Niche specialization and spread of staphylococcus capitis involved in neonatal sepsis

Niche specialization and spread of staphylococcus capitis involved in neonatal sepsis

Play all audios:

Loading...

ABSTRACT The multidrug-resistant _Staphylococcus capitis_ NRCS-A clone is responsible for sepsis in preterm infants in neonatal intensive care units (NICUs) worldwide. Here, to retrace the


spread of this clone and to identify drivers of its specific success, we investigated a representative collection of 250 _S. capitis_ isolates from adults and newborns. Bayesian analyses


confirmed the spread of the NRCS-A clone and enabled us to date its emergence in the late 1960s and its expansion during the 1980s, coinciding with the establishment of NICUs and the


increasing use of vancomycin in these units, respectively. This dynamic was accompanied by the acquisition of mutations in antimicrobial resistance- and bacteriocin-encoding genes.


Furthermore, combined statistical tools and a genome-wide association study convergently point to vancomycin resistance as a major driver of NRCS-A success. We also identified another _S.


capitis_ subclade (alpha clade) that emerged independently, showing parallel evolution towards NICU specialization and non-susceptibility to vancomycin, indicating convergent evolution in


NICU-associated pathogens. These findings illustrate how the broad use of antibiotics can repeatedly lead initially commensal drug-susceptible bacteria to evolve into multidrug-resistant


clones that are able to successfully spread worldwide and become pathogenic for highly vulnerable patients. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS _STAPHYLOCOCCUS AUREUS_ ST764-SCC_MEC_II HIGH-RISK CLONE


IN BLOODSTREAM INFECTIONS REVEALED THROUGH NATIONAL GENOMIC SURVEILLANCE INTEGRATING CLINICAL DATA Article Open access 19 March 2025 RAPID METHICILLIN RESISTANCE DIVERSIFICATION IN


_STAPHYLOCOCCUS EPIDERMIDIS_ COLONIZING HUMAN NEONATES Article Open access 18 October 2021 DEMOGRAPHIC FLUCTUATIONS IN BLOODSTREAM _STAPHYLOCOCCUS AUREUS_ LINEAGES CONFIGURE THE MOBILE GENE


POOL AND ANTIMICROBIAL RESISTANCE Article Open access 07 May 2024 DATA AVAILABILITY The datasets supporting the results of this article are available from the Sequence Read Archive under


accession no. PRJNA493527. Additional data on the 250 strains are available in Supplementary Table 1. REFERENCES * Howson, C. P., Kinney, M. V., McDougall, L. & Lawn, J. E., Born too


soon preterm birth action group. Born too soon: preterm birth matters. _Reprod. Health_ 10, S1 (2013). Article  PubMed  PubMed Central  Google Scholar  * Liu, L. et al. Global, regional, and


national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. _Lancet_ 388, 3027–3035 (2016). Article  PubMed 


PubMed Central  Google Scholar  * Boghossian, N. S. et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. _J. Pediatr._ 162, 1120–1124


(2013). Article  PubMed  PubMed Central  Google Scholar  * Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network.


_Pediatrics_ 110, 285–291 (2002). Article  PubMed  Google Scholar  * Cohen-Wolkowiez, M. et al. Early and late onset sepsis in late preterm infants. _Pediatr. Infect. Dis. J._ 28, 1052–1056


(2009). Article  PubMed  PubMed Central  Google Scholar  * Rasigade, J. P. et al. Methicillin-resistant _Staphylococcus capitis_ with reduced vancomycin susceptibility causes late-onset


sepsis in intensive care neonates. _PLoS ONE_ 7, e31548 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Butin, M. et al. Wide geographical dissemination of the multiresistant


_Staphylococcus capitis_ NRCS-A clone in neonatal intensive-care units. _Clin. Microbiol. Infect._ 22, 46–52 (2016). Article  PubMed  Google Scholar  * Butin, M., Martins-Simoes, P.,


Rasigade, J. P., Picaud, J. C. & Laurent, F. Worldwide endemicity of a multidrug-resistant _Staphylococcus capitis_ clone involved in neonatal sepsis. _Emerg. Infect. Dis._ 23, 538–539


(2017). Article  PubMed  PubMed Central  Google Scholar  * Carter, G. P. et al. Genomic analysis of multi-resistant _Staphylococcus capitis_ associated with neonatal sepsis. _Antimicrob.


Agents Chemother._ 62, e00898–18 (2018). PubMed  PubMed Central  Google Scholar  * Ben Said, M. et al. Late-onset sepsis due to _Staphylococcus capitis_ ‘neonatalis’ in low-birthweight


infants: a new entity? _J. Hosp. Infect._ 94, 95–98 (2016). Article  PubMed  Google Scholar  * Lee, J. Y. H. et al. Global spread of three multidrug-resistant lineages of _Staphylococcus


epidermidis_. _Nat. Microbiol._ 3, 1175–1185 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of


recombination in whole bacterial genomes. _PLoS Comput. Biol._ 11, e1004041 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Stegger, M. et al. Origin and evolution of


European community-acquired methicillin-resistant _Staphylococcus aureus_. _mBio_ 5, e01044–14 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Nubel, U. et al. A timescale


for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant _Staphylococcus aureus_. _PLoS Pathog._ 6, e1000855 (2010). Article  PubMed  PubMed


Central  CAS  Google Scholar  * Simoes, P. M. et al. Single-molecule sequencing (PacBio) of the _Staphylococcus capitis_ NRCS-A clone reveals the basis of multidrug resistance and adaptation


to the neonatal intensive care unit environment. _Front. Microbiol._ 7, 1991 (2016). PubMed  PubMed Central  Google Scholar  * Martins Simoes, P. et al. Characterization of a novel


composite staphylococcal cassette chromosome _mec_ (SCC_mec_-SCC_cad_/_ars_/_cop_) in the neonatal sepsis-associated _Staphylococcus capitis_ pulsotype NRCS-A. _Antimicrob. Agents


Chemother._ 57, 6354–6357 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duforet-Frebourg, N., Bazin, E. & Blum, M. G. B. Genome scans for detecting footprints of local


adaptation using a Bayesian factor model. _Mol. Biol. Evol._ 31, 1–13 (2014). Article  CAS  Google Scholar  * Merker, M. et al. Evolutionary history and global spread of the _Mycobacterium


tuberculosis_ Beijing lineage. _Nat. Genet._ 47, 242–249 (2015). Article  CAS  PubMed  Google Scholar  * Beabout, K. et al. The ribosomal S10 protein is a general target for decreased


tigecycline susceptibility. _Antimicrob. Agents Chemother._ 59, 5561–5566 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuroda, M., Kuwahara-Arai, K. & Hiramatsu, K.


Identification of the up- and down-regulated genes in vancomycin-resistant _Staphylococcus aureus_ strains Mu3 and Mu50 by cDNA differential hybridization method. _Biochem. Biophys. Res.


Commun._ 269, 485–490 (2000). Article  CAS  PubMed  Google Scholar  * Grayczyk, J. P., Harvey, C. J., Laczkovich, I. & Alonzo, F. 3rd A lipoylated metabolic protein released by


_Staphylococcus aureus_ suppresses macrophage activation. _Cell Host Microbe_ 22, 678–687 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zorzoli, A., Grayczyk, J. P. &


Alonzo, F. _III. Staphylococcus aureus_ tissue infection during sepsis is supported by differential use of bacterial or host-derived lipoic acid. _PLoS Pathog._ 12, e1005933 (2016). Article


  PubMed  PubMed Central  CAS  Google Scholar  * Hu, Q., Peng, H. & Rao, X. Molecular events for promotion of vancomycin resistance in vancomycin intermediate _Staphylococcus aureus_.


_Front. Microbiol_. 7, 1601 (2016). PubMed  PubMed Central  Google Scholar  * Krzyzaniak, N., Pawlowska, I. & Bajorek, B. Review of drug utilization patterns in NICUs worldwide. _J.


Clin. Pharm. Ther._ 41, 612–620 (2016). Article  CAS  PubMed  Google Scholar  * Rasigade, J.-P. et al. Strain-specific estimation of epidemic success provides insights into the transmission


dynamics of tuberculosis. _Sci. Rep._ 7, 45326 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lamichhane-Khadka, R. et al. sarA inactivation reduces vancomycin-intermediate


and ciprofloxacin resistance expression by _Staphylococcus aureus_. _Int. J. Antimicrob. Agents_ 34, 136–141 (2009). Article  CAS  PubMed  Google Scholar  * Schaaff, F., Reipert, A. &


Bierbaum, G. An elevated mutation frequency favors development of vancomycin resistance in _Staphylococcus aureus_. _Antimicrob. Agents Chemother._ 46, 3540–3548 (2002). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Jacqz-Aigrain, E., Zhao, W., Sharland, M. & van den Anker, J. N. Use of antibacterial agents in the neonate: 50 years of experience with vancomycin


administration. _Semin. Fetal Neonatal Med._ 18, 28–34 (2013). Article  PubMed  Google Scholar  * Levine, D. P. Vancomycin: a history. _Clin. Infect. Dis._ 42, S5–S12 (2006). Article  CAS 


PubMed  Google Scholar  * Mukhopadhyay, S., Sengupta, S. & Puopolo, K. M. Challenges and opportunities for antibiotic stewardship among preterm infants. _Arch. Dis. Child Fetal Neonatal


Ed._ 104, F327–F332 (2019). Article  PubMed  Google Scholar  * Cailes, B. et al. Antimicrobial resistance in UK neonatal units: neonIN infection surveillance network. _Arch. Dis. Child Fetal


Neonatal Ed._ 103, F474–F478 (2018). Article  PubMed  Google Scholar  * Butin, M. et al. Adaptation to vancomycin pressure of multiresistant _Staphylococcus capitis_ NRCS-A involved in


neonatal sepsis. _J. Antimicrob. Chemother._ 70, 3027–3031 (2015). Article  CAS  PubMed  Google Scholar  * Williamson, D. A. et al. High usage of topical fusidic acid and rapid clonal


expansion of fusidic acid-resistant _Staphylococcus aureus_: a cautionary tale. _Clin. Infect. Dis._ 59, 1451–1454 (2014). Article  CAS  PubMed  Google Scholar  * Millette, M. et al.


Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. _Appl. Environ. Microbiol._ 74, 1997–2003 (2008).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Butin, M. et al. Vancomycin treatment is a risk factor for vancomycin-nonsusceptible _Staphylococcus capitis_ sepsis in preterm


neonates. _Clin. Microbiol. Infect._ 23, 839–844 (2017). Article  CAS  PubMed  Google Scholar  * Brown, S., Santa Maria, J. P. Jr & Walker, S. Wall teichoic acids of gram-positive


bacteria. _Annu. Rev. Microbiol._ 67, 313–336 (2013). Article  CAS  PubMed  Google Scholar  * Nasser, R. M. et al. Outbreak of _Burkholderia cepacia_ bacteremia traced to contaminated


hospital water used for dilution of an alcohol skin antiseptic. _Infect. Control Hosp. Epidemiol._ 25, 231–239 (2004). Article  PubMed  Google Scholar  * Ory, J. et al. Successful


implementation of infection control measure in a neonatal intensive care unit to combat the spread of pathogenic multidrug resistant _Staphylococcus capitis_. _Antimicrob. Resist. Infect.


Control_ 8, 57 (2019). Article  PubMed  PubMed Central  Google Scholar  * Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments.


_Genome Biol._ 15, R46 (2014). Article  PubMed  PubMed Central  Google Scholar  * Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies


from short and long sequencing reads. _PLoS Comput. Biol._ 13, e1005595 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler,


G. QUAST: quality assessment tool for genome assemblies. _Bioinformatics_ 29, 1072–1075 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Inouye, M. et al. SRST2: Rapid genomic


surveillance for public health and hospital microbiology labs. _Genome Med_. 6, 90 (2014). Article  PubMed  PubMed Central  Google Scholar  * Kaya, H. et al. SCCmecFinder, a web-based tool


for typing of staphylococcal cassette chromosome _mec_ in _Staphylococcus aureus_ using whole-genome sequence data. _mSphere_ 3, e00612–17 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Couvin, D.


et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. _Nucleic Acids Res._ 46, W246–W251 (2018). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and


parallel computing. _Bioinformatics_ 18, 502–504 (2002). Article  CAS  PubMed  Google Scholar  * Guindon, S. et al. New algorithms and mehtods to estimate maximum-likelihood phylogenies:


asessing the performance of PhyML 2.0. _Syst. Biol._ 59, 307–321 (2010). Article  CAS  PubMed  Google Scholar  * Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool


for the display and annotation of phylogenetic and other trees. _Nuc. Acids Res._ 44, W242–W245 (2016). Article  CAS  Google Scholar  * Rambaut, A., Lam, T. T., Max Carvalho, L. &


Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). _Virus Evol._ 2, vew007 (2016). Article  PubMed  PubMed Central  Google Scholar


  * Anderson, M. J. & Robinson, J. Permutation tests for linear models. _Aust. NZ J. Stat._ 43, 75–88 (2001). Article  Google Scholar  * Bouckaert, R. et al. BEAST 2: a software platform


for Bayesian evolutionary analysis. _PLoS Comput. Biol._ 10, e1003537 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Huson, D. H. & Bryant, D. Application of


phylogenetic networks in evolutionary studies. _Mol. Biol. Evol._ 23, 254–267 (2006). Article  CAS  PubMed  Google Scholar  * Didelot, X., Lawson, D., Darling, A. & Falush, D. Inference


of homologous recombination in bacteria using whole genome sequences. _Genetics_ 186, 1435–1449 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Joseph, S. J., Didelot, X.,


Gandhi, K., Dean, D. & Read, T. D. Interplay of recombination and selection in the genomes of _Chlamydia trachomatis_. _Biol. Direct_ 6, 28 (2011). Article  PubMed  PubMed Central 


Google Scholar  * Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. _Nat. Protoc._ 10, 845–858


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. _J. Comput. Chem._ 25,


1605–1612 (2004). Article  CAS  PubMed  Google Scholar  * Andrews, J. M. Determination of minimum inhibitory concentrations. _J. Antimicrob. Chemother._ 48, 5–16 (2001). Article  CAS  PubMed


  Google Scholar  * Satola, S. W., Farley, M. M., Anderson, K. F. & Patel, J. B. Comparison of detection methods for heteroresistant vancomycin-intermediate _Staphylococcus aureus_, with


the population analysis profile method as the reference method. _J. Clin. Microbiol._ 49, 177–183 (2011). Article  PubMed  Google Scholar  * Barbier, M. et al. Changing patterns of human


migrations shaped the global population structure of _Mycobacterium tuberculosis_ in France. _Sci. Rep._ 8, 5855 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Jaillard, M.


et al. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. _PLoS Genet._ 14, e1007758 (2018). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Vallenet, D. et al. MaGe: a microbial genome annotation system supported by synteny results. _Nuc. Acids Res._ 34, 53–65 (2006). Article  CAS  Google


Scholar  * Maali, Y. et al. Understanding the virulence of _Staphylococcus pseudintermedius_: a major role of pore-forming toxins. _Front. Cell Infect. Microbiol._ 8, 221 (2018). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Loftus, R. W., Dexter, F., Robinson, A. D. M. & Horswill, A. R. Desiccation tolerance is associated with _Staphylococcus aureus_


hypertransmissibility, resistance and infection development in the operating room. _J. Hosp. Infect._ 100, 299–308 (2018). Article  CAS  PubMed  Google Scholar  * Karauzum, H. et al.


Comparison of adhesion and virulence of two predominant hospital-acquired methicillin-resistant _Staphylococcus aureus_ clones and clonal methicillin-susceptible _S. aureus_ isolates.


_Infect. Immun._ 76, 5133–5138 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Streker, K., Freiberg, C., Labischinski, H., Hacker, J. & Ohlsen, K. _Staphylococcus


aureus_ NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. _J. Bacteriol._ 187, 2249–2256 (2005). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Loo, C., Mitrakul, K., Voss, I., Hughes, C. & Ganeshkumar, N. Involvement of an inducible fructose phosphotransferase operon in _Streptococcus gordonii_ biofilm


formation. _J. Bacteriol._ 185, 6241–6254 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Valour, F. et al. _Staphylococcus epidermidis_ in orthopedic device infections: the


role of bacterial internalization in human osteoblasts and biofilm formation. _PLoS ONE_ 8, e67240 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tissieres, P. et al. Innate


immune deficiency of extremely premature neonates can be reversed by interferon-γ. _PLoS ONE_ 7, e32863 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank M. Stegger and his team for insightful exchanges during the manuscript drafting and C. Allix-Béguec, C. Gaudin, M. Mairey and S. Duthoy for their help in genome


sequencing. This project was supported by the European Society of Clinical Microbiology and Infectious Diseases study group (Project P307-14), the Fondation pour la Recherche Médicale


(project ING20160435683) and the European Union Patho-Ngen-Trace (project FP7-278864). AUTHOR INFORMATION Author notes * These authors contributed equally: Marine Butin, Frédéric Laurent.


AUTHORS AND AFFILIATIONS * Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, Paris, France


Thierry Wirth, Jean-Philippe Rasigade & Maxime Barbier * PSL University, EPHE, Paris, France Thierry Wirth * Institut des Agents Infectieux, Département de Bactériologie, Centre


National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France Marine Bergot, Jean-Philippe Rasigade, Patricia Martins-Simoes & Frédéric Laurent * Centre International


de recherche en Infectiologie, INSERM U1111 - CNRS UMR5308 - ENS Lyon - Université Lyon 1, Lyon, France Jean-Philippe Rasigade, Patricia Martins-Simoes, Marine Butin, Frédéric Laurent, 


Francois Vandenesch & Francois Vandenesch * Staphylococcus Reference Section, National Infection Service, Public Health England, London, UK Bruno Pichon, Rachel Pike & Angela Kearns


* Laboratoire Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, Lyon, France Laurent Jacob * Institut de Biologie de la cellule (I2BC-UMR9198), CNRS, CEA, Univ. Paris Sud,


Université Paris Saclay, Gif-sur-Yvette, France Pierre Tissieres * Service de Réanimation Néonatale, Hôpitaux Universitaires Paris Sud APHP, Le Kremlin-Bicêtre, Paris, France Pierre


Tissieres * Service de Réanimation Néonatale, Hôpital Croix Rousse, Hospices Civils de Lyon, Lyon, France Jean-Charles Picaud * Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur


de Lille, U1019 - UMR 8204 - CIIL - Centre d’Infection et d’Immunité de Lille, Lille, France Philip Supply * Service de Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de


Lyon, Lyon, France Marine Butin & Olivier Claris * Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital, Prague, Czech Republic Vaclava Adamkova *


Tan Tock Seng Hospital, Singapore, Singapore Timothy Barkham * University Hospital Münster, Münster, Germany Karsten Becker * Irish Meningitis and Sepsis Reference Laboratory, Temple Street


Children’s University Hospital, Dublin, Ireland Desiree Bennett * Vanderbilt University School of Medicine, Nashville, USA Clarence Buddy Creech * Instituto de Tecnologia Quimica e


Biologica, Oeiras, Portugal Herminia De Lencastre * School of Applied Sciences, RMIT University, Bundoora, Australia Margaret Deighton * Hôpital Erasme – ULB, Bruxelles, Belgique Olivier


Denis * University of New Castle, Callaghan, Australia John Ferguson * Chang Gung Children’s Hospital, Taoyuan, Taiwan Yhu-Chering Huang * University Hospital of North Norway, Tromsø, Norway


Claus Klingenberg * Oslo University Hospital Rikshospitalet, Oslo, Norway Andre Ingebretsen * CHU Sainte-Justine, Montréal, Canada Celine Laferrière * Rio de Janeiro Federal University, Rio


de Janeiro, Brazil Katia Regina Netto dos Santos * Laboratory of Bacteriology and the Genome Research Lab, Geneva University Hospital, Geneva, Switzerland Jacques Schrenzel * University of


Patras, Patras, Greece Iris Spiliopoulou * University of Catania, Catania, Italy Stefania Stefani * Seoul National University Hospital, Seoul, Korea Kim TaekSoo * Helsinki University Central


Hospital laboratory HUSLAB, Helsinki, Finland Eveliina Tarkka * Medical Microbiology and Infection Prevention, University Medical Center, Groningen, Netherlands Alex Friedrich * Medical


Microbiology & Infection Control, Amsterdam, Netherlands Christina Vandenbroucke-Grauls * University of Otago, Otago, New Zealand James Ussher * Children Healthcare of Atlanta, Atlanta,


USA Lars Westblade * Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom Jodi Lindsay * Statens Serum Institut, Microbiology and Infection


Control, Reference Laboratory for Antimicrobial Resistance and Staphylococci, Copenhagen, Denmark Anders Rhod Larsen * Institute of Global Health, Epidemiology & Biostatistics, Ruprecht


Karls University, Heidelberg, Germany Philipp Zanger * Institut für Med. Mikrobiologie Universitätsklinikum Münster, Münster, Germany Barbara C. Kahl * Hospital Universitari Germans Trias i


Pujol, Microbiology, Badalona, Spain Cristina Prat Aymerich Authors * Thierry Wirth View author publications You can also search for this author inPubMed Google Scholar * Marine Bergot View


author publications You can also search for this author inPubMed Google Scholar * Jean-Philippe Rasigade View author publications You can also search for this author inPubMed Google Scholar


* Bruno Pichon View author publications You can also search for this author inPubMed Google Scholar * Maxime Barbier View author publications You can also search for this author inPubMed 


Google Scholar * Patricia Martins-Simoes View author publications You can also search for this author inPubMed Google Scholar * Laurent Jacob View author publications You can also search for


this author inPubMed Google Scholar * Rachel Pike View author publications You can also search for this author inPubMed Google Scholar * Pierre Tissieres View author publications You can


also search for this author inPubMed Google Scholar * Jean-Charles Picaud View author publications You can also search for this author inPubMed Google Scholar * Angela Kearns View author


publications You can also search for this author inPubMed Google Scholar * Philip Supply View author publications You can also search for this author inPubMed Google Scholar * Marine Butin


View author publications You can also search for this author inPubMed Google Scholar * Frédéric Laurent View author publications You can also search for this author inPubMed Google Scholar


CONSORTIA THE INTERNATIONAL CONSORTIUM FOR STAPHYLOCOCCUS CAPITIS NEONATAL SEPSIS * Vaclava Adamkova * , Timothy Barkham * , Karsten Becker * , Desiree Bennett * , Olivier Claris * , 


Clarence Buddy Creech * , Herminia De Lencastre * , Margaret Deighton * , Olivier Denis * , John Ferguson * , Yhu-Chering Huang * , Claus Klingenberg * , Andre Ingebretsen * , Celine


Laferrière * , Katia Regina Netto dos Santos * , Jacques Schrenzel * , Iris Spiliopoulou * , Stefania Stefani * , Kim TaekSoo * , Eveliina Tarkka * , Alex Friedrich * , Christina


Vandenbroucke-Grauls * , James Ussher * , Francois Vandenesch *  & Lars Westblade THE ESGS STUDY GROUP OF ESCMID * Jodi Lindsay * , Francois Vandenesch * , Anders Rhod Larsen * , Philipp


Zanger * , Barbara C. Kahl *  & Cristina Prat Aymerich CONTRIBUTIONS M.Butin, T.W., J.-C.P. and F.L. conceived the project. M.Butin and F.L. established and analysed clinical and


reference isolate datasets. B.P., A.K. and R.P. performed DNA extractions. P.S. performed DNA sequencing. B.P., A.K. and R.P. performed antimicrobial susceptibility testing. P.T. performed


phagocytosis assays. M.Butin performed all additional phenotypic assays. T.W., M.Barbier, P.M.-S. and M.Bergot analysed genomic data. J.-P.R. participated in genomic analyses and performed


THD analysis. M.Bergot and L.J. performed GWAS analysis. T.W., M.Butin, P.S. and F.L. drafted the manuscript. All authors reviewed and contributed to the final manuscript. CORRESPONDING


AUTHORS Correspondence to Thierry Wirth or Marine Butin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer


Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 CLONALFRAMEML ANALYSIS OF RECOMBINATION IN


_S. CAPITIS_. Analysis was based on 55 genomes: all non-NRCS-A strains were included, however the clone NRCS-A was undersampled to avoid a statistical bias in favor of mutational changes.


Dark blue horizontal bars indicate recombination events detected by the analysis. EXTENDED DATA FIG. 2 NRCS-A HOST TYPES AND GENETIC STRUCTURE. A, NRCS-A isolates within an MSTREE based on


the whole genome sequencing data. Each strain is represented by a circle or a fraction of a circle, colors correspond to different host types. Numbers indicate the mutational steps between


the strains. B, Same data as above but represented in an MDS plot. C, Within NRCS-A diversity as assessed by mean pairwise SNP distances (N=197). D, Graphical chart representing the fraction


of strains obtained from newborns in the basal, Proto-outbreak 1 and 2 and Outbreak strains. EXTENDED DATA FIG. 3 GENOME SCAN ANALYSIS OF NRCS-A STRAINS FOR DETECTING SNPS INVOLVED IN LOCAL


ADAPTATION. A, Plot of the first 2 principal components (PC). The 197 NRCS-A strains are represented by points and colorized according to their phylogenic origin (Proto-outbreak 1 and 2 in


blue, and Outbreak in red). PC 2 is the one separating the basal proto-outbreak 1 and 2 strains from the outbreak strains. B, Manhattan plot representing the 3,658 SNPs and values obtained


after performing Mahalanobis distances. The SNPs are colorized according to the PC to which they correlate most (PC1 = black, PC2 = red, PC3 = green and PC4 = blue). EXTENDED DATA FIG. 4


SPECIFIC SNPS IN OUTBREAK AND ALPHA ISOLATES. Respectively 32 and 17 SNPs were specifically identified in Outbreak strains among NRCS-A strains (n=197) or in clade Alpha strains among Basal


strains (n=53). Those SNPs were identified using PCADAPT. EXTENDED DATA FIG. 5 TERTIARY PROTEIN STRUCTURES. A, Positions on the tertiary protein structure of outbreak specific non-synonymous


mutations detected via PCADAPT and involved in antibiotic resistance (tigecycline and vancomycin). B, Positions on the tertiary protein structure of alpha-clone specific non-synonymous


mutations for a set of two genes involved in cell wall synthesis. Visualization and predictions were executed by PHYRE2 software (http://www.sbg.bio.ic.ac.uk/phyre2). EXTENDED DATA FIG. 6


PHENOTYPIC AND GENOTYPIC RESISTANCE PATTERNS OF _S. CAPITIS_ ISOLATES. Phenotypic data of _S. capitis_ isolates (n=250) were obtained from agar dilution and biomarkers of antibiotic


resistance were detected using GENEFINDER. Comparison between groups of isolates was performed using two-sided Fisher exact test. EXTENDED DATA FIG. 7 PHENOTYPIC ASSAYS COMPARING A SUBSET OF


REPRESENTATIVE ISOLATES OF EACH OF THE FOUR SUBGROUPS IDENTIFIED BY THE PHYLOGEOGRAPHICAL ANALYSIS (OUTBREAK, PROTO-OUTBREAK 1, PROTO-OUTBREAK 2 AND ‘OTHER ISOLATES’). In all 6 graphs,


center values represent means. A, Culture supernatants cytotoxicity assay using THP1 cells, adjusted on a positive control (Triton) of 12 representative _S. capitis_ isolates (two


independent experiments in triplicate for each strains). B, Survival of strains (n=12) after 24 hours of persistence in desiccation conditions (two independent experiments in triplicate for


each strains). C, Comparison of the doubling time of bacterial growth during the exponential phase in standard conditions (BHI) of 24 representative _S. capitis_ isolates (three independent


experiments in triplicate for each strains) and D, Under oxidative stress (ethanol-supplemented medium to a final concentration of 6.5%) (n=24 strains, three independent experiments in


triplicate for each strains). E, Quantification of biofilm production of 24 representative _S. capitis_ isolates using crystal violet method (expressed as optic densitometry at 590nm) (three


independent experiments in triplicate for each strains). F, Phagocytosis index of monocytes and granulocytes from cord blood for a subset of 5 representative isolates of “Outbreak” and


“Basal” isolates (four independent experiments). Of note, results of phagocytosis of neutrophils and activated neutrophils are not represented here because they were similar to those with


granulocytes. EXTENDED DATA FIG. 8 GENES ASSOCIATED WITH VANCOMYCIN MIC AND/OR THD SUCCESS INDEX USING DBGWAS. Here are represented genes with a -log10 (HMP) > 7.5 on either axis, and/or


> 5 on both axes, thus considered significant. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Results, including three supplementary figures. REPORTING SUMMARY SUPPLEMENTARY TABLE 1


This table includes source data and details about each isolate (identification, origin, phenotypic and genomic characteristics, genes content and THD index). RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wirth, T., Bergot, M., Rasigade, JP. _et al._ Niche specialization and spread of _Staphylococcus capitis_ involved in neonatal sepsis.


_Nat Microbiol_ 5, 735–745 (2020). https://doi.org/10.1038/s41564-020-0676-2 Download citation * Received: 19 October 2019 * Accepted: 28 January 2020 * Published: 27 April 2020 * Issue


Date: May 2020 * DOI: https://doi.org/10.1038/s41564-020-0676-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative