Mixed matrix formulations with mof molecular sieving for key energy-intensive separations

Mixed matrix formulations with mof molecular sieving for key energy-intensive separations

Play all audios:

Loading...

ABSTRACT Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome


to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into


polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (FCU)-MOFs into the resultant membranes. We demonstrate,


simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and


the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate


between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the FCU-MOF pore. This


rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized


pore-apertures. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS METAL–ORGANIC FRAMEWORKS AND COVALENT ORGANIC FRAMEWORKS AS DISRUPTIVE MEMBRANE MATERIALS FOR ENERGY-EFFICIENT GAS SEPARATION Article 22 August 2022 MOF-IN-COF


MOLECULAR SIEVING MEMBRANE FOR SELECTIVE HYDROGEN SEPARATION Article Open access 04 January 2021 REVERSE FILLING APPROACH TO MIXED MATRIX COVALENT ORGANIC FRAMEWORK MEMBRANES FOR GAS


SEPARATION Article Open access 16 April 2025 CHANGE HISTORY * _ 20 NOVEMBER 2018 In the version of this Article originally published, the units of the _y_ axis of Fig. 3b were incorrectly


given as “106 cm2 s-1” they should have been “10-8 cm2 s-1”. This has been corrected in the online versions of the Article. _ * _ 27 MAY 2021 A Correction to this paper has been published:


https://doi.org/10.1038/s41563-021-01007-1 _ REFERENCES * Koros, W. J. & Lively, R. P. Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes.


_AIChE J._ 58, 2624-2633 (2012). CAS  Google Scholar  * Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. _Nat. Mater._ 16, 289-297


(2017). CAS  Google Scholar  * Baker, R. W. & Lokhandwala, K. Natural gas processing with membranes:-An overview. _Ind. Eng. Chem. Res._ 47, 2109-2121 (2008). CAS  Google Scholar  *


Klemola, K. T. & Ilme, J. K. Distillation efficiencies of an industrial-scale _i_-butane/_n_-butane fractionator. _Ind. Eng. Chem. Res._ 35, 4579-4586 (1996). CAS  Google Scholar  *


Baker, R. W. & Low, B. T. Gas separation membrane materials: A perspective. _Macromolecules_ 47, 6999-7013 (2014). CAS  Google Scholar  * Liu, J. et al. Butane isomer transport


properties of 6FDA-DAM and MFI-6FDA-DAM mixed matrix membranes. _J. Memb. Sci._ 343, 157-163 (2009). CAS  Google Scholar  * Agrawal, K. V. et al. Oriented MFI membranes by gel-less secondary


growth of sub-100 nm MFI-nanosheet seed layers. _Adv. Mater._ 27, 3243-3249 (2015). CAS  Google Scholar  * Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D.


Maximizing the right stuff: The trade-off between membrane permeability and selectivity. _Science_ 356, eaab0530 (2017). Google Scholar  * Bae, T.-H. et al. Facile high-yield solvothermal


deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. _J. Am. Chem. Soc._ 131, 14662-14663 (2009). CAS  Google Scholar  * Chung, T.-S., Jiang, L.


Y., Li, Y. & Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. _Prog. Polym. Sci._ 32, 483-507 (2007). CAS


  Google Scholar  * Liu, G., Xiangli, F., Wei, W., Liu, S. & Jin, W. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a


surface graft/coating approach. _Chem. Eng. J._ 174, 495-503 (2011). CAS  Google Scholar  * Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2


separation. _Nature_ 495, 80-84 (2013). CAS  Google Scholar  * Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework-based splitter for separating


propylene from propane. _Science_ 353, 137-140 (2016). CAS  Google Scholar  * Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene.


_Science_ 353, 141-144 (2016). CAS  Google Scholar  * Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. _Science_ 356, 731-735


(2017). CAS  Google Scholar  * O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. _Chem.


Rev._ 112, 675-702 (2012). CAS  Google Scholar  * Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.


_Science_ 295, 469-472 (2002). CAS  Google Scholar  * Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. _Science_ 346, 1356-1359 (2014).


CAS  Google Scholar  * Bae, T.-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. _Angew. Chem. Int. Ed._ 49, 9863-9866


(2010). CAS  Google Scholar  * Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. _Nat. Mater._ 14, 48-55 (2015). CAS  Google Scholar  *


Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: Continuous sod-ZMOF membrane with CO2 adsorptio_n_-driven selectivity. _J. Am. Chem. Soc._ 137, 1754-1757 (2015). CAS  Google


Scholar  * Shen, J. et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. _J. Memb. Sci._ 513, 155-165 (2016). CAS  Google Scholar  * Zhang, C., Dai, Y., Johnson, J.


R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. _J. Memb. Sci._ 389, 34-42 (2012). CAS  Google Scholar  * Brown,


A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. _Science_ 345, 72-75 (2014). CAS  Google Scholar  * Bachman, J. E., Smith, Z. P., Li, T.,


Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. _Nat. Mater._ 15, 845-849 (2016).


CAS  Google Scholar  * Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. _Science_ 358, 347-351 (2017). CAS  Google Scholar  * Adil, K. et al.


Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. _Chem. Soc. Rev._ 46, 3402-3430 (2017). CAS  Google Scholar  *


Belmabkhout, Y. et al. Metal-organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. _J. Mater. Chem. A_ 5, 3293-3303 (2017).


CAS  Google Scholar  * Assen, A. H. et al. Ultra-tuning of the rare-earth FCU-MOF aperture size for selective molecular exclusion of branched paraffins. _Angew. Chem. Int. Ed._ 54,


14353-14358 (2015). CAS  Google Scholar  * Qiu, S., Xue, M. & Zhu, G. Metal-organic framework membranes: from synthesis to separation application. _Chem. Soc. Rev._ 43, 6116-6140 (2014).


CAS  Google Scholar  * Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. _Proc. Natl Acad. Sci. USA_ 103, 10186-10191 (2006). CAS  Google


Scholar  * Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. _Science_ 283, 1148-1150


(1999). CAS  Google Scholar  * Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. _Chem. Eur. J._ 10, 1373-1382 (2004). CAS


  Google Scholar  * Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. _Science_ 300, 1127-1129 (2003). CAS  Google Scholar  * Rosi, N. L. et al. Rod packings and


metal-organic frameworks constructed from rod-shaped secondary building units. _J. Am. Chem. Soc._ 127, 1504-1518 (2005). CAS  Google Scholar  * Xue, D.-X. et al. Tunable rare-earth


fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. _J. Am. Chem. Soc._ 135, 7660-7667 (2013). CAS  Google Scholar  * Xue, D.-X. et al. Tunable rare


earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. _J. Am. Chem. Soc._ 137, 5034-5040 (2015). CAS  Google Scholar  * Zhang, C. et


al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. _AIChE J._ 60, 2625-2635 (2014). CAS  Google Scholar  * Moore, T. T. & Koros, W.


J. No_n_-ideal effects in organic-inorganic materials for gas separation membranes. _J. Mol. Struct._ 739, 87-98 (2005). CAS  Google Scholar  * Jia, M., Peinemann, K.-V. & Behling, R.-D.


Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. _J. Memb. Sci._ 57, 289-292 (1991). CAS  Google Scholar  * Woo, M., Choi, J. & Tsapatsis, M.


Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separations. _Microporous Mesoporous Mater._ 110, 330-338 (2008). CAS  Google Scholar  * Kraftschik, B., Koros, W. J.,


Johnson, J. R. & Karvan, O. Dense film polyimide membranes for aggressive sour gas feed separations. _J. Memb. Sci._ 428, 608-619 (2013). CAS  Google Scholar  * Chatterjee, G., Houde, A.


A. & Stern, S. A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. _J. Memb. Sci._ 135, 99-106 (1997). CAS  Google Scholar  * Rangnekar, N.,


Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes -a review and comparison with MOFs. _Chem. Soc. Rev._ 44, 7128-7154 (2015). CAS  Google Scholar  * Wijmans, J. G.


& Baker, R. W. The solutio_n_-diffusion model: a review. _J. Memb. Sci._ 107, 1-21 (1995). CAS  Google Scholar  * Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite


membranes. _Science_ 296, 519-522 (2002). CAS  Google Scholar  * Zhang, C. et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. _J. Phys. Chem. Lett._ 3,


2130-2134 (2012). CAS  Google Scholar  * Rungta, M. et al. Carbon molecular sieve structure development and membrane performance relationships. _Carbon_ 115, 237-248 (2017). CAS  Google


Scholar  * Wind, J. D. et al. Relaxation dynamics of CO2 diffusion, sorption, and polymer swelling for plasticized polyimide pembranes. _Macromolecules_ 36, 6442-6448 (2003). CAS  Google


Scholar  * Liu, G. et al. Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation. _Angew. Chem. Int.l Ed._ 55, 13754-13758 (2016). CAS 


Google Scholar  * Robeson, L. M. The upper bound revisited. _J. Memb. Sci._ 320, 390-400 (2008). CAS  Google Scholar  * Koros, W. J. & Paul, D. R. Design considerations for measurement


of gas sorption in polymers by pressure decay. _J. Polym. Sci. Polym. Phys. Ed._ 14, 1903-1907 (1976). CAS  Google Scholar  * Ruthven, D. M. Sorption kinetics for diffusio_n_-controlled


systems with a strongly concentratio_n_-dependent diffusivity. _Chem. Eng. Sci._ 59, 4531-4545 (2004). CAS  Google Scholar  * Crank, J. _The Mathematics of Diffusion_ (Oxford Univ. Press,


Oxford, 1979). Download references ACKNOWLEDGEMENTS The research reported in this publication was supported by KAUST CRG Research Grant URF/1/2222-01; Y.B., O.S. and M.E. acknowledge support


from King Abdullah University of Science and Technology; G.L. acknowledges support from National Natural Science Foundation of China (Grant Nos.: 21490585, 21776125, 21406107). AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA Gongping Liu, Yang Liu, Kuang Zhang, Chen Zhang, 


Shouliang Yi & William J. Koros * State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of


Chemical Engineering, Nanjing Tech University, Nanjing, China Gongping Liu * Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, Functional


Materials Design, King Abdullah University of Science and Technology, Discovery and Development research group (FMD3), Thuwal, Saudi Arabia Valeriya Chernikova, Youssef Belmabkhout, Osama


Shekhah & Mohamed Eddaoudi Authors * Gongping Liu View author publications You can also search for this author inPubMed Google Scholar * Valeriya Chernikova View author publications You


can also search for this author inPubMed Google Scholar * Yang Liu View author publications You can also search for this author inPubMed Google Scholar * Kuang Zhang View author publications


You can also search for this author inPubMed Google Scholar * Youssef Belmabkhout View author publications You can also search for this author inPubMed Google Scholar * Osama Shekhah View


author publications You can also search for this author inPubMed Google Scholar * Chen Zhang View author publications You can also search for this author inPubMed Google Scholar * Shouliang


Yi View author publications You can also search for this author inPubMed Google Scholar * Mohamed Eddaoudi View author publications You can also search for this author inPubMed Google


Scholar * William J. Koros View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS G.L. fabricated the hybrid mixed-matrix membranes and performed


the adsorption and permeation tests. V.C., O.S. and Y.B. carried out the synthesis and scale-up of the MOFs. G.L., W.J.K., M.E. and Y.B. interpreted the adsorption and permeation data. K.Z.,


G.L., O.S. and V.C. developed the cryo-grinding/sedimentation method. K.Z. and G.L. fabricated the hybrid hollow fibre composite membranes. C.Z. guided the Maxwell prediction and


diffusivity calculations. S.Y. guided the H2S sorption and permeation. W.J.K. and M.E conceived, designed and guided the whole project. G.L., Y.L., W.J.K., Y.B. and M.E. discussed the


findings in this paper. G.L., Y.B. M.E. and W.J.K. coordinated the writing of the paper, and all authors contributed to revising the paper. CORRESPONDING AUTHORS Correspondence to Mohamed


Eddaoudi or William J. Koros. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. ADDITIONAL INFORMATION PUBLISHER'S NOTE: Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figures 1-29,


Supplementary Schematic 1-4, Supplementary Tables 1-2, Supplementary References 1-7 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Liu, G., Chernikova,


V., Liu, Y. _et al._ Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. _Nature Mater_ 17, 283–289 (2018). https://doi.org/10.1038/s41563-017-0013-1


Download citation * Received: 18 September 2017 * Accepted: 14 December 2017 * Published: 12 February 2018 * Issue Date: March 2018 * DOI: https://doi.org/10.1038/s41563-017-0013-1 SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative