Negative memory capacitance and ionic filtering effects in asymmetric nanopores

Negative memory capacitance and ionic filtering effects in asymmetric nanopores

Play all audios:

Loading...

ABSTRACT The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a


Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as


Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages. We used the transient occlusion of the


pore using λ-DNA and 10 kbp DNA to test whether events are being attenuated by purely ionic phenomena when there is sufficient amplifier bandwidth. We argue here that both phenomena can be


explained by the inclusion of the Warburg-like element, which is mechanistically linked to concentration polarization and activation energy to generate and maintain localized concentration


gradients. We conclude the study with insights into the transduction of molecular translocations into electrical signals, which is not simply based on pulse-like resistance changes but


instead on the complex and nonlinear storage of ions that enter dis-equilibrium during molecular transit. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ON THE ORIGINS OF CONDUCTIVE PULSE SENSING INSIDE A NANOPORE


Article Open access 13 May 2022 ASSEMBLY OF TRANSMEMBRANE PORES FROM MIRROR-IMAGE PEPTIDES Article Open access 14 September 2022 SOLID-STATE NANOPORE SYSTEMS: FROM MATERIALS TO APPLICATIONS


Article Open access 11 June 2021 DATA AVAILABILITY Raw data including _I_–_V_ curves, translocation data and COMSOL reports are provided in Supplementary Data 1–7. CODE AVAILABILITY The


exponential fitting code is available in Supplementary Code 1. All other code used in this study is available from the corresponding author upon request. REFERENCES * Krems, M., Pershin, Y.


V. & Di Ventra, M. Ionic memcapacitive effects in nanopores. _Nano Lett._ 10, 2674–2678 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, D. et al. Hysteresis charges


in the dynamic enrichment and depletion of ions in single conical nanopores. _ChemElectroChem_ 5, 3089–3095 (2018). Article  CAS  Google Scholar  * Klausen, L. H., Fuhs, T. & Dong, M.


Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. _Nat. Commun._ 7, 12447 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ebadi, F., Taghavinia, N., Mohammadpour, R., Hagfeldt, A. & Tress, W. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. _Nat. Commun._ 10, 1574


(2019). Article  PubMed  PubMed Central  Google Scholar  * Kumar, R. et al. Unveiling the morphology effect on the negative capacitance and large ideality factor in perovskite light-emitting


diodes. _ACS Appl. Mater. Interfaces_ 12, 34265–34273 (2020). Article  CAS  PubMed  Google Scholar  * Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of


concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. _J. Am. Chem. Soc._ 141, 3691–3698 (2019). Article  CAS  PubMed  Google


Scholar  * Yeh, H.-C., Chang, C.-C. & Yang, R.-J. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores. _Phys. Rev. E_ 91, 062302 (2015). Article  Google


Scholar  * Melnikov, D. V., Hulings, Z. K. & Gracheva, M. E. Concentration polarization, surface charge, and ionic current blockade in nanopores. _J. Phys. Chem. C_ 124, 19802–19808


(2020). Article  CAS  Google Scholar  * Brown, W., Kvetny, M., Yang, R. & Wang, G. Selective ion enrichment and charge storage through transport hysteresis in conical nanopipettes. _J.


Phys. Chem. C_ 126, 10872–10879 (2022). Article  CAS  Google Scholar  * Diard, J.-P. & Montella, C. Diffusion-trapping impedance under restricted linear diffusion conditions. _J.


Electroanal. Chem._ 557, 19–36 (2003). Article  CAS  Google Scholar  * Hatsuki, R., Yujiro, F. & Yamamoto, T. Direct measurement of electric double layer in a nanochannel by electrical


impedance spectroscopy. _Microfluid. Nanofluid._ 14, 983–988 (2013). Article  CAS  Google Scholar  * Schiffbauer, J., Park, S. & Yossifon, G. Electrical impedance spectroscopy of


microchannel-nanochannel interface devices. _Phys. Rev. Lett._ 110, 204504 (2013). Article  PubMed  Google Scholar  * Ramos‐Barrado, J., Galan Montenegro, P. & Cambón, C. C. A


generalized Warburg impedance for a nonvanishing relaxation process. _J. Chem. Phys._ 105, 2813–2815 (1996). Article  Google Scholar  * Ren, H., Zhao, Y., Chen, S. & Yang, L. A


comparative study of lumped equivalent circuit models of a lithium battery for state of charge prediction. _Int. J. Energy Res._ 43, 7306–7315 (2019). CAS  Google Scholar  * Bruch, M.,


Millet, L., Kowal, J. & Vetter, M. Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell’s electric behavior. _J.


Power Sources_ 490, 229513 (2021). Article  CAS  Google Scholar  * Lukács, Z. & Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy.


_Electrochim. Acta_ 363, 137199 (2020). Article  Google Scholar  * Dierickx, S., Weber, A. & Ivers-Tiffée, E. How the distribution of relaxation times enhances complex equivalent circuit


models for fuel cells. _Electrochim. Acta_ 355, 136764 (2020). Article  CAS  Google Scholar  * Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. Towards an understanding of


induced-charge electrokinetics at large applied voltages in concentrated solutions. _Adv. Colloid Interface Sci._ 152, 48–88 (2009). Article  CAS  PubMed  Google Scholar  * García-Sánchez,


P., Ramos, A., Gonzalez, A., Green, N. G. & Morgan, H. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. _Langmuir_ 25,


4988–4997 (2009). Article  PubMed  Google Scholar  * Biesheuvel, P. & Van Soestbergen, M. Counterion volume effects in mixed electrical double layers. _J. Colloid Interface Sci._ 316,


490–499 (2007). Article  CAS  PubMed  Google Scholar  * Mishchuk, N. A. Concentration polarization of interface and non-linear electrokinetic phenomena. _Adv. Colloid Interface Sci._ 160,


16–39 (2010). Article  CAS  PubMed  Google Scholar  * Lan, W.-J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. _J. Am.


Chem. Soc._ 133, 13300–13303 (2011). Article  CAS  PubMed  Google Scholar  * Luo, L., Holden, D. A. & White, H. S. Negative differential electrolyte resistance in a solid-state nanopore


resulting from electroosmotic flow bistability. _ACS Nano_ 8, 3023–3030 (2014). Article  CAS  PubMed  Google Scholar  * Yusko, E. C., An, R. & Mayer, M. Electroosmotic flow can generate


ion current rectification in nano- and micropores. _ACS Nano_ 4, 477–487 (2010). Article  CAS  PubMed  Google Scholar  * Smeets, R. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in


solid-state nanopores. _Proc. Natl Acad. Sci. USA_ 105, 417–421 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, D. & Wang, G. Dynamics of ion transport and


electric double layer in single conical nanopores. _J. Electroanal. Chem._ 779, 39–46 (2016). Article  CAS  Google Scholar  * Wen, C. et al. Generalized noise study of solid-state nanopores


at low frequencies. _ACS Sens._ 2, 300–307 (2017). Article  CAS  PubMed  Google Scholar  * Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems.


_Phys. Rev. E_ 70, 021506 (2004). Article  Google Scholar  * Zhang, L.-X., Cao, X.-H., Cai, W.-P. & Li, Y.-Q. Observations of the effect of confined space on fluorescence and diffusion


properties of molecules in single conical nanopore channels. _J. Fluoresc._ 21, 1865–1870 (2011). Article  PubMed  Google Scholar  * Alvarez, O. & Latorre, R. Voltage-dependent


capacitance in lipid bilayers made from monolayers. _Biophys. J._ 21, 1–17 (1978). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lastra, L. S., Bandara, Y., Nguyen, M., Farajpour,


N. & Freedman, K. J. On the origins of conductive pulse sensing inside a nanopore. _Nat. Commun._ 13, 2186 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carlsen, A. T.,


Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. _ACS Nano_ 8, 4754–4760 (2014).


Article  CAS  PubMed  Google Scholar  * Chau, C. et al. Probing RNA conformations using a polymer–electrolyte solid-state nanopore. _ACS Nano_ 16, 20075–20085 (2022). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore.


_Nano Lett._ 20, 5553–5561 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified


hydrogel-filled nanopores: a tunable platform for single-molecule sensing. _Nano Lett._ 18, 6084–6093 (2018). Article  CAS  PubMed  Google Scholar  * Al Sulaiman, D., Gatehouse, A., Ivanov,


A. P., Edel, J. B. & Ladame, S. Length-dependent, single-molecule analysis of short double-stranded DNA fragments through hydrogel-filled nanopores: a potential tool for size profiling


cell-free DNA. _ACS Appl. Mater. Interfaces_ 13, 26673–26681 (2021). Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Ionic current modulation from DNA translocation through


nanopores under high ionic strength and concentration gradients. _Nanoscale_ 9, 930–939 (2017). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was


supported by the NIH (grant no. R35GM151115). We would like to thank the University of California at Riverside for the software suites provided for this study. AUTHOR INFORMATION Author


notes * These authors contributed equally: Nasim Farajpour, Y. M. Nuwan D. Y. Bandara. AUTHORS AND AFFILIATIONS * Department of Bioengineering, University of California, Riverside,


Riverside, CA, USA Nasim Farajpour, Y. M. Nuwan D. Y. Bandara, Lauren Lastra & Kevin J. Freedman Authors * Nasim Farajpour View author publications You can also search for this author


inPubMed Google Scholar * Y. M. Nuwan D. Y. Bandara View author publications You can also search for this author inPubMed Google Scholar * Lauren Lastra View author publications You can also


search for this author inPubMed Google Scholar * Kevin J. Freedman View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.F. conducted the DNA


translocation experiments under the 10 mM KCl conditions and analysed the corresponding data. Y.M.N.D.Y.B. conducted and analysed the negative mem-capacitance effects in the _I_–_V_ curve


data. L.L. conducted the DNA translocation experiments under asymmetric salt conditions (1 M/4 M KCl). K.J.F. conceived and planned the experiments as well as performed the COMSOL


simulations. CORRESPONDING AUTHOR Correspondence to Kevin J. Freedman. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION


_Nature Nanotechnology_ thanks Ralph H. Scheicher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE


Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs.


1–23, Table 1 and discussions. SUPPLEMENTARY DATA 1 COMSOL report 1. SUPPLEMENTARY DATA 2 COMSOL report 2. SUPPLEMENTARY CODE 1 Exponential fitting code. SUPPLEMENTARY DATA 3 _I_–_V_


recording in 10 mM KCl SUPPLEMENTARY DATA 4 _I_–_V_ recording in 30 mM KCl. SUPPLEMENTARY DATA 5 _I_–_V_ recording in 100 mM KCl. SUPPLEMENTARY DATA 6 _I_–_V_ recording with DNA on both


sides of the pore. SUPPLEMENTARY DATA 7 λ-DNA conductive events. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this


article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of


such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Farajpour, N., Bandara, Y.M.N.D.Y., Lastra, L. _et al._ Negative memory


capacitance and ionic filtering effects in asymmetric nanopores. _Nat. Nanotechnol._ 20, 421–431 (2025). https://doi.org/10.1038/s41565-024-01829-5 Download citation * Received: 30 August


2022 * Accepted: 18 October 2024 * Published: 02 January 2025 * Issue Date: March 2025 * DOI: https://doi.org/10.1038/s41565-024-01829-5 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative