A predicted crispr-mediated symbiosis between uncultivated archaea

A predicted crispr-mediated symbiosis between uncultivated archaea

Play all audios:

Loading...

ABSTRACT CRISPR–Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and


single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from


Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts _Candidatus_ Altiarchaeum crystalense and _Ca_. A. horonobense, respectively, match


putative essential genes in their episymbionts’ genomes of the genus _Ca_. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals


complementation between host–episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding


our analysis to 7,012 archaeal genomes, we suggest that CRISPR–Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature


Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to


articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS UNDINARCHAEOTA ILLUMINATE DPANN PHYLOGENY AND THE IMPACT OF GENE TRANSFER ON ARCHAEAL EVOLUTION Article Open access 07 August 2020 METAGENOMIC CHARACTERIZATION OF VIRUSES AND MOBILE


GENETIC ELEMENTS ASSOCIATED WITH THE DPANN ARCHAEAL SUPERPHYLUM Article 24 October 2024 BACTERIAL C-DI-GMP HAS A KEY ROLE IN ESTABLISHING HOST–MICROBE SYMBIOSIS Article Open access 31 August


2023 DATA AVAILABILITY Metagenomic datasets generated from the CG20,27 ecosystem in 2009, 2014 and 2015 (_n_ = 66) and the HURL24 environment (_n_ = 2) were downloaded from the NCBI SRA in


April 2019 (Supplementary Table 1). SAGs generated in a previous study20 (_n_ = 219) were retrieved from the Joint Genome Institute’s Integrated Microbial Genomes and Microbiomes database111


(Supplementary Table 3). The metagenome-derived genomes of _Ca_. A. crystalense and _Ca_. H. crystalense from CG are publicly accessible from NCBI (accession numbers in Supplementary Table


2). The genomes of _Ca_. A. horonobense and _Ca_. H. julieae from HURL were newly reconstructed in this investigation (Supplementary Table 2). All previously unpublished genomes used in this


study are available in figshare https://doi.org/10.6084/m9.figshare.22339555(ref. 112) and all viral genomes are available at https://doi.org/10.6084/m9.figshare.22738568(ref. 113). All raw


FISH images are deposited here: https://doi.org/10.6084/m9.figshare.22739849(ref. 114). CODE AVAILABILITY The code used in this publication is based on previously published code. Please


refer to the Methods for information regarding the software and versions used. REFERENCES * Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid


DNA. _Nature_ 468, 67 (2010). CAS  PubMed  Google Scholar  * Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities.


_Science_ 320, 1047–1050 (2008). CAS  PubMed  Google Scholar  * Koonin, E. V. & Makarova, K. S. Evolutionary plasticity and functional versatility of CRISPR systems. _PLoS Biol._ 20,


e3001481 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. _Nat. Rev. Microbiol._ 13, 722 (2015).


CAS  PubMed  PubMed Central  Google Scholar  * Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. _Nat. Rev. Microbiol._ 18,


67–83 (2020). CAS  PubMed  Google Scholar  * Maniv, I., Jiang, W., Bikard, D. & Marraffini, L. A. Impact of different target sequences on type III CRISPR–Cas immunity. _J. Bacteriol._


198, 941 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. _Nature_


463, 568–571 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary


origins of DPANN archaea. _FEMS Microbiol. Lett._ 366, fnz008 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Rinke, C. et al. Insights into the phylogeny and coding potential of


microbial dark matter. _Nature_ 499, 431–437 (2013). CAS  PubMed  Google Scholar  * Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN


radiations. _Nat. Rev. Microbiol._ 16, 629–645 (2018). CAS  PubMed  Google Scholar  * Sakai, H. D. et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and


genome analyses. _Proc. Natl Acad. Sci. USA_ 119, e2115449119 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Jahn, U. et al. _Nanoarchaeum equitans_ and _Ignicoccus hospitalis_: new


insights into a unique, intimate association of two archaea. _J. Bacteriol._ 190, 1743–1750 (2008). CAS  PubMed  Google Scholar  * Huber, H. et al. A new phylum of Archaea represented by a


nanosized hyperthermophilic symbiont. _Nature_ 417, 63–67 (2002). CAS  PubMed  Google Scholar  * Schwank, K. et al. An archaeal symbiont–host association from the deep terrestrial


subsurface. _ISME J._ 13, 2135–2139 (2019). PubMed  PubMed Central  Google Scholar  * Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. _Proc. Natl Acad. Sci.


USA_ 116, 14661 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Munson-McGee, J. H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across


Yellowstone National Park hot springs. _Appl. Environ. Microbiol._ 81, 7860–7868 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Jarett, J. K. et al. Single-cell genomics of co-sorted


Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. _Microbiome_ 6, 161 (2018). PubMed  PubMed Central  Google Scholar  * Wurch,


L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. _Nat. Commun._ 7, 12115 (2016). CAS  PubMed  PubMed


Central  Google Scholar  * Hamm, J. N. et al. The parasitic lifestyle of an archaeal symbiont. Preprint at _bioarXiv_ https://doi.org/10.1101/2023.02.24.5298342.24.529834v2 (2023). * Probst,


A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. _Nat. Microbiol._ 3, 328–336


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Heimerl, T. et al. A complex endomembrane system in the archaeon _Ignicoccus hospitalis_ tapped by _Nanoarchaeum equitans_. _Front.


Microbiol._ 8, 1072 (2017). PubMed  PubMed Central  Google Scholar  * Comolli, L. R. & Banfield, J. F. Inter-species interconnections in acid mine drainage microbial communities. _Front.


Microbiol._ 5, 367 (2014). PubMed  PubMed Central  Google Scholar  * Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. _Proc. Natl Acad. Sci. USA_ 107, 8806–8811 (2010). CAS


  PubMed  PubMed Central  Google Scholar  * Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial


subsurface sediments. _ISME J._ 11, 1915–1929 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to


carbon fixation in the subsurface. _Nat. Commun._ 5, 5497 (2014). CAS  PubMed  Google Scholar  * Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides


metabolic insights for novel microbes adapted to high CO2 concentrations. _Environ. Microbiol._ 19, 459–474 (2017). CAS  PubMed  Google Scholar  * Emerson, J. B., Thomas, B. C., Alvarez, W.


& Banfield, J. F. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. _Environ.


Microbiol._ 18, 1686–1703 (2016). CAS  PubMed  Google Scholar  * Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. _Nat. Commun._ 12, 4642 (2021).


CAS  PubMed  PubMed Central  Google Scholar  * Wimmer, F., Mougiakos, I., Englert, F. & Beisel, C. L. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons.


_Mol. Cell_ 82, 1210–1224.e6 (2022). CAS  PubMed  Google Scholar  * Marshall, R. et al. Rapid and scalable characterization of CRISPR technologies using an _E. coli_ cell-free


transcription-translation system. _Mol. Cell_ 69, 146–157.e3 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Heussler, G. E. & O’Toole, G. A. Friendly fire: biological functions


and consequences of chromosomal targeting by CRISPR–Cas systems. _J. Bacteriol._ 198, 1481–1486 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Stern, A., Keren, L., Wurtzel, O.,


Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? _Trends Genet._ 26, 335–340 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Aklujkar, M. &


Lovley, D. R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of _Pelobacter carbinolicus_. _BMC Evol. Biol._ 10, 230 (2010). PubMed 


PubMed Central  Google Scholar  * Bhaya, D., Davison, M. & Barrangou, R. CRISPR–Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. _Annu. Rev.


Genet._ 45, 273–297 (2011). CAS  PubMed  Google Scholar  * Wilson, G. G. Organization of restriction-modification systems. _Nucleic Acids Res._ 19, 2539–2566 (1991). CAS  PubMed  PubMed


Central  Google Scholar  * Bornemann, T. L. V. et al. Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing. _Nat. Commun._ 13, 284 (2022). CAS  PubMed 


PubMed Central  Google Scholar  * Turgeman-Grott, I. et al. Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation.


_Nat. Microbiol._ 4, 177–186 (2019). CAS  PubMed  Google Scholar  * Stachler, A.-E. et al. High tolerance to self-targeting of the genome by the endogenous CRISPR–Cas system in an archaeon.


_Nucleic Acids Res._ 45, 5208–5216 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Vink, J. N. A., Baijens, J. H. L. & Brouns, S. J. J. PAM-repeat associations and spacer


selection preferences in single and co-occurring CRISPR–Cas systems. _Genome Biol._ 22, 281 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Pyenson, N. C., Gayvert, K., Varble, A.,


Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial type III CRISPR–Cas immunity constrains viral escape. _Cell Host Microbe_ 22, 343–353 (2017). CAS  PubMed 


PubMed Central  Google Scholar  * Chabas, H., Müller, V., Bonhoeffer, S. & Regoes, R. R. Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems. _PLoS


Comput. Biol._ 18, e1010329 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Brodt, A., Lurie-Weinberger, M. N. & Gophna, U. CRISPR loci reveal networks of gene exchange in


archaea. _Biol. Direct_ 6, 65 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Paper, W. et al. _Ignicoccus hospitalis sp_. nov., the host of ‘_Nanoarchaeum equitans_’. _Int. J. Syst.


Evol. Microbiol._ 57, 803–808 (2007). CAS  PubMed  Google Scholar  * Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic


Guaymas Basin hydrothermal sediments. _Nat. Commun._ 9, 4999 (2018). PubMed  PubMed Central  Google Scholar  * Hohenester, E. & Yurchenco, P. D. Laminins in basement membrane assembly.


_Cell Adhes. Migr._ 7, 56–63 (2013). Google Scholar  * Hohenester, E. Laminin G-like domains: dystroglycan-specific lectins. _Curr. Opin. Struct. Biol._ 56, 56–63 (2019). CAS  PubMed  Google


Scholar  * Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. _Proc. Natl Acad. Sci. USA_ 86, 7054–7058 (1989). CAS  PubMed  PubMed Central


  Google Scholar  * Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (v.1.33) _Github_ https://github.com/najoshi/sickle (2011).


* Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. _Genome Res._ 27, 824–834 (2017). CAS  PubMed  PubMed Central  Google


Scholar  * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Bornemann, T. L. V.,


Esser, S. P., Stach, T. L., Burg, T. & Probst, A. J. uBin—a manual refining tool for genomes from metagenomes. _Environ. Microbiol._ 25, 1077–1083 (2023). * Parks, D. H., Imelfort, M.,


Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. _Genome Res._ 25, 1043–1055


(2015). CAS  PubMed  PubMed Central  Google Scholar  * Eddy, S. R. Accelerated profile HMM searches. _PLoS Comput. Biol._ 7, e1002195 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. _PeerJ_ 2, e243 (2014). PubMed  PubMed Central  Google Scholar  * Edgar, R. C. MUSCLE: multiple sequence


alignment with high accuracy and high throughput. _Nucleic Acids Res._ 32, 1792–1797 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Criscuolo, A. & Gribaldo, S. BMGE (Block


Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. _BMC Evol. Biol._ 10, 210 (2010). PubMed  PubMed


Central  Google Scholar  * Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. _Mol. Biol. Evol._ 37, 1530–1534 (2020). CAS  PubMed


  PubMed Central  Google Scholar  * Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic


estimates. _Nat. Methods_ 14, 587–589 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior


mean site frequency profiles accelerates accurate phylogenomic estimation. _Syst. Biol._ 67, 216–235 (2017). Google Scholar  * Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q.


& Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. _Mol. Biol. Evol._ 35, 518–522 (2017). PubMed Central  Google Scholar  * Guindon, S. et al. New algorithms and


methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. _Syst. Biol._ 59, 307–321 (2010). CAS  PubMed  Google Scholar  * Anisimova, M., Gil, M., Dufayard,


J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. _Syst. Biol._ 60, 685–699


(2011). PubMed  PubMed Central  Google Scholar  * Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. _Nucleic Acids Res._ 47, W256–W259


(2019). CAS  PubMed  PubMed Central  Google Scholar  * Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. _Nat. Methods_ 12, 59 (2014). PubMed 


Google Scholar  * Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. in _Multiple Sequence Alignment: Methods and Protocols_ (ed. Katoh, K.) 241–260 (Springer, 2021). * Couvin, D. et al.


CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. _Nucleic Acids Res._ 46, W246–W251 (2018). CAS  PubMed 


PubMed Central  Google Scholar  * Moller, A. G. & Liang, C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. _PeerJ_ 5, e3788 (2017). PubMed  PubMed


Central  Google Scholar  * Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. _Bioinformatics_ 28, 3150–3152 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Biswas, A., Fineran, P. C. & Brown, C. M. Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs.


_Bioinformatics_ 30, 1805–1813 (2014). CAS  PubMed  Google Scholar  * Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data.


_PeerJ_ 3, e985 (2015). PubMed  PubMed Central  Google Scholar  * Xie, Z. & Tang, H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.


_Bioinformatics_ 33, 3340–3347 (2017). CAS  PubMed  Google Scholar  * Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. _Bioinformatics_ 26, 2460–2461 (2010). CAS 


PubMed  Google Scholar  * Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. _J. Mol. Biol._ 215, 403–410 (1990). CAS  PubMed  Google


Scholar  * Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. _Nat. Biotechnol._ 39, 578–585 (2021). CAS  PubMed  Google Scholar  * Cook,


R. et al. INfrastructure for a PHAge REference. Database: identification of large-scale biases in the current collection of cultured phage genomes. _Phage_ 2, 214–223 (2021). * Bolduc, B. et


al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. _PeerJ_ 5, e3243 (2017). PubMed  PubMed Central  Google Scholar  * Bin Jang, H. et al.


Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. _Nat. Biotechnol._ 37, 632–639 (2019). Google Scholar  * Meier-Kolthoff, J. P. &


Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. _Bioinformatics_ 33, 3396–3404 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Moraru, C., Varsani,


A. & Kropinski, A. M. VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. _Viruses_ 12, 1268 (2020). CAS  PubMed  PubMed Central  Google


Scholar  * Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. _BMC


Bioinform._ 14, 60 (2013). Google Scholar  * Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. _Mol. Biol.


Evol._ 32, 2798–2800 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Farris, J. S. Estimating phylogenetic trees from distance matrices. _Am. Nat._ 106, 645–668 (1972). Google Scholar


  * Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. _Genome Res._ 13, 2498–2504 (2003). CAS  PubMed  PubMed Central  Google


Scholar  * Nishimura, Y. et al. ViPTree: the viral proteomic tree server. _Bioinformatics_ 33, 2379–2380 (2017). CAS  PubMed  Google Scholar  * Li, H. et al. The sequence alignment/map


format and SAMtools. _Bioinformatics_ 25, 2078–2079 (2009). PubMed  PubMed Central  Google Scholar  * Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing


genomic features. _Bioinformatics_ 26, 841–842 (2010). CAS  PubMed  PubMed Central  Google Scholar  * R Core Team. _R: A Language and Environment for Statistical Computing_ (R Foundation for


Statistical Computing, 2013). * Dufault-Thompson, K., Steffensen, J. L. & Zhang, Y. in _Metabolic Network Reconstruction and Modeling: Methods and Protocols_ (ed. Fondi, M.) 131–150


(Springer, 2018). * Steffensen, J. L., Dufault-Thompson, K. & Zhang, Y. PSAMM: a portable system for the analysis of metabolic models. _PLoS Comput. Biol._ 12, e1004732–e1004732 (2016).


PubMed  PubMed Central  Google Scholar  * Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. _Bioinformatics_ 22,


1658–1659 (2006). CAS  PubMed  Google Scholar  * Gonnerman, M. C., Benedict, M. N., Feist, A. M., Metcalf, W. W. & Price, N. D. Genomically and biochemically accurate metabolic


reconstruction of _Methanosarcina barkeri_ Fusaro, iMG746. _Biotechnol. J._ 8, 1070–1079 (2013). CAS  PubMed  Google Scholar  * Goyal, N., Widiastuti, H., Karimi, I. A. & Zhou, Z. A


genome-scale metabolic model of _Methanococcus maripaludis_ S2 for CO2 capture and conversion to methane. _Mol. Biosyst._ 10, 1043–1054 (2014). CAS  PubMed  Google Scholar  * Kanehisa, M.,


Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. _Nucleic Acids Res._ 45, D353–D361 (2017). CAS  PubMed  Google


Scholar  * Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. _Nucleic Acids Res._


47, D309–D314 (2019). CAS  PubMed  Google Scholar  * Saier, M. H. Jr et al. The transporter classification database (TCDB): recent advances. _Nucleic Acids Res._ 44, D372–D379 (2016). CAS 


PubMed  Google Scholar  * Neidhardt, F. C., Neidhardt, F. C. N., Ingraham, J. L. & Schaechter, M. _Physiology of the Bacterial Cell: A Molecular Approach_ (Sinauer Associates, 1990). *


Nelson, D. L., Nelson, R. D. & Cox, M. M. _Lehninger Principles of Biochemistry_ (W.H. Freeman, 2004). * Zhang, Y. & Sievert, S. Pan-genome analyses identify lineage- and


niche-specific markers of evolution and adaptation in _Epsilonproteobacteria_. _Front. Microbiol._ 5, 110 (2014). PubMed  PubMed Central  Google Scholar  * Biswas, A., Gagnon, J. N., Brouns,


S. J. J., Fineran, P. C. & Brown, C. M. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. _RNA Biol._ 10, 817–827 (2013). CAS  PubMed  PubMed Central  Google Scholar


  * Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. _Genome Res._ 14, 1188–1190 (2004). CAS  PubMed  PubMed Central  Google Scholar  *


Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. _Nucleic Acids Res._ 18, 6097–6100 (1990). CAS  PubMed  PubMed Central  Google Scholar  *


Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. _Genome Res._ 22, 568–576 (2012). CAS  PubMed  PubMed Central  Google


Scholar  * Oberortner, E., Cheng, J.-F., Hillson, N. J. & Deutsch, S. Streamlining the design-to-build transition with build-optimization software tools. _ACS Synth. Biol._ 6, 485–496


(2017). CAS  PubMed  Google Scholar  * Garamella, J., Marshall, R., Rustad, M. & Noireaux, V. The All E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. _ACS Synth.


Biol._ 5, 344–355 (2016). CAS  PubMed  Google Scholar  * Shin, J. & Noireaux, V. An _E. coli_ cell-free expression toolbox: application to synthetic gene circuits and artificial cells.


_ACS Synth. Biol._ 1, 29–41 (2012). CAS  PubMed  Google Scholar  * Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. _Mol. Cell_ 62,


137–147 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. _BMC Bioinform._


12, 385 (2011). Google Scholar  * Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. _Bioinformatics_


36, 1925–1927 (2020). CAS  Google Scholar  * Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. _Nat. Biotechnol._ 36,


996–1004 (2018). CAS  PubMed  Google Scholar  * Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. _Nat. Biotechnol._ 38, 1079–1086 (2020). CAS  PubMed 


Google Scholar  * Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. _Nucleic Acids Res._ 47, D666–D677


(2019). CAS  PubMed  Google Scholar  * Esser, S. P. & Probst, A. J. Genomes of _Ca_. Altiarchaeum and _Ca_. Huberiarchaeum from Crystal Geyser and Horonobe Underground Research


Laboratory. _figshare_ https://doi.org/10.6084/m9.figshare.22339555 (2023). * Esser, S. P., Rahlff, J. & Probst, A. J. Viral operational taxonomic units (vOTUs) from Crystal Geyser.


_figshare_ https://doi.org/10.6084/m9.figshare.22738568.v1 (2023). * Turzynski, V., Esser, S. P. & Probst, A. J. Fluorescence in situ hybridization images of _Ca._ Altiarchaeum and _Ca._


Huberiarchaeu. _figshare_ https://doi.org/10.6084/m9.figshare.22739849 (2023). * Sharrar, A. M. et al. Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic


microbial mats in the Lake Huron Basin. _Front. Microbiol._ 8, 791 (2017). PubMed  PubMed Central  Google Scholar  * Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G.


Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. _Front. Microbiol._ 7, 1221 (2016). PubMed  PubMed Central  Google Scholar  * Posit team.


Rstudio: Integrated development environment for R. https://posit.co/; version 2023.03.0+386 (2022). Download references ACKNOWLEDGEMENTS This research was funded by the Ministerium für


Kultur und Wissenschaft des Landes Nordrhein- Westfalen (Nachwuchsgruppe Dr. Alexander Probst) and the German Science Foundation under project NOVAC (grant no. DFG PR1603/2-1) and through


SPP 2141 (grant no. DFG BE6703/1-1). Genome-scale metabolic modelling was supported by the National Science Foundation under grant no. 1553211. The Ministry of Economy, Trade and Industry of


Japan funded a part of the work as ‘The project for validating assessment methodology in geological disposal system’ (2019 FY, grant no. JPJ007597). The work (proposal


https://doi.org/10.46936/10.25585/60000800) conducted by the US Department of Energy (DOE) Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is


supported by the Office of Science of the US DOE operated under contract no. DE-AC02-05CH11231. M.P. is supported by the Austrian Science Funds (project MAINTAIN, DOC 69 doc.funds). P.S.A.


was supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation. J.P. was supported by Aker BP within the framework of the GeneOil Project given to A.J.P. J.R. was


supported by the German Science Foundation (grant no. RA3432/1-1, project no. 446702140). Support by the German Federal Ministry of Education and Research within the project ‘MultiKulti’


(BMBF funding code: 161L0285E) is acknowledged. We thank K. Dreger for exemplary server administration and B. Siebers, I. Berg, J. F. Banfield and B. Meyer for insightful discussions. AUTHOR


INFORMATION Author notes * Janina Rahlff Present address: Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus


University, Kalmar, Sweden * Weishu Zhao Present address: Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, International Center for Deep Life Investigation (IC-DLI),


Shanghai Jiao Tong University, Shanghai, China * Katrin Schwank Present address: University of Regensburg, Biochemistry III, Regensburg, Germany * These authors contributed equally: Sarah


P. Esser, Janina Rahlff. AUTHORS AND AFFILIATIONS * Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of


Duisburg-Essen, Essen, Germany Sarah P. Esser, Julia Plewka, Katharina Sures, Victoria Turzynski, Indra Banas, Till L. V. Bornemann, Perla Abigail Figueroa-Gonzalez & Alexander J. Probst


* Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany Sarah P. Esser, Janina Rahlff, Julia Plewka, Katharina


Sures, Panagiotis S. Adam, Victoria Turzynski, Indra Banas, Katrin Schwank, Till L. V. Bornemann, Perla Abigail Figueroa-Gonzalez & Alexander J. Probst * Department of Cell and Molecular


Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA Weishu Zhao & Ying Zhang * Computational Systems Biology, Centre for Microbiology


and Environmental Systems Science, University of Vienna, Vienna, Austria Michael Predl & Thomas Rattei * Doctoral School in Microbiology and Environmental Science, University of Vienna,


Vienna, Austria Michael Predl & Thomas Rattei * Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany Franziska


Wimmer & Chase L. Beisel * DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Janey Lee, Jessica Jarett, Ian K. Blaby, Jan-Fang Cheng & Tanja Woyke


* School of Biological Sciences, University of Utah, Salt Lake City, UT, USA Julia McGonigle & William J. Brazelton * Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal


Virology Unit, Paris, France Mart Krupovic * Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Japan Yuki Amano * Medical faculty, University of Würzburg,


Würzburg, Germany Chase L. Beisel * Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany Alexander J. Probst * Centre of Medical Biotechnology


(ZMB), University of Duisburg-Essen, Essen, Germany Alexander J. Probst Authors * Sarah P. Esser View author publications You can also search for this author inPubMed Google Scholar * Janina


Rahlff View author publications You can also search for this author inPubMed Google Scholar * Weishu Zhao View author publications You can also search for this author inPubMed Google


Scholar * Michael Predl View author publications You can also search for this author inPubMed Google Scholar * Julia Plewka View author publications You can also search for this author


inPubMed Google Scholar * Katharina Sures View author publications You can also search for this author inPubMed Google Scholar * Franziska Wimmer View author publications You can also search


for this author inPubMed Google Scholar * Janey Lee View author publications You can also search for this author inPubMed Google Scholar * Panagiotis S. Adam View author publications You


can also search for this author inPubMed Google Scholar * Julia McGonigle View author publications You can also search for this author inPubMed Google Scholar * Victoria Turzynski View


author publications You can also search for this author inPubMed Google Scholar * Indra Banas View author publications You can also search for this author inPubMed Google Scholar * Katrin


Schwank View author publications You can also search for this author inPubMed Google Scholar * Mart Krupovic View author publications You can also search for this author inPubMed Google


Scholar * Till L. V. Bornemann View author publications You can also search for this author inPubMed Google Scholar * Perla Abigail Figueroa-Gonzalez View author publications You can also


search for this author inPubMed Google Scholar * Jessica Jarett View author publications You can also search for this author inPubMed Google Scholar * Thomas Rattei View author publications


You can also search for this author inPubMed Google Scholar * Yuki Amano View author publications You can also search for this author inPubMed Google Scholar * Ian K. Blaby View author


publications You can also search for this author inPubMed Google Scholar * Jan-Fang Cheng View author publications You can also search for this author inPubMed Google Scholar * William J.


Brazelton View author publications You can also search for this author inPubMed Google Scholar * Chase L. Beisel View author publications You can also search for this author inPubMed Google


Scholar * Tanja Woyke View author publications You can also search for this author inPubMed Google Scholar * Ying Zhang View author publications You can also search for this author inPubMed 


Google Scholar * Alexander J. Probst View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.P.E. and A.J.P. performed genome-resolved


metagenomics, while S.P.E. and J.R. performed viromics. J.R. analysed viral genomes with input from M.K. CRISPR–Cas analyses were done by S.P.E., J.R. and A.J.P. SNP analysis was performed


by M.P. and T.R. Genome-scale modelling was conducted by W.Z. and Y.Z. with input from S.P.E., P.A.F.G. and A.J.P. J.P. conducted the sliding window analysis with the input from S.P.E.,


J.R., and A.J.P. Phylogenomic analyses were carried out by P.S.A. T.L.V.B. provided bioinformatic assistance and K. Schwank, I.B. and V.T. performed microscopy and initial metabolic


analyses. J.M. and W.B. resampled CG and J.L., T.W. and A.J.P. conducted RNA extraction and sequencing and S.P.E. analysed transcriptomes. J-F.C. synthesized the Cas genes with input from


I.K.B., F.W. and C.B. performed binding, cleavage and PAM assays and J.L., J.J., Y.A., T.W. and A.J.P. generated/provided raw data. K. Sures and S.P.E. analysed the archaeal CRISPR–Cas


interactions from published NCBI archaeal genomes. A.J.P. conceptualized the work. S.P.E., J.R., W.Z., Y.Z. and A.J.P. wrote the manuscript with input from all authors. CORRESPONDING AUTHOR


Correspondence to Alexander J. Probst. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Microbiology_ thanks


the anonymous reviewers for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims


in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 CORRELATION OF REPEAT ABUNDANCE AND ABUNDANCE OF CA. ALTIARCHAEA GENOMES. Spearman rank correlation


(two-tailed) of logarithmic abundances of _Ca_. A. crystalense and logarithmic abundances of repeat sequences of the unassigned CRISPR array (p-value < 3.4 e−16) and the CRISPR system


type I-B (p < 2.2 e−16) in metagenomes from CG (n = 66). The grey area depicts the confidence interval of 0.95. The line indicates that the correlation of the genome abundance and repeat


abundance is linear. Visualization was performed with R87,117 (version 3.6.1). EXTENDED DATA FIG. 2 VIRAL CLUSTERS PREDICTED BY VIRIDIC79. Heatmap showing intergenomic similarity for viral


scaffolds of viral clusters (VC_XY) and some singletons (black). Colouring of viral OTUs (vOTUs) according to Supplementary Table 6. VC_09, _12, _13 determined by the other tools were not


found by VIRIDIC. Only scaffolds with intergenomic similarity of >10 between two viral scaffolds are shown. EXTENDED DATA FIG. 3 COVERAGE ANALYSES OF SCAFFOLDS TARGETED BY SPACERS FROM


_CA_. ALTIARCHAEA. Coverage changes within targeted regions by CRISPR system type I-B of _Ca_. Altiarchaeum and _Ca_. Huberiarchaeum based on metagenomic read mapping. The vertically grey


marked regions are spacer targeted regions of either _Ca_. Altiarchaeum or _Ca_. Huberiarchaeum, whereby the horizontally dark grey lines are showing the average coverage of the scaffold.


The coloured graphs show the coverage across the spacer targeted region of three samples from the minor eruption phase, where _Ca_. Altiarchaeum is the most abundant organism (Supplementary


Fig. 1). EXTENDED DATA FIG. 4 SPACER TARGETING ANALYSES OF PUBLICLY AVAILABLE ARCHAEAL GENOMES. Directed spacer analysis of 7,012 publicly available archaeal genomes (Supplementary Table 4)


shows large clusters of spacers targeting at species level. The targeting spacers (edges) of the genomes _Sulfolobus_, _Methanomicrobia_ and _Halobacterium_ (nodes) form large clusters


performing self-targeting or targeting other genomes of the same family. Edges are colored according to their relationship at least familiy level or lower. The clustering was illustrated


with Cytoscape83 (version 3.9.1). Please note that targeting within the same genus might limit the interspecies recombination, as demonstrated in haloarchaea37, or reflect the presence of


multiple conserved genomic regions between the genomes. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Results, Table 7 and Figs. 1–9. REPORTING SUMMARY SUPPLEMENTARY DATA


Collection of all phylogenetic trees calculated for this study. (1) Phylogenetic tree of _Ca_. Altiarchaeum crystalense/horonobense and _Ca_. Huberiarchaeum crystalense/julieae located


within the archaeal branch. (2) Phylogenetic analysis of the phenylalanine-tRNA synthetase of _Ca_. Huberiarchaeum crystalense located within the archaeal branch. Calculated to determine the


closest relative within the archaeal branch. (3) Phylogenetic analysis of the phenylalanine-tRNA synthetase of _Ca_. Altiarchaeum crystalense located within the archaeal branch. Calculated


to determine the closest relative within the archaeal branch. (4) Phylogenetic analysis of the lysine-tRNA synthetase of _Ca_. Huberiarchaeum crystalense located within the archaeal branch.


Calculated to determine the closest relative within the archaeal branch. (5) Phylogenetic analysis of the lysine-tRNA synthetase of _Ca_. Altiarchaeum crystalense located within the archaeal


branch. Calculated to determine the closest relative within the archaeal branch. SUPPLEMENTARY TABLES Supplementary Tables 1–6 and 8–13. RIGHTS AND PERMISSIONS Springer Nature or its


licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the


accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Esser, S.P., Rahlff, J., Zhao, W. _et al._ A predicted CRISPR-mediated symbiosis between uncultivated archaea. _Nat Microbiol_ 8, 1619–1633 (2023). https://doi.org/10.1038/s41564-023-01439-2


Download citation * Received: 09 May 2023 * Accepted: 23 June 2023 * Published: 27 July 2023 * Issue Date: September 2023 * DOI: https://doi.org/10.1038/s41564-023-01439-2 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative