Play all audios:
ABSTRACT Speciation research bridges the realms of macro- and microevolution. Evolutionary developmental biology (evo-devo) has classically dealt with macroevolutionary questions through a
comparative approach to distantly related organisms, but the field later broadened in focus to address recent speciation and microevolution. Here we review available evidence of the power of
evo-devo approaches to understand speciation in plants at multiple scales. At a macroevolutionary scale, evidence is accumulating for evolutionary developmental mechanisms giving rise to
key innovations promoting speciation. At the macro microevolution transition, we review instances of evo-devo change underlying both the origin of reproductive barriers and phenotypic
changes distinguishing closely related species. At the microevolutionary scale, the study of developmental variation within species provides insight into the processes that generate the raw
material for evolution and speciation. We conclude by advocating a strong interaction between developmental biology and evolutionary biology at multiple scales to gain a deeper understanding
of plant speciation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution
Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12
digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices
may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support
SIMILAR CONTENT BEING VIEWED BY OTHERS EVOLUTION OF PHENOTYPIC DISPARITY IN THE PLANT KINGDOM Article Open access 04 September 2023 AN INTEGRATIVE GENOMIC AND PHENOMIC ANALYSIS TO
INVESTIGATE THE NATURE OF PLANT SPECIES IN _ESCALLONIA_ (ESCALLONIACEAE) Article Open access 14 December 2021 GENE DUPLICATIONS AND PHYLOGENOMIC CONFLICT UNDERLIE MAJOR PULSES OF PHENOTYPIC
EVOLUTION IN GYMNOSPERMS Article 19 July 2021 REFERENCES * Coyne, J. A. & Orr, H. A. _Speciation_ (Sinauer Associates, 2004). Google Scholar * Futuyma, D. J. _Evolution_ 2nd edn
(Sinauer Associates, 2009). Google Scholar * Arthur, W. _Evolution: a Developmental Approach_ (Wiley-Blackwell, 2011). Google Scholar * Theiβen, G., Melzer, R. & Rümpler, F.
MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. _Development_ 143, 3259–3271 (2016). Article CAS Google
Scholar * Nunes, M. D. S., Arif, S., Schlötterer, C. & McGregor, A. P. A perspective on micro-evo-devo: progress and potential. _Genetics_ 195, 625–634 (2013). Article PubMed PubMed
Central Google Scholar * Minelli, A. & Fusco, G. On the evolutionary developmental biology of speciation. _Evol. Biol._ 39, 242–254 (2012). Article Google Scholar * Rieseberg, L. H.
& Willis, J. H. Plant speciation. _Science_ 317, 910–914 (2007). Article CAS PubMed PubMed Central Google Scholar * Rieseberg, L. H. & Blackman, B. K. Speciation genes in
plants. _Ann. Bot._ 106, 439–455 (2010). Article CAS PubMed PubMed Central Google Scholar * Armbruster, W. S. & Muchhala, N. Associations between floral specialization and species
diversity: cause, effect, or correlation?. _Evol. Ecol._ 23, 159–179 (2009). Article Google Scholar * Dietrich, M. R. in _Contemporary Debates in Philosophy of Biology_ (eds Ayala, F. J.
& Arp, R. ) 169–179 (Wiley-Blackwell, 2010). Google Scholar * Erwin, D. H. in _Contemporary Debates in the Philosophy of Biology_ (eds Ayala, F. J. & Arp, R. ) 180–193
(Wiley-Blackwell, 2010). Google Scholar * Melzer, R. & Theißen, G. The significance of developmental robustness for species diversity. _Ann. Bot._ 117, 725–732 (2016). Article PubMed
PubMed Central Google Scholar * Heard, S. B. & Hauser, D. L. Key evolutionary innovations and their ecological mechanisms. _Hist. Biol._ 10, 151–173 (1995). Article Google Scholar *
Kay, K. M. _et al_. in _Ecology and Evolution of Flowers_ (eds Harder, L. D. & Barrett, S. C. H. ) 311–325 (Oxford Univ. Press, 2006). Google Scholar * Soltis, D. E. _et al_. Polyploidy
and angiosperm diversification. _Am. J. Bot._ 96, 336–348 (2009). Article PubMed Google Scholar * Jiao, Y. _et al_. Ancestral polyploidy in seed plants and angiosperms. _Nature_ 473,
97–100 (2011). Article CAS PubMed Google Scholar * Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation
Lag-Time Model. _Curr. Opin. Plant Biol._ 15, 147–153 (2012). Article PubMed Google Scholar * Grimaldi, D. The co-radiations of pollinating insects and angiosperms in the Cretaceous.
_Ann. Missouri Bot. Gard._ 86, 373–406 (1999). Article Google Scholar * Kopp, A. Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways.
_Evolution_ 63, 2771–2789 (2009). Article PubMed Google Scholar * Sargent, R. D. Floral symmetry affects speciation rates in angiosperms. _Proc. R. Soc. Lond. B_ 271, 603–608 (2004).
Article Google Scholar * Hileman, L. C. Bilateral flower symmetry—how, when and why? _Curr. Opin. Plant Biol_. 17, 146–152 (2014). Article PubMed Google Scholar * Grotewold, E. The
genetics and biochemistry of floral pigments. _Annu. Rev. Plant Biol_. 57, 761–780 (2006). Article CAS PubMed Google Scholar * Rausher, M. D. Evolutionary transitions in floral color.
_Int. J. Plant Sci._ 169, 7–21 (2008). Article CAS Google Scholar * Wessinger, C. A. & Rausher, M. D. Lessons from flower colour evolution on targets of selection. _J. Exp. Bot._ 63,
5741–5749 (2012). Article CAS PubMed Google Scholar * Raff, R. A. Written in stone: fossils, genes and evo–devo. _Nat. Rev. Genet._ 8, 911–920 (2007). Article CAS PubMed Google
Scholar * Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades?. _Ann. Bot._ 117, 859–879 (2015). Article PubMed
PubMed Central Google Scholar * Boyce, C. K. The evolution of plant development in a paleontological context. _Curr. Opin. Plant Biol._ 13, 102–107 (2010). Article PubMed Google Scholar
* Hetherington, A. J., Dubrovsky, J. G. & Dolan, L. Unique cellular organization in the oldest root meristem. _Curr. Biol._ 26, 1629–1633 (2016). Article CAS PubMed PubMed Central
Google Scholar * Rothwell, G. W., Wyatt, S. E. & Tomescu, A. M. F. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. _Am. J.
Bot._ 101, 899–913 (2014). Article PubMed Google Scholar * Rothwell, G. W., Sanders, H., Wyatt, S. E. & Lev-Yadun, S. A fossil record for growth regulation: the role of auxin in wood
evolution. _Ann. Missouri Bot. Gard_. 95, 121–134 (2008). Article Google Scholar * Yi, S. Y. & Kato, M. Basal meristem and root development in _Isoetes asiatica_ and _Isoetes
japonica_. _Int. J. Plant Sci._ 162, 1225–1235 (2001). Article Google Scholar * Arthur, W. The emerging conceptual framework of evolutionary developmental biology. _Nature_ 415, 757–764
(2002). Article CAS PubMed Google Scholar * Ellis, A. G., Weis, A. E. & Gaut, B. S. Evolutionary radiation of “stone plants” in the genus _Argyroderma_ (Aizoaceae): unraveling the
effects of landscape, habitat, and flowering time. _Evolution_ 60, 39–55 (2006). PubMed Google Scholar * Bradford, J. C. A cladistic analysis of species groups in _Weinmannia_
(Cunoniaceae) based on morphology and inflorescence architecture. _Ann. Missouri Bot. Gard._ 85, 565–593 (1998). Article Google Scholar * Puzey, J. R., Gerbode, S. J., Hodges, S. A.,
Kramer, E. M. & Mahadevan, L. Evolution of spur-length diversity in _Aquilegia_ petals is achieved solely through cell-shape anisotropy. _Proc. R. Soc. Lond. B_ 279, 1640–1645 (2012).
Article Google Scholar * Whibley, A. C. _et al_. Evolutionary paths underlying flower color variation in _Antirrhinum_. _Science_ 313, 963–966 (2006). Article CAS PubMed Google Scholar
* Ojeda, I. _et al_. Comparative micromorphology of petals in Macaronesian _Lotus_ (Leguminosae) reveals a loss of papillose conical cells during the evolution of bird pollination. _Int.
J. Plant Sci._ 173, 365–374 (2012). Article Google Scholar * Feng, X. _et al_. Evolution of allometry in _Antirrhinum_. _Plant Cell_ 21, 2999–3007 (2009). Article CAS PubMed PubMed
Central Google Scholar * Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. _Nature_ 426, 176–178 (2003).
Article CAS PubMed Google Scholar * Hoballah, M. E. _et al_. Single gene-mediated shift in pollinator attraction in _Petunia_. _Plant Cell_ 19, 779–790 (2007). Article CAS PubMed
PubMed Central Google Scholar * Hodges, S. A., Whittall, J. B., Fulton, M. & Yang, J. Y. Genetics of floral traits influencing reproductive isolation between _Aquilegia formosa_ and
_Aquilegia pubescens_. _Am. Nat._ 159, S51–S60 (2002). Article PubMed Google Scholar * Reck-Kortmann, M. _et al_. Multilocus phylogeny reconstruction: new insights into the evolutionary
history of the genus _Petunia_. _Mol. Phylogenet. Evol._ 81, 19–28 (2014). Article PubMed Google Scholar * Gübitz, T., Hoballah, M. E., Dell’Olivo, A. & Kuhlemeier, C. in _Petunia:
Evolutionary, Developmental and Physiological Genetics_ (eds Gerats, T. & Strommer, J. ) 29–49 (Springer-Verlag, 2009). Book Google Scholar * Klahre, U. _et al_. Pollinator choice in
_Petunia_ depends on two major genetic loci for floral scent production. _Curr. Biol._ 21, 730–739 (2011). Article CAS PubMed Google Scholar * Sheehan, H. _et al_. MYB-FL controls gain
and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. _Nat. Genet._ 48, 159–166 (2016). Article CAS PubMed Google Scholar * Yuan, Y.
W., Byers, K. J. R. P. & Bradshaw, H. D. The genetic control of flower–pollinator specificity. _Curr. Opin. Plant Biol._ 16, 422–428 (2013). Article CAS PubMed PubMed Central Google
Scholar * Hermann, K. _et al_. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in _Petunia_. _Curr. Biol._ 23, 873–877 (2013). Article CAS
PubMed Google Scholar * Lobo, J. A. _et al_. Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. _Am. J. Bot._ 90, 1054–1063 (2003).
Article PubMed Google Scholar * Holt, A. L., van Haperen, J. M. A., Groot, E. P. & Laux, T. Signaling in shoot and flower meristems of _Arabidopsis thaliana_. _Curr. Opin. Plant
Biol._ 17, 96–102 (2014). Article CAS PubMed Google Scholar * Glover, B. J. Understanding flowers and flowering: an integrated approach (Oxford Univ. Press, 2014). * Méndez-Vigo, B.,
Picó, F. X., Ramiro, M., Martínez-Zapater, J. M. & Alonso-Blanco, C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in _Arabidopsis_.
_Plant Physiol._ 157, 1942–1955 (2011). Article CAS PubMed PubMed Central Google Scholar * Grillo, M. A., Li, C., Hammond, M., Wang, L. & Schemske, D. W. Genetic architecture of
flowering time differentiation between locally adapted populations of _Arabidopsis thaliana_. _New Phytol._ 197, 1321–1331 (2013). Article CAS PubMed Google Scholar * Rosas, U. _et al_.
Variation in _Arabidopsis_ flowering time associated with cis-regulatory variation in CONSTANS. _Nat. Commun._ 5, 3651 (2014). * Sicard, A. & Lenhard, M. The selfing syndrome: a model
for studying the genetic and evolutionary basis of morphological adaptation in plants. _Ann. Bot._ 107, 1433–1443 (2011). Article PubMed PubMed Central Google Scholar * Sicard, A. _et
al_. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in _Capsella_. _Proc. Natl Acad. Sci. USA_ 113, 13911–13916 (2016). Article CAS PubMed
PubMed Central Google Scholar * Sas, C. _et al_. Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in _Capsella_.
_Curr. Biol._ 26, 3313–3319 (2016). Article CAS PubMed Google Scholar * Whittall, J. B. & Hodges, S. A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers.
_Nature_ 447, 706–709 (2007). Article CAS PubMed Google Scholar * Box, M. S., Bateman, R. M., Glover, B. J. & Rudall, P. J. Floral ontogenetic evidence of repeated speciation via
paedomorphosis in subtribe Orchidinae (Orchidaceae). _Bot. J. Linn. Soc._ 157, 429–454 (2008). Article Google Scholar * Blanco-Pastor, J. L. _et al_. Bees explain floral variation in a
recent radiation of _Linaria_. _J. Evolution. Biol._ 28, 851–863 (2015). Article CAS Google Scholar * Box, M. S., Dodsworth, S., Rudall, P. J., Bateman, R. M. & Glover, B. J.
Characterization of _Linaria_ KNOX genes suggests a role in petal-spur development. _Plant. J._ 68, 703–714 (2011). Article CAS PubMed Google Scholar * Yant, L., Collani, S., Puzey, J.
R., Levy, C. & Kramer, E. M. Molecular basis for three-dimensional elaboration of the _Aquilegia_ petal spur. _Proc. R. Soc. Lond. B_ 282, 20142778 (2015). * Soltis, P. S. & Soltis,
D. E. The role of hybridization in plant speciation. _Annu. Rev. Plant Biol._ 60, 561–588 (2009). Article CAS PubMed Google Scholar * Buggs, R. J. A. _et al_. The legacy of diploid
progenitors in allopolyploid gene expression patterns. _Phil. Trans. R. Soc. B_ 369, 20130354 (2014). Article Google Scholar * Ichihashi, Y. _et al_. Evolutionary developmental
transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. _Proc. Natl Acad. Sci. USA_ 111, E2616–E2621 (2014). Article CAS Google Scholar *
Vargas, P., Carrió, E., Guzmán, B., Amat, E. & Güemes, J. A geographical pattern of _Antirrhinum_ (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA
polymorphisms. _J. Biogeogr._ 36, 1297–1312 (2009). Article Google Scholar * Pigliucci, M. Is evolvability evolvable?. _Nat. Rev. Genet._ 9, 75–82 (2008). Article CAS PubMed Google
Scholar * Johnson, N. A. The micro-evolution of development. _Genetica_ 129, 1–5 (2007). Article PubMed Google Scholar * Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R.
& Thomson, J. D. Pollination syndromes and floral specialization. _Annu. Rev. Ecol. Evol. Systemat_. 35, 375–403 (2004). Article Google Scholar * Sobel, J. M. & Streisfeld, M. A.
Strong premating reproductive isolation drives incipient speciation in _Mimulus aurantiacus_. _Evolution_ 69, 447–461 (2015). Article PubMed Google Scholar * Stankowski, S. &
Streisfeld, M. A. Introgressive hybridization facilitates adaptive divergence in a recent radiation of monkeyflowers. _Proc. R. Soc. Lond. B_ 282, 20151666 (2015). * Streisfeld, M. A.,
Young, W. N. & Sobel, J. M. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in _Mimulus aurantiacus_.
_PLoS Genet._ 9, e1003385 (2013). * Busch, A., Horn, S., Mühlhausen, A., Mummenhoff, K. & Zachgo, S. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae
family. _Mol. Biol. Evol._ 29, 1241–1254 (2012). Article CAS PubMed Google Scholar * Gómez, J. M., Abdelaziz, M., Muñoz-Pajares, J. & Perfectti, F. Heritability and genetic
correlation of corolla shape and size in _Erysimum mediohispanicum_. _Evolution_ 63, 1820–1831 (2009). Article PubMed Google Scholar * Gómez, J. M., Perfectti, F. & Camacho, J. P. M.
Natural selection on _Erysimum mediohispanicum_ flower shape: insights into the evolution of zygomorphy. _Am. Nat._ 168, 531–545 (2006). Article PubMed Google Scholar * Ellis, A. G. _et
al_. Floral trait variation and integration as a function of sexual deception in _Gorteria diffusa_. _Phil. Trans. R. Soc. Lond. B_ 369, 20130563 (2014). Article Google Scholar * Roda, F.
_et al_. Convergence and divergence during the adaptation to similar environments by an Australian groundsel. _Evolution_ 67, 2515–2529 (2013). Article PubMed Google Scholar * Kivimäki,
M., Kärkkäinen, K., Gaudeul, M., Løe, G. & Ågren, J. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of _Arabidopsis lyrata_. _Mol. Ecol._ 16,
453–462 (2007). Article CAS PubMed Google Scholar * Pfennig, D. W. _et al_. Phenotypic plasticity's impacts on diversification and speciation. _Trends Ecol. Evol._ 25, 459–467
(2010). Article PubMed Google Scholar * Levis, N. A. & Pfennig, D. W. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. _Trends Ecol. Evol._
31, 563–574 (2016). Article PubMed Google Scholar * Nakayama, H. _et al_. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. _Plant Cell_
26, 4733–4748 (2014). Article CAS PubMed PubMed Central Google Scholar * Flatscher, R., Frajman, B., Schönswetter, P. & Paun, O. Environmental heterogeneity and phenotypic
divergence: can heritable epigenetic variation aid speciation?. _Genet. Res. Int._ 2012, 698421 (2012). * Turner, B. M. Epigenetic responses to environmental change and their evolutionary
implications. _Phil. Trans. R. Soc. Lond. B_ 364, 3403–3418 (2009). Article CAS Google Scholar * Paun, O. _et al_. Stable epigenetic effects impact adaptation in allopolyploid orchids
(_Dactylorhiza_: Orchidaceae). _Mol. Biol. Evol._ 27, 2465–2473 (2010). Article CAS PubMed PubMed Central Google Scholar * Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation
responsible for natural variation in floral symmetry. _Nature_ 401, 157–161 (1999). Article CAS PubMed Google Scholar * Herrera, C. M. & Bazaga, P. Epigenetic differentiation and
relationship to adaptive genetic divergence in discrete populations of the violet _Viola cazorlensis_. _New Phytol._ 187, 867–876 (2010). Article CAS PubMed Google Scholar * Scoville, A.
G., Barnett, L. L., Bodbyl-Roels, S., Kelly, J. K. & Hileman, L. C. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of
trichome density in _Mimulus guttatus_. _New Phytol._ 191, 251–263 (2011). Article CAS PubMed PubMed Central Google Scholar * Hodges, S. A. Floral nectar spurs and diversification.
_Int. J. Plant Sci._ 158, 81–88 (1997). Article Google Scholar * Mack, J. L. K. & Davis, A. R. The relationship between cell division and elongation during development of the
nectar-yielding petal spur in _Centranthus ruber_ (Valerianaceae). _Ann. Bot._ 115, 641–649 (2015). Article PubMed PubMed Central Google Scholar * Fulton, M. & Hodges, S. A. Floral
isolation between _Aquilegia formosa_ and _Aquilegia pubescens_. _Proc. R. Soc. Lond. B_ 266, 2247–2252 (1999). Article Google Scholar * Boberg, E. _et al_. Pollinator shifts and the
evolution of spur length in the moth-pollinated orchid _Platanthera bifolia_. _Ann. Bot._ 113, 267–275 (2014). Article PubMed Google Scholar * Theißen, G. Saltational evolution: hopeful
monsters are here to stay. _Theory Biosci._ 128, 43–51 (2009). Article PubMed Google Scholar * Hintz, M. _et al_. Catching a ‘hopeful monster’: shepherd's purse (_Capsella
bursa-pastoris_) as a model system to study the evolution of flower development. _J. Exp. Bot._ 57, 3531–3542 (2006). Article CAS PubMed Google Scholar * Hameister, S., Nutt, P.,
Theiβen, G. & Neuffer, B. Mapping a floral trait in Shepherds purse–'stamenoid petals’ in natural populations of _Capsella bursa-pastoris_ (L.) Medik. _Flora_ 208, 641–647 (2013).
Article Google Scholar * Hameister, S., Neuffer, B. & Bleeker, W. Genetic differentiation and reproductive isolation of a naturally occurring floral homeotic mutant within a wild-type
population of _Capsella bursa-pastoris_ (Brassicaceae). _Mol. Ecol._ 18, 2659–2667 (2009). Article CAS PubMed Google Scholar * Ziermann, J. _et al_. Floral visitation and reproductive
traits of _Stamenoid petals_, a naturally occurring floral homeotic variant of _Capsella bursa-pastoris_ (Brassicaceae). _Planta_ 230, 1239–1249 (2009). Article CAS PubMed Google Scholar
* Chouard, T. Revenge of the hopeful monster. _Nature_ 463, 864–867 (2010). Article CAS PubMed Google Scholar * Gould, S. J. _Ontogeny and Phylogeny_ (Harvard Univ. Press, 1977).
Google Scholar * Telford, M. J. & Budd, G. E. The place of phylogeny and cladistics in evo-devo research. _Int. J. Dev. Biol._ 47, 479–490 (2003). PubMed Google Scholar * Laurin, M.
& Germain, D. Developmental characters in phylogenetic inference and their absolute timing information. _Syst. Biol._ 60, 630–644 (2011). Article PubMed Google Scholar * Minelli, A.
Phylo-evo-devo: combining phylogenetics with evolutionary developmental biology. _BMC Biol._ 7, 36 (2009). Download references ACKNOWLEDGEMENTS We thank E. Moyroud, G. Mellers and R. Melzer
for their critical reading of the manuscript and helpful comments; and E. S. Ballerini, H. D. Bradshaw, A. N. Doust, J. M. Gómez, S. A. Hodges, A. Hudson, E. Mavrodiev, G. Mellers, J.
Quiles, H. Sheehan, D. E. Soltis, M. A. Streisfield and G. Theiβen for providing photographs. M.F.-M. has been supported by the Marie Curie Intra-European Fellowship _LINARIA-SPECIATION_
(FP7-PEOPLE-2013-IEF, project reference 624396 to M.F.-M and B.J.G) and an Isaac Newton Trust Research Grant (Trinity College, Cambridge). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *
Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK Mario Fernández-Mazuecos & Beverley J. Glover Authors * Mario Fernández-Mazuecos View author publications
You can also search for this author inPubMed Google Scholar * Beverley J. Glover View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.F.-M.
and B.J.G. wrote the manuscript jointly. CORRESPONDING AUTHOR Correspondence to Beverley J. Glover. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial
interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Fernández-Mazuecos, M., Glover, B. The evo-devo of plant speciation. _Nat Ecol Evol_ 1, 0110
(2017). https://doi.org/10.1038/s41559-017-0110 Download citation * Received: 22 November 2016 * Accepted: 07 February 2017 * Published: 23 March 2017 * DOI:
https://doi.org/10.1038/s41559-017-0110 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative