Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry

Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry

Play all audios:

Loading...

ABSTRACT Ocean melting has thinned Antarctica’s ice shelves at an increasing rate over the past two decades, leading to loss of grounded ice. The Ross Ice Shelf is currently close to steady


state but geological records indicate that it can disintegrate rapidly, which would accelerate grounded ice loss from catchments equivalent to 11.6 m of global sea level rise. Here, we use


data from the ROSETTA-Ice airborne survey and ocean simulations to identify the principal threats to Ross Ice Shelf stability. We locate the tectonic boundary between East and West


Antarctica from magnetic anomalies and use gravity data to generate a new high-resolution map of sub-ice-shelf bathymetry. The tectonic imprint on the bathymetry constrains sub-ice-shelf


ocean circulation, protecting the ice shelf grounding line from moderate changes in global ocean heat content. In contrast, local, seasonal production of warm upper-ocean water near the ice


front drives rapid ice shelf melting east of Ross Island, where thinning would lead to faster grounded ice loss from both the East and West Antarctic ice sheets. We confirm high modelled


melt rates in this region using ROSETTA-Ice radar data. Our findings highlight the significance of both the tectonic framework and local ocean–atmosphere exchange processes near the ice


front in determining the future of the Antarctic Ice Sheet. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to


full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RAPID GLACIER RETREAT RATES OBSERVED IN WEST ANTARCTICA Article 13 January 2022 ANTARCTIC ICE-SHELF ADVANCE DRIVEN BY


ANOMALOUS ATMOSPHERIC AND SEA-ICE CIRCULATION Article 05 May 2022 WARMING BENEATH AN EAST ANTARCTIC ICE SHELF DUE TO INCREASED SUBPOLAR WESTERLIES AND REDUCED SEA ICE Article Open access 21


September 2023 DATA AVAILABILITY The ROSETTA-Ice airborne survey data are available from http://www.ldeo.columbia.edu/polar-geophysics-group/data. CODE AVAILABILITY The code used to generate


ocean simulations can be accessed at https://www.myroms.org/svn/src/. Modifications to the standard code used and ancillary input data are available on request from [email protected].


REFERENCES * Nerem, R. et al. Climate-change–driven accelerated sea-level rise detected in the altimeter era. _Proc. Natl Acad. Sci. USA_ 115, 2022–2025 (2018). Article  Google Scholar  *


Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. _Nature_ 558, 219–222 (2018). Article  Google Scholar  * Gardner, A. S. et al. Increased West Antarctic and


unchanged East Antarctic ice discharge over the last 7 years. _Cryosphere_ 12, 521–547 (2018). Article  Google Scholar  * Dupont, T. K. & Alley, R. B. Assessment of the importance of


ice‐shelf buttressing to ice‐sheet flow. _Geophys. Res. Lett._ 32, L04503 (2005). Article  Google Scholar  * Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice


shelves. _Nature_ 484, 502 (2012). Article  Google Scholar  * Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. _Science_ 341, 266–270 (2013).


Article  Google Scholar  * Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. _Nature_ 502, 89–92 (2013). Article  Google Scholar  * Dalziel, I. &


Lawver, L. in _The West Antarctic Ice Sheet: Behavior and Environment_ (eds Alley, R. B. & Bindschadler, R. A.) 29–44 (American Geophysical Union, 2001). * Veevers, J. J. Reconstructions


before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. _Earth Sci. Rev._ 111, 249–318 (2012). Article  Google Scholar  * Paolo,


F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. _Science_ 348, 327–331 (2015). Article  Google Scholar  * Naish, T. et al. Obliquity-paced


Pliocene West Antarctic ice sheet oscillations. _Nature_ 458, 322–328 (2009). Article  Google Scholar  * Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during


and since the LGM. _Quat. Sci. Rev._ 100, 31–54 (2014). Article  Google Scholar  * Yokoyama, Y. et al. Widespread collapse of the Ross Ice Shelf during the late Holocene. _Proc. Natl Acad.


Sci. USA_ 113, 2354–2359 (2016). Article  Google Scholar  * Horgan, H. J., Walker, R. T., Anandakrishnan, S. & Alley, R. B. Surface elevation changes at the front of the Ross Ice Shelf:


implications for basal melting. _J. Geophys. Res._ 116, C02005 (2011). * Moholdt, G., Padman, L. & Fricker, H. A. Basal mass budget of Ross and Filchner–Ronne ice shelves, Antarctica,


derived from Lagrangian analysis of ICESat altimetry. _J. Geophys. Res. Earth Surf._ 119, 2361–2380 (2014). Article  Google Scholar  * Kenneally, J. P. & Hughes, T. J. Basal melting


along the floating part of Byrd glacier. _Antarct. Sci._ 16, 355–358 (2004). Article  Google Scholar  * Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., Dowdeswell,


J. A. Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya. _Nat. Geosci._ https://doi.org/10.1038/s41561-019-0356-0 (2019). * MacAyeal, D. R. Thermohaline


circulation below the Ross Ice Shelf: a consequence of tidally induced vertical mixing and basal melting. _J. Geophys. Res._ 89, 597–606 (1984). Article  Google Scholar  * Dinniman, M. S.,


Klinck, J. M., Hofmann, E. E. & Smith, W. O.Jr. _Effects of projected changes in wind, atmospheric temperature, and freshwater inflow on the Ross Sea. J. Clim._ 31, 1619–1635 (2018).


Google Scholar  * Assmann, K., Hellmer, H. & Beckmann, A. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. _Antarct. Sci._ 15, 3–11


(2003). Article  Google Scholar  * Siddoway, C. S. in _Antarctica: A Keystone in a Changing World_ (eds Cooper, A. K. et al.) Ch. 9, 91–114 (National Academy of Sciences, 2008). * Luyendyk,


B. P., Wilson, D. S. & Siddoway, C. S. The eastern margin of the Ross Sea rift in western Marie Byrd Land: crustal structure and tectonic development. _Geochem. Geophys. Geosyst._ 4,


1090 (2003). Article  Google Scholar  * Goodge, J. W. & Finn, C. A. Glimpses of East Antarctica: aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of


East Aantarctica. _J. Geophys. Res._ 115, B09103 (2010). Article  Google Scholar  * Orsi, A. H. & Wiederwohl, C. L. A recount of Ross Sea waters. _Deep-Sea Res. II_ 56, 778–795 (2009).


Article  Google Scholar  * Jendersie, S., Williams, M. J., Langhorne, P. J. & Robertson, R. The density‐driven winter intensification of the Ross Sea circulation. _J. Geophys. Res.


Oceans_ 123, 7702– 7724. * Smith, W. O. Jr, Sedwick, P. N., Arrigo, K. R., Ainley, D. G. & Orsi, A. H. The Ross Sea in a sea of change. _Oceanography_ 25, 90–103 (2012). Article  Google


Scholar  * Smethie, W. M. Jr & Jacobs, S. S. Circulation and melting under the Ross Ice Shelf: estimates from evolving CFC, salinity and temperature fields in the Ross Sea. _Deep-Sea


Res. I_ 52, 959–978 (2005). Article  Google Scholar  * Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W. & Holland, D. M. Intrusion of warm surface water beneath the McMurdo


ice shelf, Antarctica. _J. Geophys. Res. Oceans_ 118, 7036–7048 (2013). Article  Google Scholar  * Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the


Pacific–Antarctic continental margin. _J. Clim._ 23, 4508–4524 (2010). Article  Google Scholar  * Schneider, D. P. & Reusch, D. B. Antarctic and Southern Ocean surface temperatures in


CMIP5 models in the context of the surface energy budget. _J. Clim._ 29, 1689–1716 (2016). Article  Google Scholar  * Fürst, J. J. et al. The safety band of Antarctic ice shelves. _Nat.


Clim. Change_ 6, 479–482 (2016). Article  Google Scholar  * Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. _Nat. Clim.


Change_. 8, 53–57 (2018). Article  Google Scholar  * Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. _Science_ 343, 174–178 (2014). Article 


Google Scholar  * Spector, P. et al. Rapid early‐Holocene deglaciation in the Ross Sea, Antarctica. _Geophys. Res. Lett._ 44, 7817–7825 (2017). Article  Google Scholar  * Kingslake, J. et


al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. _Nature_ 558, 430–434 (2018). Article  Google Scholar  * Fretwell, P. et al. Bedmap2: Improved ice


bed, surface and thickness datasets for Antarctica. _Cryosphere_ 7, 375–393 (2013). Article  Google Scholar  * Bentley, C. R. & Hayes, D. E. (eds) _The Ross Ice Shelf: Glaciology and


Geophysics_ (American Geophysical Union, 1990). * Crary, A. P. _Glaciological Studies at Little America Station, Antarctica, 1957 and 1958_ (American Geographical Society, 1961). * Cawood,


P. A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. _Earth Sci. Rev._ 69, 249–279 (2005).


Article  Google Scholar  * Elliot, D. H. _The Geological and Tectonic Evolution of the Transantarctic Mountains: A Review_ (Geological Society, 2013). * Jordan, T. et al. Inland extent of


the Weddell Sea rift imaged by new aerogeophysical data. _Tectonophysics_ 585, 137–160 (2013). Article  Google Scholar  * McFadden, R. R., Siddoway, C. S., Teyssier, C. & Fanning, C. M.


Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. _Tectonics_ 29, TC4022 (2010). Article  Google


Scholar  * Karner, G. D., Studinger, M. & Bell, R. E. Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica.


_Earth Planet. Sci. Lett._ 235, 577–596 (2005). Article  Google Scholar  * Siddoway, C. S., Baldwin, S., Fitzgerald, P. G., Fanning, C. M. & Luyendyk, B. P. Ross Sea mylonites and the


timing of intracontinental extension within the West Antarctic rift system. _Geology_ 32, 57–60 (2004). Article  Google Scholar  * Trey, H. et al. Transect across the West Antarctic rift


system in the Ross Sea, Antarctica. _Tectonophysics_ 301, 61–74 (1999). Article  Google Scholar  * Chaput, J. et al. The crustal thickness of West Antarctica. _J. Geophys. Res. Solid Earth_


119, 378–395 (2014). Article  Google Scholar  * Golynsky, A. et al. in _Antarctica, Contributions to Global Earth Sciences_ (eds Fütterer, D. K. et al.) 109–116 (Springer, 2006). *


Scheinert, M. et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. _Geophys. Res. Lett._ 43, 600–610 (2016). Article  Google Scholar  *


Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. _Science_ 346, 65–67


(2014). Article  Google Scholar  * Clough, J. W. & Hansen, B. L. The Ross Ice Shelf Project. _Science_ 203, 433–434 (1979). Article  Google Scholar  * Konrad, H. et al. Net retreat of


Antarctic glacier grounding lines. _Nat. Geosci._ 11, 258–262 (2018). Article  Google Scholar  * Arndt, J. E. et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version


1.0—A new bathymetric compilation covering circum-Antarctic waters. _Geophys. Res. Lett._ 40, 3111–3117 (2013). Article  Google Scholar  * An, M. et al. S-velocity model and inferred Moho


topography beneath the Antarctic Plate from Rayleigh waves. _J. Geophys. Res. Solid Earth_ 120, 359–383 (2015). Article  Google Scholar  * Shen, W. et al. The crust and upper mantle


structure of Central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. _J. Geophys. Res. Solid Earth_ 123, 7824–7849 (2018). Article  Google Scholar  *


Tinto, K. J. & Bell, R. E. Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: constraints from aerogravity. _Geophys. Res. Lett._ 38, L20503 (2011). Article


  Google Scholar  * Cochran, J. R. & Bell, R. E. Inversion of icebridge gravity data for continental shelf bathymetry beneath the Larsen Ice Shelf, Antarctica. _J. Glaciol._ 58, 540–552


(2012). Article  Google Scholar  * Muto, A. et al. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical


data: new results. _Earth Planet. Sci. Lett._ 433, 63–75 (2016). Article  Google Scholar  * Greenbaum, J. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. _Nat.


Geosci._ 8, 294–298 (2015). Article  Google Scholar  * Millan, R., Rignot, E., Bernier, V., Morlighem, M. & Dutrieux, P. Bathymetry of the Amundsen Sea Embayment sector of West


Antarctica from Operation IceBridge gravity and other data. _Geophys. Res. Lett._ 44, 1360–1368 (2017). Article  Google Scholar  * Boghosian, A. et al. Resolving bathymetry from airborne


gravity along Greenland fjords. _J. Geophys. Res. Solid Earth_ 120, 8516–8533 (2015). Article  Google Scholar  * An, L. et al. Bed elevation of Jakobshavn Isbræ, West Greenland, from


high‐resolution airborne gravity and other data. _Geophys. Res. Lett._ 44, 3728–3736 (2017). Article  Google Scholar  * Schaffer, J. et al. A global, high-resolution data set of ice sheet


topography, cavity geometry, and ocean bathymetry. _Earth Syst. Sci. Data_ 8, 543–557 (2016). Article  Google Scholar  * Haidvogel, D. B. et al. Ocean forecasting in terrain-following


coordinates: formulation and skill assessment of the regional ocean modeling system. _J. Comput. Phys._ 227, 3595–3624 (2008). Article  Google Scholar  * Dinniman, M. S., Klinck, J. M. &


Smith, W. O. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. _J. Geophys. Res._ 112, C11013


(2007). Article  Google Scholar  * Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves.


_Deep Sea Res. II_ 58, 1508–1523 (2011). Article  Google Scholar  * Arzeno, I. B. et al. Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica.


_J. Geophys. Res. Oceans_ 119, 4214–4233 (2014). Article  Google Scholar  * Mueller, R. D. et al. Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica.


_J. Geophys. Res._ 117, C05005 (2012). Article  Google Scholar  * Bromwich, D. H., Monaghan, A. J., Manning, K. W. & Powers, J. G. Real-time forecasting for the Antarctic: an evaluation


of the Antarctic Mesoscale Prediction System (AMPS). _Mon. Weather Rev._ 133, 579–603 (2005). Article  Google Scholar  * Rossow, W. B. & Schiffer, R. A. Advances in understanding clouds


from ISCCP. _Bull. Am. Meteor. Soc._ 80, 2261–2287 (1999). Article  Google Scholar  * Budgell, W. P. Numerical simulation of ice-ocean variability in the Barents Sea region. _Ocean Dyn._ 55,


370–387 (2005). Article  Google Scholar  * Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. _J. Phys. Oceanogr._ 29, 1787–1800


(1999). Article  Google Scholar  * Webb, D. J, de Cuevas, B. A. & Coward, A. C. _The First Main Run of the OCCAM Global Ocean Model_ (Southampton Oceanography Centre, 1998). * Catania,


G., Hulbe, C. & Conway, H. Grounding-line basal melt rates determined using radar-derived internal stratigraphy. _J. Glaciol._ 56, 545–554 (2010). Article  Google Scholar  * Jacobel, R.


W., Scambos, T. A., Raymond, C. F. & Gades, A. M. Changes in the configuration of ice stream flow from the West Antarctic Ice Sheet. _J. Geophys. Res. Solid Earth_ 101, 5499–5504 (1996).


Article  Google Scholar  * Jacobel, R. W., Gades, A. M., Gottschling, D. L., Hodge, S. M. & Wright, D. L. Interpretation of radar-detected internal layer folding in West Antarctic ice


streams. _J. Glaciol._ 39, 528–537 (1993). Article  Google Scholar  * Wright, D. L., Hodge, S. M., Bradley, J. A., Grover, T. P. & Jacobel, R. W. Instruments and methods: a digital


low-frequency, surface-profiling ice-radar system. _J. Glaciol._ 36, 112–121 (1990). Article  Google Scholar  Download references ACKNOWLEDGEMENTS We gratefully acknowledge the support of


the 109th Airlift Wing of the New York Air National Guard. We thank the United States Antarctic Program and staff of McMurdo Station seasons 2014–2018 and J. DeTemple during the development


of the IcePod. This work was supported by the National Science Foundation 0958658, 1443534, 1443498, 1443677, 1443497 and 1341688, NASA NNX16AJ65G, the Moore Foundation, the Old York


Foundation, the New Zealand Ministry of Business Innovation and Employment contract C05X1001, and New Zealand Antarctic Research Institute (NZARI no. 2014-11) funded Aotearoa New Zealand


Ross Ice Shelf Programme (F.C.T. and G.O’B.). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA K. J. Tinto, I. Das, D. F. Porter, N. P. Frearson, C. Bertinato, A.


Boghosian, S. I. Cordero, T. Dhakal, L. Dong, C. D. Gustafson, C. Locke, J. J. Spergel, S. E. Starke, M. G. Wearing & R. E. Bell * Earth & Space Research, Corvallis, OR, USA L.


Padman * Colorado College, Colorado Springs, CO, USA C. S. Siddoway, S. Keeshin, A. Lockett & M. Tankersley * Earth & Space Research, Seattle, WA, USA S. R. Springer & S. L.


Howard * Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA H. A. Fricker, C. Mosbeux & M. K. Becker * GNS Science, Lower Hutt, New Zealand F.


Caratori Tontini & G. O’Brien * Colorado School of Mines, Golden, CO, USA M. R. Siegfried * Dynamic Gravity Systems, Broomfield, CO, USA N. Brady * U. S. Geological Survey, Denver, CO,


USA B. L. Burton * Stanford University, Stanford, CA, USA W. Chu Authors * K. J. Tinto View author publications You can also search for this author inPubMed Google Scholar * L. Padman View


author publications You can also search for this author inPubMed Google Scholar * C. S. Siddoway View author publications You can also search for this author inPubMed Google Scholar * S. R.


Springer View author publications You can also search for this author inPubMed Google Scholar * H. A. Fricker View author publications You can also search for this author inPubMed Google


Scholar * I. Das View author publications You can also search for this author inPubMed Google Scholar * F. Caratori Tontini View author publications You can also search for this author


inPubMed Google Scholar * D. F. Porter View author publications You can also search for this author inPubMed Google Scholar * N. P. Frearson View author publications You can also search for


this author inPubMed Google Scholar * S. L. Howard View author publications You can also search for this author inPubMed Google Scholar * M. R. Siegfried View author publications You can


also search for this author inPubMed Google Scholar * C. Mosbeux View author publications You can also search for this author inPubMed Google Scholar * M. K. Becker View author publications


You can also search for this author inPubMed Google Scholar * C. Bertinato View author publications You can also search for this author inPubMed Google Scholar * A. Boghosian View author


publications You can also search for this author inPubMed Google Scholar * N. Brady View author publications You can also search for this author inPubMed Google Scholar * B. L. Burton View


author publications You can also search for this author inPubMed Google Scholar * W. Chu View author publications You can also search for this author inPubMed Google Scholar * S. I. Cordero


View author publications You can also search for this author inPubMed Google Scholar * T. Dhakal View author publications You can also search for this author inPubMed Google Scholar * L.


Dong View author publications You can also search for this author inPubMed Google Scholar * C. D. Gustafson View author publications You can also search for this author inPubMed Google


Scholar * S. Keeshin View author publications You can also search for this author inPubMed Google Scholar * C. Locke View author publications You can also search for this author inPubMed 


Google Scholar * A. Lockett View author publications You can also search for this author inPubMed Google Scholar * G. O’Brien View author publications You can also search for this author


inPubMed Google Scholar * J. J. Spergel View author publications You can also search for this author inPubMed Google Scholar * S. E. Starke View author publications You can also search for


this author inPubMed Google Scholar * M. Tankersley View author publications You can also search for this author inPubMed Google Scholar * M. G. Wearing View author publications You can also


search for this author inPubMed Google Scholar * R. E. Bell View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS K.J.T., R.E.B., L.P., C.S.S.,


S.R.S., H.A.F., I.D. and F.C.T. conceived the experiment and analysed the data; D.F.P. contributed to oceanography; M.R.S. and C.M. contributed to glaciology; S.L.H. contributed to


developing and running the ocean model simulations; N.P.F., C.B., T.D., W.C. and L.D. developed the IcePod instrument suite and acquired the data; S.K. analysed radar data; M.T. contributed


to the bathymetry model; M.K.B., A.B., N.B., B.L.B., S.I.C., C.D.G., C.L., A.L., G.O’B., J.J.S., S.E.S. and M.G.W. acquired and processed data in the field. CORRESPONDING AUTHOR


Correspondence to K. J. Tinto. ETHICS DECLARATIONS COMPETING INTERESTS N.B. is director of operations of Dynamic Gravity Systems, provider of one of the gravity instruments used in the


ROSETTA-Ice surveys. The remaining authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–6. SUPPLEMENTARY VIDEO 1 Temporal evolution of High-Salinity Shelf


Water. SUPPLEMENTARY VIDEO 2 Temporal evolution of modified Circumpolar Deep Water. SUPPLEMENTARY VIDEO 3 Temporal evolution of Antarctic Surface Water. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Tinto, K.J., Padman, L., Siddoway, C.S. _et al._ Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry.


_Nat. Geosci._ 12, 441–449 (2019). https://doi.org/10.1038/s41561-019-0370-2 Download citation * Received: 08 November 2018 * Accepted: 08 April 2019 * Published: 27 May 2019 * Issue Date:


June 2019 * DOI: https://doi.org/10.1038/s41561-019-0370-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative