Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films

Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films

Play all audios:

Loading...

ABSTRACT The performance of organic optoelectronic and energy-harvesting devices is largely determined by the molecular orientation and resultant permanent dipole moment, yet this property


is difficult to control during film preparation. Here, we demonstrate the active control of dipole direction—that is, vector direction and magnitude—in organic glassy films by physical


vapour deposition. An organic glassy film with metastable permanent dipole moment orientation can be obtained by utilizing the small surface free energy of a trifluoromethyl unit and


intramolecular permanent dipole moment induced by functional groups. The proposed molecular design rule could pave a way toward the formation of spontaneously polarized organic glassy films,


leading to improvement in the performance of organic molecular devices. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS BOOSTING SPONTANEOUS ORIENTATION POLARIZATION OF POLAR MOLECULES BASED ON FLUOROALKYL AND


PHTHALIMIDE UNITS Article Open access 29 October 2024 SPONTANEOUS ORIENTATION POLARIZATION DRIVEN BY DESIGNING MOLECULAR ASYMMETRY Article Open access 09 May 2025 PRECISE ORIENTATION CONTROL


OF A LIQUID CRYSTAL ORGANIC SEMICONDUCTOR VIA ANISOTROPIC SURFACE TREATMENT Article Open access 01 April 2022 DATA AVAILABILITY Source data are provided with this paper. Additional


information is available from the authors on request. Source data are provided with this paper. REFERENCES * Ito, E. et al. Spontaneous buildup of giant surface potential by vacuum


deposition of Alq3 and its removal by visible light irradiation. _J. Appl. Phys._ 92, 7306–7310 (2002). Article  CAS  Google Scholar  * Noguchi, Y., Brütting, W. & Ishii, H. Spontaneous


orientation polarization in organic light-emitting diodes. _Jpn. J. Appl. Phys._ 58, SF0801 (2019). Article  CAS  Google Scholar  * Jäger, L., Schmidt, T. D. & Brütting, W. Manipulation


and control of the interfacial polarization in organic light-emitting diodes by dipolar doping. _AIP Adv._ 6, 095220 (2016). Article  CAS  Google Scholar  * Osada, K. et al. Observation of


spontaneous orientation polarization in evaporated films of organic light-emitting diode materials. _Org. Electron._ 58, 313–317 (2018). Article  CAS  Google Scholar  * Noguchi, Y. et al.


Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. _J. Appl. Phys._ 111, 114508 (2012). Article  CAS 


Google Scholar  * Ueda, Y. et al. Role of spontaneous orientational polarization in organic donor–acceptor blends for exciton binding. _Adv. Opt. Mater._ 8, 2000896 (2020). Article  CAS 


Google Scholar  * Noguchi, Y. et al. Influence of the direction of spontaneous orientation polarization on the charge injection properties of organic light-emitting diodes. _Appl. Phys.


Lett._ 102, 203306 (2013). Article  CAS  Google Scholar  * Morgenstern, T. et al. Correlating optical and electrical dipole moments to pinpoint phosphorescent dye alignment in organic


light-emitting diodes. _ACS Appl. Mater. Interfaces_ 10, 31541–31551 (2018). Article  CAS  Google Scholar  * Tanaka, Y., Matsuura, N. & Ishii, H. Self-assembled electret for


vibration-based power generator. _Sci. Rep._ 10, 6648 (2020). Article  CAS  Google Scholar  * Suzuki, Y. Recent progress in MEMS electret generator for energy harvesting. _IEEJ Trans.


Electr. Electron. Eng._ 6, 101–111 (2011). Article  CAS  Google Scholar  * Schmid, M. et al. Optical and electrical measurements reveal the orientation mechanism of homoleptic


iridium-carbene complexes. _ACS Appl. Mater. Interfaces_ 12, 51709–51718 (2020). Article  CAS  Google Scholar  * Naqvi, B. A. et al. What controls the orientation of TADF emitters? _Front.


Chem._ 8, 750 (2020). Article  CAS  Google Scholar  * Isoshima, T. et al. Negative giant surface potential of vacuum-evaporated tris(7-propyl-8-hydroxyquinolinolato) aluminum(III)


[Al(7-Prq)3] film. _Org. Electron._ 14, 1988–1991 (2013). Article  CAS  Google Scholar  * Adachi, C., Nagai, K. & Tamoto, N. Search for oxadiazole derivatives in organic


electroluminescent diodes. _Disp. Imaging_ 5, 325–341 (1997). Google Scholar  * Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. & Ueda, Y. The lowest surface free energy based on


-CF3 alignment. _Langmuir_ 15, 4321–4323 (1999). Article  CAS  Google Scholar  * Wei, Q., Nishizawa, T., Tajima, K. & Hashimoto, K. Self-organized buffer layers in organic solar cells.


_Adv. Mater._ 20, 2211–2216 (2008). Article  CAS  Google Scholar  * Tajima, K. Look beyond the surface: recent progress in applications of surface-segregated monolayers for organic


electronics. _Polym. J._ 51, 1117–1126 (2019). Article  CAS  Google Scholar  * Bagchi, K. et al. Origin of anisotropic molecular packing in vapor-deposited Alq3 glasses. _J. Phys. Chem.


Lett._ 10, 164–170 (2019). Article  CAS  Google Scholar  * Friederich, P., Rodin, V., Von Wrochem, F. & Wenzel, W. Built-in potentials induced by molecular order in amorphous organic


thin films. _ACS Appl. Mater. Interfaces_ 10, 1881–1887 (2018). Article  CAS  Google Scholar  * Geng, Y. et al. Donor–σ–acceptor motifs: thermally activated delayed fluorescence emitters


with dual upconversion. _Angew. Chem. Int. Ed._ 129, 16763–16767 (2017). Article  Google Scholar  * Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable


molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. _Proc. Natl. Acad. Sci._ 112, 4227–4232 (2015). Article  CAS  Google Scholar  * Hofmann, A.,


Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. _Adv. Opt. Mater._ 9, 2101004 (2021). Article  CAS  Google Scholar  * Ediger, M. D., De


Pablo, J. & Yu, L. Anisotropic vapor-deposited glasses: hybrid organic solids. _Acc. Chem. Res._ 52, 407–414 (2019). Article  CAS  Google Scholar  * Tanaka, M., Noda, H., Nakanotani, H.


& Adachi, C. Molecular orientation of disk-shaped small molecules exhibiting thermally activated delayed fluorescence in host-guest films. _Appl. Phys. Lett._ 116, 023302 (2020). Article


  CAS  Google Scholar  * Ohara, M., Watanabe, T., Tanaka, Y. & Ishii, H. Examination of spontaneous orientation polarization in wet-processed tris(8-hydroxyquinolinato)aluminum film


measured by rotary Kelvin probe method. _Phys. Status Solidi A_ 218, 2000790 (2021). Article  CAS  Google Scholar  * Kera, S. et al. Characterization of ultrathin films of titanyl


phthalocyanine on graphite: PIES and UPS study. _Thin Solid Films_ 327–329, 278–282 (1998). Article  Google Scholar  * Mirzehmet, A. et al. Surface termination of solution-processed


CH3NH3PbI3 perovskite film examined using electron spectroscopies. _Adv. Mater._ 33, 2004981 (2021). Article  CAS  Google Scholar  * Miyamae, T. et al. Rearrangement of the molecular


orientation of Alq3 in organic light-emitting diodes under constant current aging investigated using sum frequency generation spectroscopy. _Chem. Phys. Lett._ 616–617, 86–90 (2014). Article


  CAS  Google Scholar  * Feng, S. et al. A comparison study of the organic small molecular thin films prepared by solution process and vacuum deposition: roughness, hydrophilicity,


absorption, photoluminescence, density, mobility, and electroluminescence. _J. Phys. Chem. C_ 115, 14278–14284 (2011). Article  CAS  Google Scholar  * Kim, H. R., Kim, T.-W. & Park,


S.-G. Effective hole-injection characteristics of organic light-emitting diodes due to fluorinated self-assembled monolayer embedded as a buffer layer. _Polym. Int._ 68, 1478–1483 (2019).


Article  CAS  Google Scholar  * Hofmann, A. J. L. et al. Dipolar doping of organic semiconductors to enhance carrier injection. _Phys. Rev. Appl._ 12, 064052 (2019). Article  CAS  Google


Scholar  * De Boer, B., Hadipour, A., Mandoc, M. M., Van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. _Adv. Mater._ 17, 621–625 (2005).


Article  CAS  Google Scholar  * Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces.


_Adv. Mater._ 11, 605–625 (1999). Article  CAS  Google Scholar  * Campbell, I. H. et al. Controlling charge injection in organic electronic devices using self-assembled monolayers. _Appl.


Phys. Lett._ 71, 3528–3530 (1997). Article  CAS  Google Scholar  * Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. _Nat.


Mater._ 3, 317–322 (2004). Article  CAS  Google Scholar  * Suda, M., Kato, R. & Yamamoto, H. M. Light-induced superconductivity using a photoactive electric double layer. _Science_ 347,


743–746 (2015). Article  CAS  Google Scholar  * Aghamohammadi, M. et al. Threshold-voltage shifts in organic transistors due to self-assembled monolayers at the dielectric: evidence for


electronic coupling and dipolar effects. _ACS Appl. Mater. Interfaces_ 7, 22775–22785 (2015). Article  CAS  Google Scholar  * Zhang, L. et al. Origin of enhanced hole injection in organic


light-emitting diodes with an electron-acceptor doping layer: p-type doping or interfacial diffusion? _ACS Appl. Mater. Interfaces_ 7, 11965–11971 (2015). Article  CAS  Google Scholar  *


Kashiwagi, K. et al. Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting. _J. Micromech. Microeng._ 21, 125016 (2011). Article  CAS  Google Scholar  *


Feng, Y., Zhou, Z., Fu, D. & Ren, W. Velocity-amplified monostable dual-charged electret dome energy harvester using low-speed finger tapping. _Appl. Phys. Lett._ 116, 063905 (2020).


Article  CAS  Google Scholar  * Walters, D. M., Antony, L., De Pablo, J. J. & Ediger, M. D. Influence of molecular shape on the thermal stability and molecular orientation of


vapor-deposited organic semiconductors. _J. Phys. Chem. Lett._ 8, 3380–3386 (2017). Article  CAS  Google Scholar  * Bangsund, J. S., Van Sambeek, J. R., Concannon, N. M. & Holmes, R. J.


Sub-turn-on exciton quenching due to molecular orientation and polarization in organic light-emitting devices. _Sci. Adv._ 6, eabb2659 (2020). Article  CAS  Google Scholar  * Esaki, Y.,


Tanaka, M., Matsushima, T. & Adachi, C. Active control of spontaneous orientation polarization of tris(8-hydroxyquinolinato)aluminum (Alq3) films and its effect on performance of organic


light-emitting diodes. _Adv. Electron. Mater._ 7, 2100486 (2021). Article  CAS  Google Scholar  * Gavra, I. K., Pilidi, A. N. & Tsekouras, A. A. Spontaneous polarization of


vapor-deposited 1-butanol films and its dependence on temperature. _J. Chem. Phys._ 146, 104701 (2017). Article  CAS  Google Scholar  * Jiang, J., Walters, D. M., Zhou, D. & Ediger, M.


D. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses. _Soft Matter_ 12, 3265–3270 (2016). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors thank K. Kusuhara and N. Nakamura of Kyushu University for preparing chemicals and their thermal analysis. The authors also thank H. Fujimoto, H.-W. Mo and K.


Nagayoshi from i3-opera for their help with sample fabrication. This work was supported in part by the Programme for Building Regional Innovation Ecosystems of the Ministry of Education,


Culture, Sports, Science and Technology, Japan, the Hoso Bunka Foundation and the Japan Society for the Promotion of Science KAKENHI (grant no. JP21K19010). AUTHOR INFORMATION Author notes *


These authors contributed equally: Masaki Tanaka, Morgan Auffray. AUTHORS AND AFFILIATIONS * Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi-ku,


Fukuoka, Japan Masaki Tanaka, Morgan Auffray, Hajime Nakanotani & Chihaya Adachi * Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo,


Japan Masaki Tanaka * International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Nishi-ku, Fukuoka, Japan Hajime Nakanotani & Chihaya Adachi Authors * Masaki


Tanaka View author publications You can also search for this author inPubMed Google Scholar * Morgan Auffray View author publications You can also search for this author inPubMed Google


Scholar * Hajime Nakanotani View author publications You can also search for this author inPubMed Google Scholar * Chihaya Adachi View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS The project was conceived and designed by M.T. M.T. designed molecules and M.A. synthesized them. H.N. built the experimental set-up for surface


potential. M.T. prepared samples and measured their properties. M.T. and H.N. fabricated VPGs. M.T. and H.N. analysed data. All authors contributed to writing the paper and critically


commented on the project. CORRESPONDING AUTHORS Correspondence to Masaki Tanaka, Hajime Nakanotani or Chihaya Adachi. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Materials_ thanks Wolfgang Bruetting, Hirohiko Fukagawa and the other, anonymous, reviewer(s) for their contribution to the peer


review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Synthesis, Supplementary Figs. 1–24, Tables 1–3, Notes 1–3 and references. SOURCE DATA SOURCE DATA FIG. 3 Thickness dependence of surface


potential. SOURCE DATA FIG. 4 Device performance, including current density–voltage characteristics and output current profiles. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Tanaka, M., Auffray, M., Nakanotani, H. _et al._ Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy


films. _Nat. Mater._ 21, 819–825 (2022). https://doi.org/10.1038/s41563-022-01265-7 Download citation * Received: 21 October 2021 * Accepted: 20 April 2022 * Published: 30 May 2022 * Issue


Date: July 2022 * DOI: https://doi.org/10.1038/s41563-022-01265-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative