Managing nitrogen legacies to accelerate water quality improvement

Managing nitrogen legacies to accelerate water quality improvement

Play all audios:

Loading...

ABSTRACT Increasing incidences of eutrophication and groundwater quality impairment from agricultural nitrogen pollution are threatening humans and ecosystem health. Minimal improvements in


water quality have been achieved despite billions of dollars invested in conservation measures worldwide. Such apparent failures can be attributed in part to legacy nitrogen that has


accumulated over decades of agricultural intensification and that can lead to time lags in water quality improvement. Here, we identify the key knowledge gaps related to landscape nitrogen


legacies and propose approaches to manage and improve water quality, given the presence of these legacies. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMPACT OF GROUNDWATER NITROGEN LEGACY ON WATER QUALITY Article


Open access 12 June 2024 ASSESSING GROUNDWATER DENITRIFICATION SPATIALLY IS THE KEY TO TARGETED AGRICULTURAL NITROGEN REGULATION Article Open access 06 March 2024 LONG-TERM ANNUAL SOIL


NITROGEN SURPLUS ACROSS EUROPE (1850–2019) Article Open access 10 October 2022 DATA AVAILABILITY Datasets for this research have been previously


published13,26,41,80,84,85,86,87,89,91,92,94,95. All other data are available upon request. REFERENCES * Diaz, R. J. & Rosenberg, R. Introduction to environmental and economic


consequences of hypoxia. _Int. J. Water Resour. Dev._ 27, 71–82 (2011). Article  Google Scholar  * Glibert, P. M., Maranger, R., Sobota, D. J. & Bouwman, L. The Haber Bosch–harmful algal


bloom (HB–HAB) link. _Environ. Res. Lett._ 9, 105001 (2014). Article  Google Scholar  * Sutton, M. A. et al. (eds) _The European Nitrogen Assessment_ (Cambridge Univ. Press, 2011);


http://www.nine-esf.org/node/360/ENA-Book.html * Basu, N. B. et al. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. _Geophys. Res. Lett._ 37,


L23404 (2010). Article  Google Scholar  * Gobler, C. J. Climate change and harmful algal blooms: insights and perspective. _Harmful Algae_ 91, 101731 (2020). Article  Google Scholar  *


Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. _WIREs Water_ 6, 706 (2019). Article  Google


Scholar  * D’Elia, C. F., Bidjerano, M. & Wheeler, T. B. in _Coasts and Estuaries_ (eds Wolanski, E., Day, J. W., Elliott, M. and Ramachandran, R.) 293–310 (Elsevier, 2019). * Iho, A.,


Ribaudo, M. & Hyytiäinen, K. Water protection in the Baltic Sea and the Chesapeake Bay: institutions, policies and efficiency. _Mar. Pollut. Bull._ 93, 81–93 (2015). Article  Google


Scholar  * Rabotyagov, S. S., Kling, C. L. & Gassman, P. W. The economics of dead zones: causes, impacts, policy challenges, and a mode of the Gulf of Mexico hypoxic zone. _Rev. Environ.


Econ. Policy_ https://doi.org/10.1093/reep/ret024 (2014). * Le Moal, M. et al. Eutrophication: a new wine in an old bottle? _Sci. Total Environ._ 651, 1–11 (2019). Article  Google Scholar 


* Karydis, M. & Kitsiou, D. Eutrophication and environmental policy in the Mediterranean Sea: a review. _Environ. Monit. Assess._ 184, 4931–4984 (2012). Article  Google Scholar  * Linke,


S., Gilek, M., Karlsson, M. & Udovyk, O. Unravelling science–policy interactions in environmental risk governance of the Baltic Sea: comparing fisheries and eutrophication. _J. Risk


Res._ 17, 505–523 (2014). Article  Google Scholar  * Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Response to comment on ‘Legacy nitrogen may prevent achievement of water quality


goals in the Gulf of Mexico’. _Science_ 365, eaau8401 (2019). Article  Google Scholar  * Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Legacy nitrogen may prevent achievement of


water quality goals in the Gulf of Mexico. _Science_ 360, 427–430 (2018). Article  Google Scholar  * Destouni, G., Fischer, I. & Prieto, C. Water quality and ecosystem management:


data-driven reality check of effects in streams and lakes. _Water Resour. Res._ 53, 6395–6406 (2017). Article  Google Scholar  * Meals, D. W., Dressing, S. A. & Davenport, T. E. Lag time


in water quality response to best management practices: a review. _J. Environ. Qual._ 39, 85–96 (2010). Article  Google Scholar  * Backer, H. et al. HELCOM Baltic Sea Action Plan–a regional


programme of measures for the marine environment based on the ecosystem approach. _Mar. Pollut. Bull._ 60, 642–649 (2010). Article  Google Scholar  * Gren, I.-M. & Destouni, G. Does


divergence of nutrient load measurements matter for successful mitigation of marine eutrophication? _AMBIO_ 41, 151–160 (2012). Article  Google Scholar  * _Baltic Sea Action Plan_ (HELCOM,


2007). * _The Nitrates Directive_ 1991/676/EEC (European Commission,1991). * _Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community


Action in the Field of Water Policy_ (European Environment Agency, 2020). * Diaz, R., Selman M. & Chique C. _Global Eutrophic and Hypoxic Coastal Systems_ (World Resources Institute,


2011); https://datasets.wri.org/dataset/eutrophication-hypoxia-map-data-set * Boesch, D. F. Barriers and bridges in abating coastal eutrophication. _Front. Mar. Sci._ 6, 123 (2019). Article


  Google Scholar  * Secchi, S. & Mcdonald, M. The state of water quality strategies in the Mississippi River basin: is cooperative federalism working? _Sci. Total Environ._ 677, 241–249


(2019). Article  Google Scholar  * Prokopy, L. S. et al. The urgency of transforming the Midwestern US landscape into more than corn and soybean. _Agric. Human Values_ 37, 537–539 (2020).


Article  Google Scholar  * Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna river basins.


_Glob. Biogeochem. Cycles_ 31, 2016GB005498 (2017). Google Scholar  * Van Meter, K. J. & Basu, N. B. Catchment legacies and time lags: a parsimonious watershed model to predict the


effects of legacy storage on nitrogen export. _PLoS ONE_ 10, e0125971 (2015). Article  Google Scholar  * Ardón, M., Helton, A. M., Scheuerell, M. D. & Bernhardt, E. S. Fertilizer


legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration. _Elementa_ https://doi.org/10.1525/elementa.236 (2017). * Puckett, L. J., Tesoriero, A.


J. & Dubrovsky, N. M. Nitrogen contamination of surficial aquifers—a growing legacy. _Environ. Sci. Technol._ 45, 839–844 (2011). Article  Google Scholar  * Poffenbarger, H. J. et al.


Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. _Agric. Ecosyst. Environ._ 265, 544–555 (2018). Article  Google


Scholar  * Ascott, M. J. et al. Global patterns of nitrate storage in the vadose zone. _Nat. Commun._ 8, 1416 (2017). Article  Google Scholar  * Vero, S. E. et al. The environmental status


and implications of the nitrate time lag in Europe and North America. _Hydrogeol. J_. 26, 7–22 (2017). * Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M.


Vulnerability of streams to legacy nitrate sources. _Environ. Sci. Technol._ 47, 3623–3629 (2013). Article  Google Scholar  * Rudolph, D. L. Groundwater quality within the agricultural


landscape: assessing the performance of nutrient BMPs. _Ground Water Monit. Remediat._ 35, 21–22 (2015). Article  Google Scholar  * Van Meter, K. J., Basu, N. B., Veenstra, J. J. &


Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. _Environ. Res. Lett._ 11, 035014 (2016). Article  Google Scholar  * Akbarzadeh, Z.,


Maavara, T., Slowinski, S. & Van Cappellen, P. Effects of damming on river nitrogen fluxes: a global analysis. _Glob. Biogeochem. Cycles_ 33, 1339–1357 (2019). Article  Google Scholar 


* Darracq, A., Lindgren, G. & Destouni, G. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins. _Global Biogeochem.


Cycles_ 22 (2008). * van Egmond, K., Bresser, T. & Bouwman, L. The European nitrogen case. _Ambio_ 31, 72–78 (2002). Article  Google Scholar  * van Van Breemen, N. et al. Where did all


the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. _Biogeochemistry_ 57, 267–293 (2002). Article  Google Scholar  * Howarth, R. W., Boyer, E. W., Pabich,


W. J. & Galloway, J. N. Nitrogen use in the United States from 1961–2000 and potential future trends. _Ambio_ 31, 88–96 (2002). Article  Google Scholar  * Howden, N. J. K., Burt, T. P.,


Worrall, F., Whelan, M. J. & Bieroza, M. Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible? _Hydrol. Process._ 24, 2657–2662


(2010). Article  Google Scholar  * Boland-Brien, S. J., Basu, N. B. & Schilling, K. E. Homogenization of spatial patterns of hydrologic response in artificially drained agricultural


catchments. _Hydrol. Process._ 28, 5010–5020 (2014). Article  Google Scholar  * Sloan, B. P., Basu, N. B. & Mantilla, R. Hydrologic impacts of subsurface drainage at the field scale:


climate, landscape and anthropogenic controls. _Agric. Water Manage_. 165, 1–10 (2016). * Schilling, K. E., Jindal, P., Basu, N. B. & Helmers, M. J. Impact of artificial subsurface


drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA). _Hydrol. Process._ 26, 3092–3100 (2012). Article  Google Scholar  * Hong, B. et al.


Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational


areas of Baltic Sea basin. _Ecol. Modell._ 227, 117–135 (2012). Article  Google Scholar  * Boyer, E. W., Goodale, C. L., Jaworski, N. A. & Howarth, R. W. Anthropogenic nitrogen sources


and relationships to riverine nitrogen export in the northeastern USA. _Biogeochemistry_ 57, 137–169 (2002). Article  Google Scholar  * Howarth, R. W. et al. Nitrogen fluxes from the


landscape are controlled by net anthropogenic nitrogen inputs and by climate. _Front. Ecol. Environ._ 10, 37–43 (2012). Article  Google Scholar  * Van Meter, K. J. & Basu, N. B. Time


lags in watershed-scale nutrient transport: an exploration of dominant controls. _Environ. Res. Lett._ 12, 084017 (2017). Article  Google Scholar  * Chen, D. et al. Legacy nutrient dynamics


at the watershed scale: principles, modeling, and implications. _Adv. Agron._ 149, 237–313 (2018). Article  Google Scholar  * Wellen, C., Kamran-Disfani, A.-R. & Arhonditsis, G. B.


Evaluation of the current state of distributed watershed nutrient water quality modeling. _Environ. Sci. Technol._ 49, 3278–3290 (2015). Article  Google Scholar  * Wit, M. J. Mde Nutrient


fluxes at the river basin scale. I: the PolFlow model. _Hydrol. Process._ 15, 743–759 (2001). Article  Google Scholar  * Rabotyagov, S. S. et al. Cost-effective targeting of conservation


investments to reduce the northern Gulf of Mexico hypoxic zone. _Proc. Natl Acad. Sci. USA_ 111, 18530–18535 (2014). Article  Google Scholar  * McIsaac, G. F., David, M. B., Gertner, G. Z.


& Goolsby, D. A. Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches. _J. Environ. Qual._ 31, 1610–1622


(2002). Article  Google Scholar  * Chen, F. et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. _J. Geophys. Res.


Biogeosci._ 121, 451–465 (2016). Article  Google Scholar  * Chang, S. Y., Zhang, Q., Byrnes, D. K., Basu, N. B. & Van Meter, K. J. Chesapeake legacies: the importance of legacy nitrogen


to improving Chesapeake Bay water quality. _Environ. Res. Lett._ 16, 085002 (2021). Article  Google Scholar  * Van Meter, K. J. et al. Beyond the mass balance: watershed phosphorus legacies


and the evolution of the current water quality policy challenge. _Water Resour. Res_. 57 (2021). * Wang, L. et al. Prediction of the arrival of peak nitrate concentrations at the water


table at the regional scale in Great Britain. _Hydrol. Process._ 26, 226–239 (2012). Article  Google Scholar  * Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D. & Jaffé, P. R.


Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. _Geophys. Res. Lett._ 43, 7520–7528 (2016). Article  Google Scholar  * Ilampooranan, I., Van


Meter, K. J. & Basu, N. B. A race against time: modeling time lags in watershed response. _Water Resour. Res._ 55, 3941–3959 (2019). Article  Google Scholar  * Guillaumot, L. et al. A


hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers. _Sci. Total Environ_ 800, 149216 (2021). Article  Google Scholar  * Keiser,


D. A., Kling, C. L. & Shapiro, J. S. The low but uncertain measured benefits of US water quality policy. _Proc. Natl Acad. Sci. USA_ 116, 5262–5269 (2019). Article  Google Scholar  *


Keiser, D. A. & Shapiro, J. S. Consequences of the Clean Water Act and the demand for water quality. _Q. J. Econ._ 134, 349–396 (2019). Article  Google Scholar  * Sprague, L. A. &


Gronberg, J. A. M. Relating management practices and nutrient export in agricultural watersheds of the United States. _J. Environ. Qual._ 41, 1939–1950 (2012). Article  Google Scholar  *


Zabel, T., Milne, I. & Mckay, G. Approaches adopted by the European Union and selected Member States for the control of urban pollution. _Urban Water_ 3, 25–32 (2001). Article  Google


Scholar  * Booth, L. & Quinn, F. Twenty-five years of the Canada Water Act. _Can. Water Resour. J._ 20, 65–90 (1995). Article  Google Scholar  * Liu, Y. _Phosphorus Flows in China:


Physical Profiles and Environmental Regulation._ PhD thesis, Wageningen Univ. (2005). * Jacobsen, B. H., Anker, H. T. & Baaner, L. Implementing the water framework directive in


Denmark—lessons on agricultural measures from a legal and regulatory perspective. _Land Use Policy_ 67, 98–106 (2017). Article  Google Scholar  * Ascott, M. J. et al. The need to integrate


legacy nitrogen storage dynamics and time lags into policy and practice. _Sci. Total Environ_ 781, 146698 (2021). Article  Google Scholar  * Yan, M., Pan, G., Lavallee, J. M. & Conant,


R. T. Rethinking sources of nitrogen to cereal crops. _Glob. Change Biol._ 26, 191–199 (2020). Article  Google Scholar  * Rudolph, D. L., Devlin, J. F. & Bekeris, L. Challenges and a


strategy for agricultural BMP monitoring and remediation of nitrate contamination in unconsolidated aquifers. _Ground Water Monit. Remediat._ 35, 97–109 (2015). Article  Google Scholar  *


Dalgaard, T. et al. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. _Environ. Res. Lett._ 9, 115002 (2014). Article  Google


Scholar  * Eagle, A. J., Olander, L. P., Locklier, K. L., Heffernan, J. B. & Bernhardt, E. S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: a


meta-analysis. _Soil Sci. Soc. Am. J._ 81, 1191–1202 (2017). Article  Google Scholar  * Khanna, M., Gramig, B. M., DeLucia, E. H., Cai, X. & Kumar, P. Harnessing emerging technologies to


reduce Gulf hypoxia. _Nat. Sustain._ 2, 889–891 (2019). * Cheng, F. Y., Van Meter, K. J., Byrnes, D. K. & Basu, N. B. Maximizing US nitrate removal through wetland protection and


restoration. _Nature_ https://doi.org/10.1038/s41586-020-03042-5 (2020). * Qiu, J., Wardropper, C. B., Rissman, A. R. & Turner, M. G. Spatial fit between water quality policies and


hydrologic ecosystem services in an urbanizing agricultural landscape. _Landsc. Ecol._ 32, 59–75 (2017). Article  Google Scholar  * Jacobsen, B. H. & Hansen, A. L. Economic gains from


targeted measures related to non-point pollution in agriculture based on detailed nitrate reduction maps. _Sci. Total Environ._ 556, 264–275 (2016). Article  Google Scholar  * Destouni, G.


& Jarsjö, J. Zones of untreatable water pollution call for better appreciation of mitigation limits and opportunities. _WIREs Water_ 5, e1312 (2018). Article  Google Scholar  * Hansen,


A. T. et al. Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. _Proc. Natl Acad. Sci. USA_ 118,


e2024912118 (2021). Article  Google Scholar  * Cheng, F. Y. & Basu, N. B. Biogeochemical hotspots: role of small water bodies in landscape nutrient processing. _Water Resour. Res._ 53,


5038–5056 (2017). Article  Google Scholar  * _Early June 2019 Hypoxia Report_ (Maryland Department of Natural Resources, 2019);


https://news.maryland.gov/dnr/2019/06/27/early-june-2019-hypoxia-report/ * _Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2015 Report to Congress_ (EPA, 2015). * _Hypoxia


Task Force 2001 Action Plan_ (EPA, 2001). * Reckhow, K. H. et al. _Achieving Nutrient and Sediment Reduction Goals in the Chesapeake Bay: An Evaluation of Program Strategies and


Implementation_ (National Academies Press, 2011). * Savchuk, O. P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. _Front. Mar. Sci._ 5, 95 (2018). Article  Google Scholar  *


Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. _Proc. Natl Acad. Sci. USA_ 111, 5628–5633 (2014). Article 


Google Scholar  * _Northern Gulf of Mexico Hypoxic Zone_ (EPA, 2020). * Swaney, D. P., Hong, B., Ti, C., Howarth, R. W. & Humborg, C. Net anthropogenic nitrogen inputs to watersheds and


riverine N export to coastal waters: a brief overview. _Curr. Opin. Environ. Sustain._ 4, 203–211 (2012). Article  Google Scholar  * Oelsner, G. P. et al. _Water-Quality Trends in the


Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results_ (USGS, 2017); https://doi.org/10.3133/sir20175006 * Goyette, J.-O., Bennett, E. M., Howarth,


R. W. & Maranger, R. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. _Glob. Biogeochem. Cycles_ 30,


1000–1014 (2016). Article  Google Scholar  * De Cicco, L.A. et al. Water-quality and streamflow datasets used in the Weighted Regressions on Time, Discharge, and Season (WRTDS) models to


determine trends in the Nation’s rivers and streams, 1972-2012 (ver. 1.1 July 7, 2017) (USGS, 2017); https://doi.org/10.5066/F7KW5D4H * Bouraoui, F. & Grizzetti, B. Long term change of


nutrient concentrations of rivers discharging in European seas. _Sci. Total Environ._ 409, 4899–4916 (2011). Article  Google Scholar  * Chen, D., Huang, H., Hu, M. & Dahlgren, R. A.


Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics. _Environ. Sci. Technol._ 48, 5683–5690 (2014). Article 


Google Scholar  * Jensen, P. N. (ed.) _Estimation of Nitrogen Concentrations from Root Zone to Marine Areas Around the Year 1900_ Scientific Report No. 241 (Danish Centre for Environment and


Energy, 2017). * Liu, J., Van Meter, K. J., McLeod, M. M. & Basu, N. B. Checkered landscapes: hydrologic and biogeochemical nitrogen legacies along the river continuum. _Environ. Res.


Lett._ 16, 115006 (2021). Article  Google Scholar  * Byrnes, D. K., Van Meter, K. J. & Basu, N. B. _Trajectories Nutrient Dataset for Nitrogen (TREND-nitrogen)_ (PANGAEA, 2020);


https://doi.org/10.1594/PANGAEA.917583 * Byrnes, D. K., Van Meter, K. J., & Basu, N. B. Long-term shifts in U.S. nitrogen sources and sinks revealed by the new TREND-nitrogen data set


(1930–2017) _Global Biogeochem. Cycles_ 34, e2020GB006626 (2020). * Sousa, M. R., Jones, J. P., Frind, E. O. & Rudolph, D. L. A simple method to assess unsaturated zone time lag in the


travel time from ground surface to receptor. _J. Contam. Hydrol._ 144, 138–151 (2013). Article  Google Scholar  Download references ACKNOWLEDGEMENTS This work was financed in part through


Natural Sciences and Engineering Research Council of Canada (NSERC) in the frame of the collaborative Water JPI international consortium pilot call under the project name ‘Legacies of


Agricultural Pollutants (LEAP): Integrated Assessment of Biophysical and Socioeconomic Controls on Water Quality Agroecosystems’ (N.B.B., K.J.V.M., R. Brouwer, R. Bhattacharya, M.C.C., G.D.,


B.H.J., J.J., S.B.O. and P.V.C.) and by Lake Futures Project under the Global Water Futures umbrella, and provided through the Canada First Research Excellence Fund (N.B.B., P.V.C., R.


Brouwer and R. Bhattacharya). N.B.B. was also supported by a University Research Chair appointment and by an NSERC Discovery Grant. K.J.V.M. was also supported by startup funds at The


Pennsylvania State University. D.K.B. was supported by the NSERC Alexander Graham Bell Canada Graduate Scholarship. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Civil and


Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada Nandita B. Basu & Danyka K. Byrnes * Department of Earth and Environmental Sciences, University of Waterloo,


Waterloo, Ontario, Canada Nandita B. Basu, Philippe Van Cappellen, David L. Rudolph & Ruchi Bhattacharya * Water Institute, University of Waterloo, Waterloo, Ontario, Canada Nandita B.


Basu, Philippe Van Cappellen & Roy Brouwer * Department of Geography, The Pennsylvania State University, University Park, PA, USA Kimberly J. Van Meter * Earth and Environmental Systems


Institute, The Pennsylvania State University, University Park, PA, USA Kimberly J. Van Meter * Department of Economics, University of Waterloo, Waterloo, Ontario, Canada Roy Brouwer *


Department of Food and Resource Economics, University of Copenhagen, Frederiksberg C, Denmark Brian H. Jacobsen & Søren Bøye Olsen * Department of Physical Geography, Stockholm


University, Stockholm, Sweden Jerker Jarsjö & Georgia Destouni * Department of Civil Engineering, CEMMPRE, University of Coimbra, Coimbra, Portugal Maria C. Cunha * Department of


Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA Natalie Nelson * Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA


Natalie Nelson Authors * Nandita B. Basu View author publications You can also search for this author inPubMed Google Scholar * Kimberly J. Van Meter View author publications You can also


search for this author inPubMed Google Scholar * Danyka K. Byrnes View author publications You can also search for this author inPubMed Google Scholar * Philippe Van Cappellen View author


publications You can also search for this author inPubMed Google Scholar * Roy Brouwer View author publications You can also search for this author inPubMed Google Scholar * Brian H.


Jacobsen View author publications You can also search for this author inPubMed Google Scholar * Jerker Jarsjö View author publications You can also search for this author inPubMed Google


Scholar * David L. Rudolph View author publications You can also search for this author inPubMed Google Scholar * Maria C. Cunha View author publications You can also search for this author


inPubMed Google Scholar * Natalie Nelson View author publications You can also search for this author inPubMed Google Scholar * Ruchi Bhattacharya View author publications You can also


search for this author inPubMed Google Scholar * Georgia Destouni View author publications You can also search for this author inPubMed Google Scholar * Søren Bøye Olsen View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.B.B. conceptualized the project, wrote the first draft, edited the paper and acquired the funding.


K.J.V.M. conceptualized the project, edited the draft and wrote sections, contributed materials/analysis tools and analysed data. D.K.B. contributed materials/analysis tools, analysed data


and edited the draft. P.V.C., R. Brouwer, G.D., J.J., R. Bhattacharya, B.H.J., M.C.C., G.D., N.N., S.B.O. and D.L.R. edited the draft. P.V.C. and N.B.B. acquired funding. CORRESPONDING


AUTHOR Correspondence to Nandita B. Basu. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Geoscience_ thanks


Emily Bernhardt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with


regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1 and 2 and Table 1. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Basu, N.B., Van Meter, K.J., Byrnes, D.K. _et al._ Managing nitrogen legacies to accelerate water quality


improvement. _Nat. Geosci._ 15, 97–105 (2022). https://doi.org/10.1038/s41561-021-00889-9 Download citation * Received: 18 March 2021 * Accepted: 10 December 2021 * Published: 10 February


2022 * Issue Date: February 2022 * DOI: https://doi.org/10.1038/s41561-021-00889-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative