Discrete nonlinear topological photonics

Discrete nonlinear topological photonics

Play all audios:

Loading...

ABSTRACT Topological materials, whether in solid state, photonic or acoustic systems, or other domains, are characterized by bulk topological invariants that remain unchanged as long as the


relevant spectral gaps remain open. Through the bulk–edge correspondence principle, these invariants predict the presence of robust states that are localized at the termination of the


material. A key example is a Chern insulator, which supports backscatter-free edge states that lead to sharply quantized conductance in the electronic case, and allows for robustness against


fabrication imperfections in photonic devices. There has been a great deal of research into the linear properties of topological photonic structures, but it has been only recently that


interest in the nonlinear domain has bloomed. Nonlinearity has been of particular interest because it is only in nonlinear and interacting systems that the true bosonic character of photons


emerges, giving rise to physics with no direct correspondence in solid-state materials. In this Perspective, we discuss recent results concerning nonlinearity in topological photonics—with


an emphasis on laser-written waveguide arrays as a model discrete system. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NONTRIVIAL COUPLING OF LIGHT INTO A DEFECT: THE INTERPLAY OF NONLINEARITY AND TOPOLOGY Article


Open access 19 August 2020 NON-HERMITIAN TOPOLOGICAL PHASE TRANSITIONS CONTROLLED BY NONLINEARITY Article 23 October 2023 NONLINEAR CONTROL OF PHOTONIC HIGHER-ORDER TOPOLOGICAL BOUND STATES


IN THE CONTINUUM Article Open access 10 August 2021 REFERENCES * Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based


on quantized Hall resistance. _Phys. Rev. Lett._ 45, 494–497 (1980). ADS  Google Scholar  * Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in


a two-dimensional periodic potential. _Phys. Rev. Lett._ 49, 405–408 (1982). ADS  Google Scholar  * Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. _Rev. Mod. Phys._ 82,


3045–3067 (2010). ADS  Google Scholar  * Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. _Phys. Today_ 63, 33–38 (2010). Google Scholar  * Haldane, F.


D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. _Phys. Rev. Lett._ 100, 013904 (2008). ADS  Google


Scholar  * Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. _Nature_ 461, 772–775 (2009).


ADS  Google Scholar  * Rechtsman, M. C. et al. Photonic Floquet topological insulators. _Nature_ 496, 196–200 (2013). ADS  Google Scholar  * Hafezi, M., Mittal, S., Fan, J., Migdall, A.


& Taylor, J. M. Imaging topological edge states in silicon photonics. _Nat. Photon._ 7, 1001–1005 (2013). ADS  Google Scholar  * Cheng, X. et al. Robust reconfigurable electromagnetic


pathways within a photonic topological insulator. _Nat. Mater._ 15, 542–548 (2016). ADS  Google Scholar  * Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands.


_Nat. Phys._ 9, 795–800 (2013). Google Scholar  * Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. _Phys. Rev. Lett._ 111, 185301


(2013). ADS  Google Scholar  * Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. _Nature_ 515, 237–240 (2014). ADS  Google Scholar  * Nash,


L. M. et al. Topological mechanics of gyroscopic metamaterials. _Proc. Natl Acad. Sci. USA_ 112, 14495–14500 (2015). ADS  Google Scholar  * Süsstrunk, R. & Huber, S. D. Observation of


phononic helical edge states in a mechanical topological insulator. _Science_ 349, 47–50 (2015). ADS  Google Scholar  * Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J.


Time- and site-resolved dynamics in a topological circuit. _Phys. Rev. X_ 5, 021031 (2015). Google Scholar  * Roushan, P. et al. Observation of topological transitions in interacting quantum


circuits. _Nature_ 515, 241–244 (2014). ADS  Google Scholar  * Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. _Phys. Rev. X_ 5, 031001 (2015). Google


Scholar  * Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton \(\mathbb{Z}\) topological insulator. _Phys. Rev. Lett._ 114, 116401 (2015). ADS  MathSciNet  Google Scholar  *


Klembt, S. et al. Exciton–polariton topological insulator. _Nature_ 562, 552–556 (2018). ADS  Google Scholar  * Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of


photonic anomalous Floquet topological insulators. _Nat. Commun._ 8, 13756 (2017). ADS  Google Scholar  * Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in


a slowly driven photonic lattice. _Nat. Commun._ 8, 13918 (2017). ADS  Google Scholar  * Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like


surface states in photonic superlattices. _Opt. Lett._ 34, 1633–1635 (2009). ADS  Google Scholar  * Noh, J. et al. Topological protection of photonic mid-gap defect modes. _Nat. Photon._ 12,


408 (2018). ADS  Google Scholar  * Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. _Nature_ 553, 59–62 (2018). ADS  Google Scholar  * Lu,


L. et al. Experimental observation of Weyl points. _Science_ 349, 622–624 (2015). ADS  MathSciNet  Google Scholar  * Noh, J. et al. Experimental observation of optical Weyl points and Fermi


arc-like surface states. _Nat. Phys._ 13, 611–617 (2017). Google Scholar  * Vaidya, S. et al. Observation of a charge-2 photonic Weyl point in the infrared. _Phys. Rev. Lett._ 125, 253902


(2020). ADS  Google Scholar  * Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. _Phys. Rev. Lett._ 120, 063902 (2018). ADS


  Google Scholar  * Stützer, S. et al. Photonic topological Anderson insulators. _Nature_ 560, 461–465 (2018). ADS  Google Scholar  * Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential


in a system with a synthetic frequency dimension. _Opt. Lett._ 41, 741–744 (2016). ADS  Google Scholar  * Lustig, E. et al. Photonic topological insulator in synthetic dimensions. _Nature_


567, 356–360 (2019). ADS  Google Scholar  * Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. _Phys. Rev. Lett._ 115, 040402 (2015). ADS 


Google Scholar  * Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. _Nat. Mater._ 16, 433–438 (2017). ADS  Google Scholar  * Rechtsman, M.


C. et al. Topological protection of photonic path entanglement. _Optica_ 3, 925–930 (2016). ADS  Google Scholar  * Mittal, S., Orre, V. V. & Hafezi, M. Topologically robust transport of


entangled photons in a 2D photonic system. _Opt. Express_ 24, 15631–15641 (2016). ADS  Google Scholar  * Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum


light. _Nature_ 561, 502–506 (2018). ADS  Google Scholar  * Bandres, M. A. et al. Topological insulator laser: experiments. _Science_ 359, eaar4005 (2018). Google Scholar  * Guglielmon, J.


& Rechtsman, M. C. Broadband topological slow light through higher momentum-space winding. _Phys. Rev. Lett._ 122, 153904 (2019). ADS  Google Scholar  * Bahari, B. et al. Nonreciprocal


lasing in topological cavities of arbitrary geometries. _Science_ 358, 636–640 (2017). ADS  Google Scholar  * He, L. et al. Floquet Chern insulators of light. _Nat. Commun._ 10, 4194 (2019).


ADS  Google Scholar  * Jin, J. et al. Observation of Floquet Chern insulators of light. Preprint at https://arxiv.org/abs/2304.09385 (2023). * Smirnova, D., Leykam, D., Chong, Y. &


Kivshar, Y. Nonlinear topological photonics. _Appl. Phys. Rev._ 7, 021306 (2020). ADS  Google Scholar  * Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in


photonic topological insulators. _Phys. Rev. Lett._ 111, 243905 (2013). ADS  Google Scholar  * Ablowitz, M. J., Curtis, C. W. & Ma, Y.-P. Linear and nonlinear traveling edge waves in


optical honeycomb lattices. _Phys. Rev. A_ 90, 023813 (2014). ADS  Google Scholar  * Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. _Phys. Rev.


Lett._ 117, 143901 (2016). ADS  Google Scholar  * Kartashov, Y. V. & Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators. _Optica_ 3,


1228–1236 (2016). ADS  Google Scholar  * Marzuola, J. L., Rechtsman, M., Osting, B. & Bandres, M. Bulk soliton dynamics in bosonic topological insulators. Preprint at


https://arxiv.org/abs/1904.10312 (2019). * Smirnova, D. A., Smirnov, L. A., Leykam, D. & Kivshar, Y. S. Topological edge states and gap solitons in the nonlinear Dirac model. _Laser


Photon. Rev._ 13, 1900223 (2019). ADS  Google Scholar  * Ivanov, S. K., Kartashov, Y. V., Szameit, A., Torner, L. & Konotop, V. V. Vector topological edge solitons in Floquet insulators.


_ACS Photon._ 7, 735–745 (2020). Google Scholar  * Tang, Q. et al. Valley Hall edge solitons in a photonic graphene. _Opt. Express_ 29, 39755–39765 (2021). ADS  Google Scholar  * Ren, B. et


al. Dark topological valley Hall edge solitons. _Nanophotonics_ 10, 3559–3566 (2021). Google Scholar  * Ezawa, M. Nonlinearity-induced transition in the nonlinear Su–Schrieffer–Heeger model


and a nonlinear higher-order topological system. _Phys. Rev. B_ 104, 235420 (2021). ADS  Google Scholar  * Ezawa, M. Nonlinearity-induced chiral solitonlike edge states in Chern systems.


_Phys. Rev. B_ 106, 195423 (2022). ADS  Google Scholar  * Xia, S. et al. Nontrivial coupling of light into a defect: the interplay of nonlinearity and topology. _Light Sci. Appl._ 9, 147


(2020). ADS  Google Scholar  * Guo, M. et al. Weakly nonlinear topological gap solitons in Su–Schrieffer–Heeger photonic lattices. _Opt. Lett._ 45, 6466–6469 (2020). ADS  Google Scholar  *


Pernet, N., et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. _Nat. Phys_. 18, 678–684 (2022). * Mukherjee, S. & Rechtsman, M. C. Observation of Floquet


solitons in a topological bandgap. _Science_ 368, 856–859 (2020). ADS  Google Scholar  * Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond


laser. _Opt. Lett._ 21, 1729–1731 (1996). ADS  Google Scholar  * Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. _J. Phys. B_ 43, 163001 (2010).


ADS  Google Scholar  * Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk–edge correspondence for periodically driven two-dimensional systems. _Phys.


Rev. X_ 3, 031005 (2013). Google Scholar  * Mukherjee, S. & Rechtsman, M. C. Period-doubled Floquet solitons. _Optica_ 10, 1310–1315 (2023). * Mukherjee, S. & Rechtsman, M. C.


Observation of unidirectional solitonlike edge states in nonlinear Floquet topological insulators. _Phys. Rev. X_ 11, 041057 (2021). Google Scholar  * Maczewsky, L. J. et al.


Nonlinearity-induced photonic topological insulator. _Science_ 370, 701–704 (2020). ADS  MathSciNet  Google Scholar  * Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized


electric multipole insulators. _Science_ 357, 61–66 (2017). ADS  MathSciNet  Google Scholar  * Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological


multipole moment pumping, and chiral hinge states in crystalline insulators. _Phys. Rev. B_ 96, 245115 (2017). ADS  Google Scholar  * Peterson, C. W., Benalcazar, W. A., Hughes, T. L. &


Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. _Nature_ 555, 346–350 (2018). ADS  Google Scholar  * Mittal, S. et al. Photonic quadrupole


topological phases. _Nat. Photon._ 13, 692–696 (2019). ADS  Google Scholar  * Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. _Nature_ 555, 342–345


(2018). ADS  Google Scholar  * Schindler, F. et al. Higher-order topology in bismuth. _Nat. Phys._ 14, 918–924 (2018). Google Scholar  * Ota, Y. et al. Photonic crystal nanocavity based on a


topological corner state. _Optica_ 6, 786–789 (2019). ADS  Google Scholar  * Benalcazar, W. A., Teo, J. C. Y. & Hughes, T. L. Classification of two-dimensional topological crystalline


superconductors and Majorana bound states at disclinations. _Phys. Rev. B_ 89, 224503 (2014). ADS  Google Scholar  * Zhang, Y., Kartashov, Y. V., Torner, L., Li, Y. & Ferrando, A.


Nonlinear higher-order polariton topological insulator. _Opt. Lett._ 45, 4710–4713 (2020). ADS  Google Scholar  * Tao, Y.-L., Dai, N., Yang, Y.-B., Zeng, Q.-B. & Xu, Y. Hinge solitons in


three-dimensional second-order topological insulators. _New J. Phys._ 22, 103058 (2020). ADS  MathSciNet  Google Scholar  * Banerjee, R., Mandal, S. & Liew, T. C. H. Coupling between


exciton–polariton corner modes through edge states. _Phys. Rev. Lett._ 124, 063901 (2020). ADS  Google Scholar  * Zhang, W. et al. Low-threshold topological nanolasers based on the


second-order corner state. _Light Sci. Appl._ 9, 109 (2020). ADS  Google Scholar  * Han, C., Kang, M. & Jeon, H. Lasing at multidimensional topological states in a two-dimensional


photonic crystal structure. _ACS Photon._ 7, 2027–2036 (2020). Google Scholar  * Kim, H.-R. et al. Multipolar lasing modes from topological corner states. _Nat. Commun._ 11, 5758 (2020). ADS


  Google Scholar  * Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. _Phys. Rev. Lett._ 114, 223901 (2015). ADS  Google Scholar  *


Zangeneh-Nejad, F. & Fleury, R. Nonlinear second-order topological insulators. _Phys. Rev. Lett._ 123, 053902 (2019). ADS  Google Scholar  * Kirsch, M. S. et al. Nonlinear second-order


photonic topological insulators. _Nat. Phys._ 17, 995–1000 (2021). Google Scholar  * Jung, M., Yu, Y. & Shvets, G. Exact higher-order bulk–boundary correspondence of corner-localized


states. _Phys. Rev. B_ 104, 195437 (2021). ADS  Google Scholar  * Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in


quasicrystals. _Phys. Rev. Lett._ 109, 106402 (2012). ADS  Google Scholar  * Verbin, M., Zilberberg, O., Kraus, Y. E., Lahini, Y. & Silberberg, Y. Observation of topological phase


transitions in photonic quasicrystals. _Phys. Rev. Lett._ 110, 076403 (2013). ADS  Google Scholar  * Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless


quantum pump with ultracold bosonic atoms in an optical superlattice. _Nat. Phys._ 12, 350–354 (2016). Google Scholar  * Citro, R. & Aidelsburger, M. Thouless pumping and topology. _Nat.


Rev. Phys._ 5, 87–101 (2023). Google Scholar  * Jürgensen, M., Mukherjee, S. & Rechtsman, M. C. Quantized nonlinear Thouless pumping. _Nature_ 596, 63–67 (2021). ADS  Google Scholar  *


Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V. & Ye, F. Nonlinear Thouless pumping: solitons and transport breakdown. _Phys. Rev. Lett._ 128, 154101 (2022). ADS  Google Scholar  *


Jürgensen, M. & Rechtsman, M. C. Chern number governs soliton motion in nonlinear Thouless pumps. _Phys. Rev. Lett._ 128, 113901 (2022). ADS  Google Scholar  * Mostaan, N., Grusdt, F.


& Goldman, N. Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures. _Nat. Commun._ 13, 5997 (2022). ADS  Google Scholar  * Jürgensen, M.,


Mukherjee, S., Jörg, C. & Rechtsman, M. C. Quantized fractional Thouless pumping of solitons. _Nat. Phys._ 19, 420–426 (2023). * Xia, S. et al. Nonlinear tuning of PT symmetry and


non-Hermitian topological states. _Science_ 372, 72–76 (2021). ADS  Google Scholar  * Komis, I. et al. Robustness versus sensitivity in non-Hermitian topological lattices probed by


pseudospectra. _Phys. Rev. Res._ 4, 043219 (2022). Google Scholar  * Leykam, D., Mittal, S., Hafezi, M. & Chong, Y. D. Reconfigurable topological phases in next-nearest-neighbor coupled


resonator lattices. _Phys. Rev. Lett._ 121, 023901 (2018). ADS  Google Scholar  * Mittal, S., Moille, G., Srinivasan, K., Chembo, Y. K. & Hafezi, M. Topological frequency combs and


nested temporal solitons. _Nat. Phys_. 17, 1169–1176 (2021). * Dobrykh, D. A., Yulin, A. V., Slobozhanyuk, A. P., Poddubny, A. N. & Kivshar, Y. S. Nonlinear control of electromagnetic


topological edge states. _Phys. Rev. Lett._ 121, 163901 (2018). ADS  Google Scholar  * Ma, R. et al. A dissipatively stabilized Mott insulator of photons. _Nature_ 566, 51–57 (2019). ADS 


Google Scholar  * Hadad, Y., Khanikaev, A. B. & Alu, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. _Phys. Rev. B_ 93, 155112


(2016). ADS  Google Scholar  * Bisianov, A., Wimmer, M., Peschel, U. & Egorov, O. A. Stability of topologically protected edge states in nonlinear fiber loops. _Phys. Rev. A_ 100, 063830


(2019). ADS  Google Scholar  * Weidemann, S. et al. Topological funneling of light. _Science_ 368, 311–314 (2020). ADS  MathSciNet  Google Scholar  * Wang, K. et al. Generating arbitrary


topological windings of a non-Hermitian band. _Science_ 371, 1240–1245 (2021). ADS  Google Scholar  * Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin


states made of light. _Nature_ 582, 41–45 (2020). ADS  Google Scholar  * Li, J., Chu, R.-L., Jain, J. K. & Shen, S.-Q. Topological Anderson insulator. _Phys. Rev. Lett._ 102, 136806


(2009). ADS  Google Scholar  * Groth, C. W., Wimmer, M., Akhmerov, A. R., J.Tworzydlo, & Beenakker, C. W. J. Theory of the topological Anderson insulator. _Phys. Rev. Lett._ 103, 196805


(2009). ADS  Google Scholar  * Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. _Phys. Rev. Lett._ 114, 056801 (2015). ADS 


Google Scholar  * Faugno, W. N. & Ozawa, T. Interaction-induced non-Hermitian topological phases from a dynamical gauge field. _Phys. Rev. Lett._ 129, 180401 (2022). ADS  MathSciNet 


Google Scholar  * Benalcazar, W. A. et al. Higher-order topological pumping and its observation in photonic lattices. _Phys. Rev. B_ 105, 195129 (2022). ADS  Google Scholar  * Vaidya, V. D.


et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. _Sci. Adv._ 6, eaba9186 (2020). ADS  MathSciNet  Google Scholar  * Monat,


C. et al. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. _Appl. Phys. Lett._ 81, 5102–5104 (2002). ADS  Google Scholar  Download references


ACKNOWLEDGEMENTS M.C.R. acknowledges the support of the Office of Naval Research under grant numbers N00014-20-1-2325, N00014-23-1-2102 and N00014-18-1-2595, the Air Force Office of


Scientific Research under grant number FA9550-22-1-0339, as well as the Packard Foundation under fellowship number 2017-66821. A.S. acknowledges funding from Deutsche Forschungsgemeinschaft


(SFB 1477 “Light-Matter Interactions at Interfaces”, project no. 441234705, and IRTG 2676/1-2023 ‘Imaging of Quantum Systems’, project no. 437567992), the FET Open Grant EPIQUS (grant no.


899368) within the framework of the European H2020 programme for Excellent Science, as well as the Krupp von Bohlen and Halbach foundation. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


University of Rostock, Institute for Physics, Rostock, Germany Alexander Szameit * The Pennsylvania State University, Department of Physics, University Park, PA, USA Mikael C. Rechtsman


Authors * Alexander Szameit View author publications You can also search for this author inPubMed Google Scholar * Mikael C. Rechtsman View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to the writing. CORRESPONDING AUTHORS Correspondence to Alexander Szameit or Mikael C. Rechtsman. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Physics_ thanks the anonymous reviewers for their contribution to the


peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other


rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Szameit, A., Rechtsman, M.C. Discrete nonlinear topological photonics. _Nat. Phys._ 20, 905–912 (2024).


https://doi.org/10.1038/s41567-024-02454-8 Download citation * Received: 09 November 2022 * Accepted: 26 February 2024 * Published: 09 April 2024 * Issue Date: June 2024 * DOI:


https://doi.org/10.1038/s41567-024-02454-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative