Exploiting selection at linked sites to infer the rate and strength of adaptation

Exploiting selection at linked sites to infer the rate and strength of adaptation

Play all audios:

Loading...

ABSTRACT Genomic data encode past evolutionary events and have the potential to reveal the strength, rate and biological drivers of adaptation. However, joint estimation of adaptation rate


(_α_) and adaptation strength remains challenging because evolutionary processes such as demography, linkage and non-neutral polymorphism can confound inference. Here, we exploit the


influence of background selection to reduce the fixation rate of weakly beneficial alleles to jointly infer the strength and rate of adaptation. We develop a McDonald–Kreitman-based method


to infer adaptation rate and strength, and estimate _α_ = 0.135 in human protein-coding sequences, 72% of which is contributed by weakly adaptive variants. We show that, in this adaptation


regime, _α_ is reduced ~25% by linkage genome-wide. Moreover, we show that virus-interacting proteins undergo adaptation that is both stronger and nearly twice as frequent as the genome


average (_α_ = 0.224, 56% due to strongly beneficial alleles). Our results suggest that, while most adaptation in human proteins is weakly beneficial, adaptation to viruses is often strongly


beneficial. Our method provides a robust framework for estimation of adaptation rate and strength across species. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EVOLUTION OF EVOLVABILITY IN RAPIDLY


ADAPTING POPULATIONS Article 11 September 2024 EXTREME PURIFYING SELECTION AGAINST POINT MUTATIONS IN THE HUMAN GENOME Article Open access 25 July 2022 THE POPULATION GENOMICS OF ADAPTIVE


LOSS OF FUNCTION Article Open access 11 February 2021 DATA AVAILABILITY Supplemental Data Table 1 is provided on the publisher’s website. The data that we used to parameterize our model are


also available online at https://github.com/uricchio/mktest. Columns in Supplementary Data Table 1 are as follows: 1, Ensembl coding gene identification; 2, number of non-synonymous


polymorphic sites; 3, respective derived allele frequencies of these sites separated by commas; 4, number of synonymous polymorphic sites; 5, respective frequency-derived allele frequencies


of these sites; 6, number of fixed non-synonymous substitutions on the human branch; and 7, number of fixed synonymous substitutions on the human branch. CODE AVAILABILITY The code that we


used to parameterize our model is freely available online at https://github.com/uricchio/mktest. REFERENCES * Darwin, C. _On the Origin of Species_ (Murray, 1859). * Wallace, A. R.


_Darwinism: an exposition of the theory of natural selection with some of its applications_ (MacMillan & Co., 1889). * Wright, S. On the roles of directed and random changes in gene


frequency in the genetics of populations. _Evolution_ 2, 279–294 (1948). Article  CAS  Google Scholar  * Kimura, M. et al. Evolutionary rate at the molecular level. _Nature_ 217, 624–626


(1968). Article  CAS  Google Scholar  * Ohta, T. Slightly deleterious mutant substitutions in evolution. _Nature_ 246, 96 (1973). Article  CAS  Google Scholar  * Kimura, M. Preponderance of


synonymous changes as evidence for the neutral theory of molecular evolution. _Nature_ 267, 275 (1977). Article  CAS  Google Scholar  * McDonald, J. H. & Kreitman, M. Adaptive protein


evolution at the ADH locus in _Drosophila_. _Nature_ 351, 652 (1991). Article  CAS  Google Scholar  * Fay, J. C., Wyckoff, G. J. & Wu, C.-I. Testing the neutral theory of molecular


evolution with genomic data from _Drosophila_. _Nature_ 415, 1024 (2002). Article  CAS  Google Scholar  * Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of


nonneutral substitution rates on mammalian phylogenies. _Genome Res._ 20, 110–121 (2010). Article  CAS  Google Scholar  * Charlesworth, B. & Charlesworth, D. Neutral variation in the


context of selection. _Mol. Biol. Evol._ 35, 1359–1361 (2018). Article  CAS  Google Scholar  * Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral


diversity across a wide range of species. _PLoS Biol._ 13, e1002112 (2015). Article  Google Scholar  * Coop, G. Does linked selection explain the narrow range of genetic diversity across


species? Preprint at _bioRxiv_ https://doi.org/10.1101/042598 (2016). * Kern, A. D. & Hahn, M. W. The neutral theory in light of natural selection. _Mol. Biol. Evol._ 35, 1366–1371


(2018). Article  CAS  Google Scholar  * Jensen, J. D. et al. The importance of the neutral theory in 1968 and 50 years on: a response to Kern and Hahn 2018. _Evolution_ 73, 111–114 (2018).


Article  Google Scholar  * Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species? _PLoS Biol._ 10, e1001388 (2012). Article  CAS  Google


Scholar  * Galtier, N. Adaptive protein evolution in animals and the effective population size hypothesis. _PLoS Genet._ 12, e1005774 (2016). Article  Google Scholar  * Smith, N. G. C. &


Eyre-Walker, A. Adaptive protein evolution in _Drosophila_. _Nature_ 415, 1022 (2002). Article  CAS  Google Scholar  * Sawyer, S. A. & Hartl, D. L. Population genetics of polymorphism


and divergence. _Genetics_ 132, 1161–1176 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Tataru, P., Mollion, M., Glémin, S. & Bataillon, T. Inference of distribution of fitness


effects and proportion of adaptive substitutions from polymorphism data. _Genetics_ 207, 1103–1119 (2017). Article  Google Scholar  * Ratnakumar, A. et al. Detecting positive selection


within genomes: the problem of biased gene conversion. _Philos. Trans. R. Soc. London B_ 365, 2571–2580 (2010). Article  CAS  Google Scholar  * Fay, J. C., Wyckoff, G. J. & Wu, C.-I.


Positive and negative selection on the human genome. _Genetics_ 158, 1227–1234 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Eyre-Walker, A. & Keightley, P. D. Estimating the


rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. _Mol. Biol. Evol._ 26, 2097–2108 (2009). Article  CAS  Google Scholar  *


Messer, P. W. & Petrov, D. A. Frequent adaptation and the McDonald–Kreitman test. _Proc. Natl Acad. Sci. USA_ 110, 8615–8620 (2013). Article  CAS  Google Scholar  * James, J. E.,


Piganeau, G. & Eyre-Walker, A. The rate of adaptive evolution in animal mitochondria. _Mol. Ecol._ 25, 67–78 (2016). Article  CAS  Google Scholar  * Enard, D., Cai, L., Gwennap, C. &


Petrov, D. A. Viruses are a dominant driver of protein adaptation in mammals. _eLife_ 5, e12469 (2016). Article  Google Scholar  * Pritchard, J. K., Pickrell, J. K. & Coop, G. The


genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. _Curr. Biol._ 20, R208–R215 (2010). Article  CAS  Google Scholar  * Messer, P. W. & Petrov, D. A.


Population genomics of rapid adaptation by soft selective sweeps. _Trends Ecol. Evol._ 28, 659–669 (2013). Article  Google Scholar  * Berg, J. J. & Coop, G. A population genetic signal


of polygenic adaptation. _PLoS Genet._ 10, e1004412 (2014). Article  Google Scholar  * Schrider, D. R. & Kern, A. D. Soft sweeps are the dominant mode of adaptation in the human genome.


_Mol. Biol. Evol._ 34, 1863–1877 (2017). Article  CAS  Google Scholar  * Uricchio, L. H., Kitano, H. C., Gusev, A. & Zaitlen, N. A. An evolutionary compass for detecting signals of


polygenic selection and mutational bias. _Evol. Lett._ 3, 69–79 (2019). Article  Google Scholar  * Elyashiv, E. et al. A genomic map of the effects of linked selection in _Drosophila_. _PLoS


Genet._ 12, e1006130 (2016). Article  Google Scholar  * Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. _Genetics_


134, 1289–1303 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Barton, N. H. Linkage and the limits to natural selection. _Genetics_ 140, 821–841 (1995). CAS  PubMed  PubMed Central


  Google Scholar  * McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural selection in hominid evolution. _PLoS Genet._ 5, e1000471 (2009). Article 


Google Scholar  * Haller, B. C. & Messer, P. W. asymptoticMK: a web-based tool for the asymptotic McDonald–Kreitman test. _G3 (Bethesda)_ 7, 1569–1575 (2017). Article  Google Scholar  *


Evans, S. N., Shvets, Y. & Slatkin, M. Non-equilibrium theory of the allele frequency spectrum. _Theor. Popul. Biol._ 71, 109–119 (2007). Article  Google Scholar  * Kimura, M. Diffusion


models in population genetics. _J. Appl. Probab._ 1, 177–232 (1964). Article  Google Scholar  * Phung, T. N., Huber, C. D. & Lohmueller, K. E. Determining the effect of natural selection


on linked neutral divergence across species. _PLoS Genet._ 12, e1006199 (2016). Article  Google Scholar  * Consortium TGP et al. A global reference for human genetic variation. _Nature_


526, 68 (2015). Article  Google Scholar  * Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. _PLoS Genet._ 4, e1000083 (2008). Article 


Google Scholar  * Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. _Genetics_


206, 345–361 (2017). Article  Google Scholar  * Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans.


_Genetics_ 173, 891–900 (2006). Article  CAS  Google Scholar  * Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. _Genet. Res._ 8, 269–294 (1966).


Article  CAS  Google Scholar  * Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. _Genet. Res._ 23, 23–35 (1974). Article  CAS  Google Scholar  * Macpherson, J. M.,


Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in _Drosophil_a.


_Genetics_ 177, 2083–2099 (2007). Article  CAS  Google Scholar  * Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A. & Eyre-Walker, A. Adaptive evolution is substantially


impeded by Hill–Robertson interference in _Drosophila_. _Mol. Biol. Evol._ 33, 442–455 (2015). Article  Google Scholar  * Marsden, C. D. et al. Bottlenecks and selective sweeps during


domestication have increased deleterious genetic variation in dogs. _Proc. Natl Acad. Sci. USA_ 113, 152–157 (2016). Article  CAS  Google Scholar  * Bullaughey, K. L., Przeworski, M. &


Coop, G. No effect of recombination on the efficacy of natural selection in primates. _Genome Res._ 18, 544–554 (2008). Article  CAS  Google Scholar  * Hussin, J. G. et al. Recombination


affects accumulation of damaging and disease-associated mutations in human populations. _Nature Genet._ 47, 400 (2015). Article  CAS  Google Scholar  * Jensen, J. D., Thornton, K. R. &


Andolfatto, P. An approximate Bayesian estimator suggests strong, recurrent selective sweeps in _Drosophila_. _PLoS Genet._ 4, e1000198 (2008). Article  Google Scholar  * Hernandez, R. D. et


al. Classic selective sweeps were rare in recent human evolution. _Science_ 331, 920–924 (2011). Article  CAS  Google Scholar  * Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide


signals of positive selection in human evolution. _Genome Res._ 24, 885–895 (2014). Article  CAS  Google Scholar  * Comeron, J. M. & Kreitman, M. Population, evolutionary and genomic


consequences of interference selection. _Genetics_ 161, 389–410 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Uricchio, L. H. & Hernandez, R. D. Robust forward simulations of


recurrent hitchhiking. _Genetics_ 197, 221–236 (2014). Article  Google Scholar  * Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Context dependence, ancestral misidentification,


and spurious signatures of natural selection. _Mol. Biol. Evol._ 24, 1792–1800 (2007). Article  CAS  Google Scholar  * Ewing, G. B. & Jensen, J. D. The consequences of not accounting


for background selection in demographic inference. _Mol. Ecol._ 25, 135–141 (2016). Article  Google Scholar  * Torres, R., Szpiech, Z. A. & Hernandez, R. D. Human demographic history has


amplified the effects of background selection across the genome. _PLoS Genet._ 14, e1007387 (2018). Article  Google Scholar  * Huang, Y.-F. & Siepel, A. Estimation of allele-specific


fitness effects across human protein-coding sequences and implications for disease. Preprint at _bioRxiv_ https://doi.org/10.1101/441337 (2018). * Huber, C. D., Kim, B. Y., Marsden, C. D.


& Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations. _Proc. Natl Acad. Sci. USA_ 114, 4465–4470 (2017). Article  CAS  Google Scholar  *


Yates, A. et al. Ensembl 2016. _Nucleic Acids Res._ 44, D710–D716 (2015). Article  Google Scholar  * Kent, W. J. BLAT—the BLAST-like alignment tool. _Genome Res._ 12, 656–664 (2002). Article


  CAS  Google Scholar  * Löytynoja, A. & Goldman, N. webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. _BMC Bioinformatics_ 11, 579 (2010).


Article  Google Scholar  * Hernandez, R. D. & Uricchio, L. H. SFS_CODE: more efficient and flexible forward simulations. Preprint at _bioRxiv_ https://doi.org/10.1101/025064 (2015). *


Uricchio, L. H., Torres, R., Witte, J. S. & Hernandez, R. D. Population genetic simulations of complex phenotypes with implications for rare variant association tests. _Genet.


Epidemiol._ 39, 35–44 (2015). Article  Google Scholar  * Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. _Genetics_ 162, 2025–2035


(2002). PubMed  PubMed Central  Google Scholar  * Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. _Science_ 337, 64–69


(2012). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank A. Aw, N. Rosenberg and members of the Rosenberg and Petrov laboratories for helpful discussions. L.H.U.


was partially supported by an IRACDA fellowship through NIGMS grant No. K12GM088033. L.H.U was supported by National Institutes of Health grant R01 HG005855 and National Science Foundation


grant DBI-1458059 (to N. Rosenberg). We also thank the Stanford/SJSU IRACDA Program for support. AUTHOR INFORMATION Author notes * Lawrence H. Uricchio Present address: Department of


Integrative Biology, University of California, Berkeley, CA, USA AUTHORS AND AFFILIATIONS * Department of Biology, Stanford University, Stanford, CA, USA Lawrence H. Uricchio & Dmitri A.


Petrov * Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA David Enard Authors * Lawrence H. Uricchio View author publications You can also search for


this author inPubMed Google Scholar * Dmitri A. Petrov View author publications You can also search for this author inPubMed Google Scholar * David Enard View author publications You can


also search for this author inPubMed Google Scholar CONTRIBUTIONS Designed the research: L.H.U., D.A.P., D.E. Performed the modeling and simulations: L.H.U. Analyzed the data: L.H.U.,


D.A.P.. Designed inference procedure: L.H.U. Wrote the paper: L.H.U. Edited and approved paper: L.H.U., D.A.P., D.E. CORRESPONDING AUTHORS Correspondence to Lawrence H. Uricchio or David


Enard. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Supplementary Figs. 1–20 REPORTING SUMMARY


SUPPLEMENTARY DATA 1 Data we used to parameterize the model. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Uricchio, L.H., Petrov, D.A. & Enard, D.


Exploiting selection at linked sites to infer the rate and strength of adaptation. _Nat Ecol Evol_ 3, 977–984 (2019). https://doi.org/10.1038/s41559-019-0890-6 Download citation * Received:


25 September 2018 * Accepted: 28 March 2019 * Published: 06 May 2019 * Issue Date: June 2019 * DOI: https://doi.org/10.1038/s41559-019-0890-6 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative