009). Book  Google Scholar  * Klahre, U. _et al_. Pollinator choice in


_Petunia_ depends on two major genetic loci for floral scent production. _Curr. Biol._ 21, 730–739 (2011). Article  CAS  PubMed  Google Scholar  * Sheehan, H. _et al_. MYB-FL controls gain


and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. _Nat. Genet._ 48, 159–166 (2016). Article  CAS  PubMed  Google Scholar  * Yuan, Y.


W., Byers, K. J. R. P. & Bradshaw, H. D. The genetic control of flower–pollinator specificity. _Curr. Opin. Plant Biol._ 16, 422–428 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Hermann, K. _et al_. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in _Petunia_. _Curr. Biol._ 23, 873–877 (2013). Article  CAS 


PubMed  Google Scholar  * Lobo, J. A. _et al_. Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. _Am. J. Bot._ 90, 1054–1063 (2003).


Article  PubMed  Google Scholar  * Holt, A. L., van Haperen, J. M. A., Groot, E. P. & Laux, T. Signaling in shoot and flower meristems of _Arabidopsis thaliana_. _Curr. Opin. Plant


Biol._ 17, 96–102 (2014). Article  CAS  PubMed  Google Scholar  * Glover, B. J. Understanding flowers and flowering: an integrated approach (Oxford Univ. Press, 2014). * Méndez-Vigo, B.,


Picó, F. X., Ramiro, M., Martínez-Zapater, J. M. & Alonso-Blanco, C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in _Arabidopsis_.


_Plant Physiol._ 157, 1942–1955 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grillo, M. A., Li, C., Hammond, M., Wang, L. & Schemske, D. W. Genetic architecture of


flowering time differentiation between locally adapted populations of _Arabidopsis thaliana_. _New Phytol._ 197, 1321–1331 (2013). Article  CAS  PubMed  Google Scholar  * Rosas, U. _et al_.


Variation in _Arabidopsis_ flowering time associated with cis-regulatory variation in CONSTANS. _Nat. Commun._ 5, 3651 (2014). * Sicard, A. & Lenhard, M. The selfing syndrome: a model


for studying the genetic and evolutionary basis of morphological adaptation in plants. _Ann. Bot._ 107, 1433–1443 (2011). Article  PubMed  PubMed Central  Google Scholar  * Sicard, A. _et


al_. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in _Capsella_. _Proc. Natl Acad. Sci. USA_ 113, 13911–13916 (2016). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Sas, C. _et al_. Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in _Capsella_.


_Curr. Biol._ 26, 3313–3319 (2016). Article  CAS  PubMed  Google Scholar  * Whittall, J. B. & Hodges, S. A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers.


_Nature_ 447, 706–709 (2007). Article  CAS  PubMed  Google Scholar  * Box, M. S., Bateman, R. M., Glover, B. J. & Rudall, P. J. Floral ontogenetic evidence of repeated speciation via


paedomorphosis in subtribe Orchidinae (Orchidaceae). _Bot. J. Linn. Soc._ 157, 429–454 (2008). Article  Google Scholar  * Blanco-Pastor, J. L. _et al_. Bees explain floral variation in a


recent radiation of _Linaria_. _J. Evolution. Biol._ 28, 851–863 (2015). Article  CAS  Google Scholar  * Box, M. S., Dodsworth, S., Rudall, P. J., Bateman, R. M. & Glover, B. J.


Characterization of _Linaria_ KNOX genes suggests a role in petal-spur development. _Plant. J._ 68, 703–714 (2011). Article  CAS  PubMed  Google Scholar  * Yant, L., Collani, S., Puzey, J.


R., Levy, C. & Kramer, E. M. Molecular basis for three-dimensional elaboration of the _Aquilegia_ petal spur. _Proc. R. Soc. Lond. B_ 282, 20142778 (2015). * Soltis, P. S. & Soltis,


D. E. The role of hybridization in plant speciation. _Annu. Rev. Plant Biol._ 60, 561–588 (2009). Article  CAS  PubMed  Google Scholar  * Buggs, R. J. A. _et al_. The legacy of diploid


progenitors in allopolyploid gene expression patterns. _Phil. Trans. R. Soc. B_ 369, 20130354 (2014). Article  Google Scholar  * Ichihashi, Y. _et al_. Evolutionary developmental


transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. _Proc. Natl Acad. Sci. USA_ 111, E2616–E2621 (2014). Article  CAS  Google Scholar  *


Vargas, P., Carrió, E., Guzmán, B., Amat, E. & Güemes, J. A geographical pattern of _Antirrhinum_ (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA


polymorphisms. _J. Biogeogr._ 36, 1297–1312 (2009). Article  Google Scholar  * Pigliucci, M. Is evolvability evolvable?. _Nat. Rev. Genet._ 9, 75–82 (2008). Article  CAS  PubMed  Google


Scholar  * Johnson, N. A. The micro-evolution of development. _Genetica_ 129, 1–5 (2007). Article  PubMed  Google Scholar  * Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R.


& Thomson, J. D. Pollination syndromes and floral specialization. _Annu. Rev. Ecol. Evol. Systemat_. 35, 375–403 (2004). Article  Google Scholar  * Sobel, J. M. & Streisfeld, M. A.


Strong premating reproductive isolation drives incipient speciation in _Mimulus aurantiacus_. _Evolution_ 69, 447–461 (2015). Article  PubMed  Google Scholar  * Stankowski, S. &


Streisfeld, M. A. Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers. _Proc. R. Soc. Lond. B_ 282, 20151666 (2015). * Streisfeld, M. A.,


Young, W. N. & Sobel, J. M. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in _Mimulus aurantiacus_.


_PLoS Genet._ 9, e1003385 (2013). * Busch, A., Horn, S., Mühlhausen, A., Mummenhoff, K. & Zachgo, S. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae


family. _Mol. Biol. Evol._ 29, 1241–1254 (2012). Article  CAS  PubMed  Google Scholar  * Gómez, J. M., Abdelaziz, M., Muñoz-Pajares, J. & Perfectti, F. Heritability and genetic


correlation of corolla shape and size in _Erysimum mediohispanicum_. _Evolution_ 63, 1820–1831 (2009). Article  PubMed  Google Scholar  * Gómez, J. M., Perfectti, F. & Camacho, J. P. M.


Natural selection on _Erysimum mediohispanicum_ flower shape: insights into the evolution of zygomorphy. _Am. Nat._ 168, 531–545 (2006). Article  PubMed  Google Scholar  * Ellis, A. G. _et


al_. Floral trait variation and integration as a function of sexual deception in _Gorteria diffusa_. _Phil. Trans. R. Soc. Lond. B_ 369, 20130563 (2014). Article  Google Scholar  * Roda, F.


_et al_. Convergence and divergence during the adaptation to similar environments by an Australian groundsel. _Evolution_ 67, 2515–2529 (2013). Article  PubMed  Google Scholar  * Kivimäki,


M., Kärkkäinen, K., Gaudeul, M., Løe, G. & Ågren, J. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of _Arabidopsis lyrata_. _Mol. Ecol._ 16,


453–462 (2007). Article  CAS  PubMed  Google Scholar  * Pfennig, D. W. _et al_. Phenotypic plasticity's impacts on diversification and speciation. _Trends Ecol. Evol._ 25, 459–467


(2010). Article  PubMed  Google Scholar  * Levis, N. A. & Pfennig, D. W. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. _Trends Ecol. Evol._


31, 563–574 (2016). Article  PubMed  Google Scholar  * Nakayama, H. _et al_. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. _Plant Cell_


26, 4733–4748 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Flatscher, R., Frajman, B., Schönswetter, P. & Paun, O. Environmental heterogeneity and phenotypic


divergence: can heritable epigenetic variation aid speciation?. _Genet. Res. Int._ 2012, 698421 (2012). * Turner, B. M. Epigenetic responses to environmental change and their evolutionary


implications. _Phil. Trans. R. Soc. Lond. B_ 364, 3403–3418 (2009). Article  CAS  Google Scholar  * Paun, O. _et al_. Stable epigenetic effects impact adaptation in allopolyploid orchids


(_Dactylorhiza_: Orchidaceae). _Mol. Biol. Evol._ 27, 2465–2473 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation


responsible for natural variation in floral symmetry. _Nature_ 401, 157–161 (1999). Article  CAS  PubMed  Google Scholar  * Herrera, C. M. & Bazaga, P. Epigenetic differentiation and


relationship to adaptive genetic divergence in discrete populations of the violet _Viola cazorlensis_. _New Phytol._ 187, 867–876 (2010). Article  CAS  PubMed  Google Scholar  * Scoville, A.


G., Barnett, L. L., Bodbyl-Roels, S., Kelly, J. K. & Hileman, L. C. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of


trichome density in _Mimulus guttatus_. _New Phytol._ 191, 251–263 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hodges, S. A. Floral nectar spurs and diversification.


_Int. J. Plant Sci._ 158, 81–88 (1997). Article  Google Scholar  * Mack, J. L. K. & Davis, A. R. The relationship between cell division and elongation during development of the


nectar-yielding petal spur in _Centranthus ruber_ (Valerianaceae). _Ann. Bot._ 115, 641–649 (2015). Article  PubMed  PubMed Central  Google Scholar  * Fulton, M. & Hodges, S. A. Floral


isolation between _Aquilegia formosa_ and _Aquilegia pubescens_. _Proc. R. Soc. Lond. B_ 266, 2247–2252 (1999). Article  Google Scholar  * Boberg, E. _et al_. Pollinator shifts and the


evolution of spur length in the moth-pollinated orchid _Platanthera bifolia_. _Ann. Bot._ 113, 267–275 (2014). Article  PubMed  Google Scholar  * Theißen, G. Saltational evolution: hopeful


monsters are here to stay. _Theory Biosci._ 128, 43–51 (2009). Article  PubMed  Google Scholar  * Hintz, M. _et al_. Catching a ‘hopeful monster’: shepherd's purse (_Capsella


bursa-pastoris_) as a model system to study the evolution of flower development. _J. Exp. Bot._ 57, 3531–3542 (2006). Article  CAS  PubMed  Google Scholar  * Hameister, S., Nutt, P.,


Theiβen, G. & Neuffer, B. Mapping a floral trait in Shepherds purse–'stamenoid petals’ in natural populations of _Capsella bursa-pastoris_ (L.) Medik. _Flora_ 208, 641–647 (2013).


Article  Google Scholar  * Hameister, S., Neuffer, B. & Bleeker, W. Genetic differentiation and reproductive isolation of a naturally occurring floral homeotic mutant within a wild-type


population of _Capsella bursa-pastoris_ (Brassicaceae). _Mol. Ecol._ 18, 2659–2667 (2009). Article  CAS  PubMed  Google Scholar  * Ziermann, J. _et al_. Floral visitation and reproductive


traits of _Stamenoid petals_, a naturally occurring floral homeotic variant of _Capsella bursa-pastoris_ (Brassicaceae). _Planta_ 230, 1239–1249 (2009). Article  CAS  PubMed  Google Scholar


  * Chouard, T. Revenge of the hopeful monster. _Nature_ 463, 864–867 (2010). Article  CAS  PubMed  Google Scholar  * Gould, S. J. _Ontogeny and Phylogeny_ (Harvard Univ. Press, 1977).


Google Scholar  * Telford, M. J. & Budd, G. E. The place of phylogeny and cladistics in evo-devo research. _Int. J. Dev. Biol._ 47, 479–490 (2003). PubMed  Google Scholar  * Laurin, M.


& Germain, D. Developmental characters in phylogenetic inference and their absolute timing information. _Syst. Biol._ 60, 630–644 (2011). Article  PubMed  Google Scholar  * Minelli, A.


Phylo-evo-devo: combining phylogenetics with evolutionary developmental biology. _BMC Biol._ 7, 36 (2009). Download references ACKNOWLEDGEMENTS We thank E. Moyroud, G. Mellers and R. Melzer


for their critical reading of the manuscript and helpful comments; and E. S. Ballerini, H. D. Bradshaw, A. N. Doust, J. M. Gómez, S. A. Hodges, A. Hudson, E. Mavrodiev, G. Mellers, J.


Quiles, H. Sheehan, D. E. Soltis, M. A. Streisfield and G. Theiβen for providing photographs. M.F.-M. has been supported by the Marie Curie Intra-European Fellowship _LINARIA-SPECIATION_


(FP7-PEOPLE-2013-IEF, project reference 624396 to M.F.-M and B.J.G) and an Isaac Newton Trust Research Grant (Trinity College, Cambridge). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK Mario Fernández-Mazuecos & Beverley J. Glover Authors * Mario Fernández-Mazuecos View author publications


You can also search for this author inPubMed Google Scholar * Beverley J. Glover View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.F.-M.


and B.J.G. wrote the manuscript jointly. CORRESPONDING AUTHOR Correspondence to Beverley J. Glover. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial


interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Fernández-Mazuecos, M., Glover, B. The evo-devo of plant speciation. _Nat Ecol Evol_ 1, 0110


(2017). https://doi.org/10.1038/s41559-017-0110 Download citation * Received: 22 November 2016 * Accepted: 07 February 2017 * Published: 23 March 2017 * DOI:


https://doi.org/10.1038/s41559-017-0110 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative