A golden age of muscarinic acetylcholine receptor modulation in neurological diseases

A golden age of muscarinic acetylcholine receptor modulation in neurological diseases

Play all audios:

Loading...

ABSTRACT Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic


treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is


largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently,


this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while


minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the


prospect of novel therapeutic solutions for ‘hard to treat’ neurological diseases, heralding a new era of muscarinic drug discovery. Access through your institution Buy or subscribe This is


a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE UNCONVENTIONAL ACTIVATION OF THE MUSCARINIC


ACETYLCHOLINE RECEPTOR M4R BY DIVERSE LIGANDS Article Open access 23 May 2022 XANOMELINE DISPLAYS CONCOMITANT ORTHOSTERIC AND ALLOSTERIC BINDING MODES AT THE M4 MACHR Article Open access 06


September 2023 AGONIST-SELECTIVE ACTIVATION OF INDIVIDUAL G-PROTEINS BY MUSCARINIC RECEPTORS Article Open access 26 April 2024 REFERENCES * Ellul-Micallef, R. _History of Bronchial Asthma_


(Lippincott Raven, 1997). * Moulton, B. C. & Fryer, A. D. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. _Br. J.


Pharmacol._ 163, 44–52 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Singh, A., Dikshit, R. & Chaturvedi, P. Betel nut use: the South Asian story. _Subst. Use Misuse_


55, 1545–1551 (2020). Article  PubMed  Google Scholar  * Sullivan, R. J., Allen, J. S., Otto, C., Tiobech, J. & Nero, K. Effects of chewing betel nut (_Areca catechu_) on the symptoms of


people with schizophrenia in Palau, Micronesia. _Br. J. Psychiatry_ 177, 174–178 (2000). Article  CAS  PubMed  Google Scholar  * Feldberg, W. & Gaddum, J. H. The chemical transmitter at


synapses in a sympathetic ganglion. _J. Physiol._ 81, 305–319 (1934). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lopez-Munoz, F. & Alamo, C. Historical evolution of the


neurotransmission concept. _J. Neural Transm._ 116, 515–533 (2009). Article  CAS  PubMed  Google Scholar  * Felder, C. C. et al. Current status of muscarinic M1 and M4 receptors as drug


targets for neurodegenerative diseases. _Neuropharmacology_ 136, 449–458 (2018). Article  CAS  PubMed  Google Scholar  * Bender, A. M., Jones, C. K. & Lindsley, C. W. Classics in


chemical neuroscience: xanomeline. _ACS Chem. Neurosci._ 8, 435–443 (2017). Article  CAS  PubMed  Google Scholar  * Budzik, B. et al. Novel N-substituted benzimidazolones as potent,


selective, CNS-penetrant, and orally active M1 mAChR agonists. _ACS Med. Chem. Lett._ 1, 244–248 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Viberg, A., Martino, G.,


Lessard, E. & Laird, J. M. Evaluation of an innovative population pharmacokinetic-based design for behavioral pharmacodynamic endpoints. _AAPS J._ 14, 657–663 (2012). Article  PubMed 


PubMed Central  Google Scholar  * Okada, H. et al. Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. _Brain_ 136, 3004–3017 (2013). Article  PubMed


  Google Scholar  * Caulfield, M. P. Muscarinic receptors–characterization, coupling and function. _Pharmacol. Ther._ 58, 319–379 (1993). Article  CAS  PubMed  Google Scholar  * Burford, N.


T., Tobin, A. B. & Nahorski, S. R. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate


accumulation in Chinese hamster ovary cells. _J. Pharmacol. Exp. Ther._ 274, 134–142 (1995). CAS  PubMed  Google Scholar  * Burford, N. T., Tobin, A. B. & Nahorski, S. R. Coupling of


muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive/insensitive guanine nucleotide-binding proteins. _Eur. J. Pharmacol._


289, 343–351 (1995). Article  CAS  PubMed  Google Scholar  * Gurevich, V. V. & Gurevich, E. V. GPCR signaling regulation: the role of GRKs and arrestins. _Front. Pharmacol._ 10, 125


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bradley, S. J. et al. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. _Nat. Chem. Biol._


16, 240–249 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bradley, S. J. et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for


receptor phosphorylation in airway contraction. _Proc. Natl Acad. Sci. USA_ 113, 4524–4529 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Butcher, A. J. et al. Differential


G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. _J. Biol. Chem._ 286, 11506–11518 (2011). Article  CAS  PubMed  Google Scholar  * Budd, D. C., Willars,


G. B., McDonald, J. E. & Tobin, A. B. Phosphorylation of the Gq/11-coupled m3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-activated protein kinase


pathway. _J. Biol. Chem._ 276, 4581–4587 (2001). Article  CAS  PubMed  Google Scholar  * Lin, A. L. et al. Distinct pathways of ERK activation by the muscarinic agonists pilocarpine and


carbachol in a human salivary cell line. _Am. J. Physiol. Cell Physiol._ 294, C1454–C1464 (2008). Article  CAS  PubMed  Google Scholar  * Poulin, B. et al. The M3-muscarinic receptor


regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. _Proc. Natl Acad. Sci. USA_ 107, 9440–9445 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Kong, K. C. et al. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. _Proc. Natl Acad. Sci. USA_ 107,


21181–21186 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric


microprocessors. _Nat. Rev. Drug Discov._ 17, 243–260 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reiter, E., Ahn, S., Shukla, A. K. & Lefkowitz, R. J. Molecular


mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. _Annu. Rev. Pharmacol. Toxicol._ 52, 179–197 (2012). Article  CAS  PubMed  Google Scholar  * Berizzi, A. E. et al.


Muscarinic M5 receptors modulate ethanol seeking in rats. _Neuropsychopharmacology_ 43, 1510–1517 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Levey, A. I., Edmunds, S.


M., Koliatsos, V., Wiley, R. G. & Heilman, C. J. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. _J.


Neurosci._ 15, 4077–4092 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wess, J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications.


_Annu. Rev. Pharmacol. Toxicol._ 44, 423–450 (2004). Article  CAS  PubMed  Google Scholar  * Mesulam, M., Shaw, P., Mash, D. & Weintraub, S. Cholinergic nucleus basalis tauopathy


emerges early in the aging-MCI-AD continuum. _Ann. Neurol._ 55, 815–828 (2004). Article  CAS  PubMed  Google Scholar  * Davies, P. & Maloney, A. J. Selective loss of central cholinergic


neurons in Alzheimer’s disease. _Lancet_ 2, 1403 (1976). Article  CAS  PubMed  Google Scholar  * Mufson, E. J., Counts, S. E., Perez, S. E. & Ginsberg, S. D. Cholinergic system during


the progression of Alzheimer’s disease: therapeutic implications. _Expert Rev. Neurother._ 8, 1703–1718 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bartus, R. T., Dean,


R. L. 3rd, Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. _Science_ 217, 408–414 (1982). Article  CAS  PubMed  Google Scholar  * Hampel, H. et al.


Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. _J. Prev. Alzheimers Dis._ 6, 2–15 (2019). CAS  PubMed  Google


Scholar  * Bartus, R. T. Physostigmine and recent memory: effects in young and aged nonhuman primates. _Science_ 206, 1087–1089 (1979). Article  CAS  PubMed  Google Scholar  * Bartus, R. T.,


Dean, R. L., Pontecorvo, M. J. & Flicker, C. The cholinergic hypothesis: a historical overview, current perspective, and future directions. _Ann. N. Y. Acad. Sci._ 444, 332–358 (1985).


Article  CAS  PubMed  Google Scholar  * Douchamps, V. & Mathis, C. A second wind for the cholinergic system in Alzheimer’s therapy. _Behav. Pharmacol._ 28, 112–123 (2017). Article  CAS 


PubMed  Google Scholar  * Courtney, C. et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. _Lancet_ 363, 2105–2115 (2004).


Article  CAS  PubMed  Google Scholar  * Inglis, F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. _Int. J. Clin. Pract. Suppl._ 127, 45–63 (2002). CAS


  Google Scholar  * Thompson, S., Lanctot, K. L. & Herrmann, N. The benefits and risks associated with cholinesterase inhibitor therapy in Alzheimer’s disease. _Expert Opin. Drug Saf._


3, 425–440 (2004). Article  CAS  PubMed  Google Scholar  * May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. _Annu. Rev.


Pharmacol. Toxicol._ 47, 1–51 (2007). Article  CAS  PubMed  Google Scholar  * Chan, W. Y. et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia.


_Proc. Natl Acad. Sci. USA_ 105, 10978–10983 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of


GPCRs: a novel approach for the treatment of CNS disorders. _Nat. Rev. Drug Discov._ 8, 41–54 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bradley, S. J. et al. M1


muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. _J. Clin. Invest._ 127, 487–499 (2017). Article  PubMed  Google Scholar  * Anagnostaras, S. G., Maren,


S., Sage, J. R., Goodrich, S. & Fanselow, M. S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. _Neuropsychopharmacology_ 21, 731–744 (1999). Article  CAS 


PubMed  Google Scholar  * Brown, A. J. H. et al. From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease. _Cell_ 184,


5886–5901 e5822 (2021). BENCH-TO-BEDSIDE REPORT USING STRUCTURE-BASED DRUG DESIGN TO RATIONALLY GENERATE A M1/M4-RECEPTOR AGONIST ACTIVATING MEMORY CENTRES IN ELDERLY VOLUNTEERS. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Digby, G. J. et al. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond


with behavioral effects in animal models. _J. Neurosci._ 32, 8532–8544 (2012). STUDY SHOWING THAT M1 RECEPTORS IN DIFFERENT BRAIN REGIONS ARE DIFFERENTIALLY AFFECTED BY M1-RECEPTOR PAMS.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ghoshal, A. et al. Potentiation of M1 muscarinic receptor reverses plasticity deficits and negative and cognitive symptoms in a


schizophrenia mouse model. _Neuropsychopharmacology_ 41, 598–610 (2016). Article  CAS  PubMed  Google Scholar  * Moran, S. P. et al. M1-positive allosteric modulators lacking agonist


activity provide the optimal profile for enhancing cognition. _Neuropsychopharmacology_ 43, 1763–1771 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rook, J. M. et al. A


novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. _ACS Chem. Neurosci._ 9, 2274–2285 (2018). Article  CAS  PubMed 


Google Scholar  * Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores


impairments in reversal learning. _J. Neurosci._ 29, 14271–14286 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conley, A. C. et al. Cognitive performance effects following


a single dose of the M1 muscarinic positive allosteric modulator VU319. _Alzheimers Dement._16, e045339 (2020). Article  Google Scholar  * Ma, L. et al. Selective activation of the M1


muscarinic acetylcholine receptor achieved by allosteric potentiation. _Proc. Natl Acad. Sci. USA_ 106, 15950–15955 (2009). EARLY DEMONSTRATION OF THE COGNITIVE PROPERTIES OF M1-RECEPTOR


PAMS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Anagnostaras, S. G. et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. _Nat. Neurosci._


6, 51–58 (2003). Article  CAS  PubMed  Google Scholar  * Lebois, E. P. et al. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1)


receptor function in the central nervous system. _ACS Chem. Neurosci._ 1, 104–121 (2010). Article  CAS  PubMed  Google Scholar  * Lebois, E. P. et al. Development of a highly selective,


orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. _Bioorg. Med. Chem. Lett._ 21, 6451–6455 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Scheiderer, C. L. et al. Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses.


_J. Neurosci._ 26, 3745–3756 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shinoe, T., Matsui, M., Taketo, M. M. & Manabe, T. Modulation of synaptic plasticity by


physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. _J. Neurosci._ 25, 11194–11200 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. _J. Neurosci._ 21,


5239–5250 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gerber, D. J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic


acetylcholine receptor-deficient mice. _Proc. Natl Acad. Sci. USA_ 98, 15312–15317 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Salah-Uddin, H. et al. Altered M(1)


muscarinic acetylcholine receptor (CHRM1)-Galpha(q/11) coupling in a schizophrenia endophenotype. _Neuropsychopharmacology_ 34, 2156–2166 (2009). Article  CAS  PubMed  Google Scholar  *


Foster, D. J., Choi, D. L., Conn, P. J. & Rook, J. M. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. _Neuropsychiatr.


Dis. Treat._ 10, 183–191 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Foster, D. J. et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2


receptor-dependent inhibition of dopamine release. _Neuron_ 91, 1244–1252 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gogliotti, R. G. et al. Total RNA sequencing of Rett


syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. _J. Pharmacol. Exp. Ther._ 365, 291–300 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tarr, J. C. et al. Challenges in the development of an M4 PAM preclinical candidate: the discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived


amides. _Bioorg. Med. Chem. Lett._ 27, 2990–2995 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Woolley, M. L., Carter, H. J., Gartlon, J. E., Watson, J. M. & Dawson, L.


A. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic


M1 receptor knockout mice. _Eur. J. Pharmacol._ 603, 147–149 (2009). Article  CAS  PubMed  Google Scholar  * Yohn, S. E. & Conn, P. J. Positive allosteric modulation of M1 and M4


muscarinic receptors as potential therapeutic treatments for schizophrenia. _Neuropharmacology_ 136, 438–448 (2017). Article  PubMed  PubMed Central  Google Scholar  * Felder, C. C. et al.


Elucidating the role of muscarinic receptors in psychosis. _Life Sci._ 68, 2605–2613 (2001). Article  CAS  PubMed  Google Scholar  * Thomsen, M., Wess, J., Fulton, B. S., Fink-Jensen, A.


& Caine, S. B. Modulation of prepulse inhibition through both M1 and M4 muscarinic receptors in mice. _Psychopharmacology_ 208, 401–416 (2010). Article  CAS  PubMed  Google Scholar  *


Tzavara, E. T. et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS


pathologies. _FASEB J._ 18, 1410–1412 (2004). Article  CAS  PubMed  Google Scholar  * Foster, D. J., Bryant, Z. K. & Conn, P. J. Targeting muscarinic receptors to treat schizophrenia.


_Behav. Brain Res._ 405, 113201 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paul, S. M., Yohn, S. E., Popiolek, M., Miller, A. C. & Felder, C. C. Muscarinic


acetylcholine receptor agonists as novel treatments for schizophrenia. _Am. J. Psychiatry_ 179, 611–627 (2022). Article  PubMed  Google Scholar  * Lange, H. S. et al. Effects of a novel M4


muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer’s disease and schizophrenia in rhesus monkey. _Neuropharmacology_ 197, 108754 (2021).


Article  CAS  PubMed  Google Scholar  * Bubser, M. et al. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances


associative learning in rodents. _ACS Chem. Neurosci._ 5, 920–942 (2014). Article  CAS  PubMed  Google Scholar  * Gould, R. W. et al. Cognitive enhancement and antipsychotic-like activity


following repeated dosing with the selective M4 PAM VU0467154. _Neuropharmacology_ 128, 492–502 (2018). Article  CAS  PubMed  Google Scholar  * Jeon, J. et al. A subpopulation of neuronal M4


muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. _J. Neurosci._ 30, 2396–2405 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bymaster, F. P., Felder, C., Ahmed, S. & McKinzie, D. Muscarinic receptors as a target for drugs treating schizophrenia. _Curr. Drug Targets CNS Neurol. Disord._ 1, 163–181


(2002). Article  CAS  PubMed  Google Scholar  * Conn, P. J., Jones, C. K. & Lindsley, C. W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS


disorders. _Trends Pharmacol. Sci._ 30, 148–155 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Heinrich, J. N. et al. Pharmacological comparison of muscarinic ligands:


historical versus more recent muscarinic M1-preferring receptor agonists. _Eur. J. Pharmacol._ 605, 53–56 (2009). Article  CAS  PubMed  Google Scholar  * Shannon, H. E. et al. Xanomeline: a


novel muscarinic receptor agonist with functional selectivity for M1 receptors. _J. Pharmacol. Exp. Ther._ 269, 271–281 (1994). CAS  PubMed  Google Scholar  * Bodick, N. C. et al. Effects of


xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. _Arch. Neurol._ 54, 465–473 (1997). Article  CAS  PubMed  Google


Scholar  * Bodick, N. C. et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. _Alzheimer Dis. Assoc. Disord._


11 (Suppl. 4), S16–S22 (1997). CAS  PubMed  Google Scholar  * Shekhar, A. et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. _Am. J.


Psychiatry_ 165, 1033–1039 (2008). Article  PubMed  Google Scholar  * Andersen, M. B. et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in _Cebus


apella_ monkeys. _Neuropsychopharmacology_ 28, 1168–1175 (2003). Article  CAS  PubMed  Google Scholar  * Sramek, J. J. et al. The safety and tolerance of xanomeline tartrate in patients with


Alzheimer’s disease. _J. Clin. Pharmacol._ 35, 800–806 (1995). Article  CAS  PubMed  Google Scholar  * Burger, W. A. C. et al. Xanomeline displays concomitant orthosteric and allosteric


binding modes at the M(4) mAChR. _Nat. Commun._ 14, 5440 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic


acetylcholine receptors. _Nature_ 531, 335–340 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vuckovic, Z. et al. Crystal structure of the M5 muscarinic acetylcholine


receptor. _Proc. Natl Acad. Sci. USA_ 116, 26001–26007 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaul, I. et al. Efficacy and safety of xanomeline-trospium chloride in


schizophrenia: a randomized clinical trial. _JAMA Psychiatry_ https://doi.org/10.1001/jamapsychiatry.2024.0785 (2024). Article  PubMed  PubMed Central  Google Scholar  * Kaul, I. et al.


Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled,


flexible-dose phase 3 trial. _Lancet_ 403, 160–170 (2024). PHASE III CLINICAL TRIAL OF KARXT, A COMBINATION THERAPY CONTAINING THE PARTIAL MUSCARINIC AGONIST XANOMELINE WITH THE PERIPHERALLY


RESTRICTED ANTAGONIST TROSPIUM MARKING A BREAKTHROUGH MEDICINE IN THE TREATMENT OF SZ. Article  CAS  PubMed  Google Scholar  * Bradley, S. J. et al. Bitopic binding mode of an M1 muscarinic


acetylcholine receptor agonist associated with adverse clinical trial outcomes. _Mol. Pharm._ 93, 645–656 (2018). Article  CAS  Google Scholar  * Keov, P., Sexton, P. M. &


Christopoulos, A. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. _Neuropharmacology_ 60, 24–35 (2011). Article  CAS  PubMed  Google Scholar  * Langmead,


C. J. & Christopoulos, A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. _Trends Pharmacol. Sci._ 27, 475–481 (2006). Article  CAS  PubMed  Google Scholar


  * Canals, M. et al. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. _J. Biol. Chem._ 287, 650–659 (2012). Article  CAS  PubMed  Google


Scholar  * Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. _Nat. Rev. Drug Discov._ 12, 630–644 (2013). Article 


CAS  PubMed  Google Scholar  * Rasmussen, S. G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. _Nature_ 450, 383–387 (2007). FIRST ATOMIC-LEVEL STRUCUTRE


OF A NON-VISUAL GPCR LAUNCHING THE PROSPECT OF STRUCTURE-BASED DRUG DESIGN FOR GPCR LIGANDS. Article  CAS  PubMed  Google Scholar  * Rosenbaum, D. M. et al. GPCR engineering yields


high-resolution structural insights into beta2-adrenergic receptor function. _Science_ 318, 1266–1273 (2007). Article  CAS  PubMed  Google Scholar  * Cherezov, V. et al. High-resolution


crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. _Science_ 318, 1258–1265 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Noble, M. E.,


Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. _Science_ 303, 1800–1805 (2004). Article  CAS  PubMed  Google Scholar  * Kruse, A.


C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. _Nature_ 482, 552–556 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Haga, K. et al. Structure


of the human M2 muscarinic acetylcholine receptor bound to an antagonist. _Nature_ 482, 547–551 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Warne, T. et al. Structure of


a beta1-adrenergic G-protein-coupled receptor. _Nature_ 454, 486–491 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bakker, C. et al. Safety and pharmacokinetics of


HTL0018318, a novel M1 receptor agonist, given in combination with donepezil at steady state: a randomized trial in healthy elderly subjects. _Drugs R D_ 21, 295–304 (2021). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Nathan, P. J. et al. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M1 receptor


agonist HTL0018318 in patients with mild-to-moderate Alzheimer’s disease. _Alzheimers Dement._ 8, e12273 (2022). Google Scholar  * Vuckovic, Z. et al. Pharmacological hallmarks of allostery


at the M4 muscarinic receptor elucidated through structure and dynamics. _eLife_ 12, e83477 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thal, D. M., Glukhova, A., Sexton,


P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. _Nature_ 559, 45–53 (2018). Article  CAS  PubMed  Google Scholar  * Burger, W. A. C., Sexton, P.


M., Christopoulos, A. & Thal, D. M. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. _J. Gen. Physiol._ 150, 1360–1372 (2018). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Nawaratne, V., Leach, K., Felder, C. C., Sexton, P. M. & Christopoulos, A. Structural determinants of allosteric agonism and modulation


at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. _J. Biol. Chem._ 285, 19012–19021 (2010). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. _Nature_ 504, 101–106 (2013). BREAKTHROUGH STUDY DESCRIBING THE


CO-CRYSTAL STRUCTURE OF A MACHR COMPLEXED WITH AN ORTHOSTERIC AND ALLOSTERIC MODULATOR. Article  CAS  PubMed  PubMed Central  Google Scholar  * Valant, C., Felder, C. C., Sexton, P. M. &


Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. _Mol. Pharmacol._


81, 41–52 (2012). Article  CAS  PubMed  Google Scholar  * Foster, D. J. & Conn, P. J. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia


and other CNS disorders. _Neuron_ 94, 431–446 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nickols, H. H. & Conn, P. J. Development of allosteric modulators of GPCRs


for treatment of CNS disorders. _Neurobiol. Dis._ 61, 55–71 (2014). Article  PubMed  Google Scholar  * Beshore, D. C. et al. MK-7622: a first-in-class M1 positive allosteric modulator


development candidate. _ACS Med. Chem. Lett._ 9, 652–656 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Davoren, J. E. et al. Design and synthesis of gamma- and delta-lactam


M1 positive allosteric modulators (PAMs): convulsion and cholinergic toxicity of an M1-selective PAM with weak agonist activity. _J. Med. Chem._ 60, 6649–6663 (2017). Article  CAS  PubMed 


Google Scholar  * Davoren, J. E. et al. Discovery of the potent and selective M1 PAM-agonist _N_-[(3 R,4 S)-3-hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)ben


zyl]pyridine-2-carboxamide (PF-06767832): evaluation of efficacy and cholinergic side effects. _J. Med Chem._ 59, 6313–6328 (2016). Article  CAS  PubMed  Google Scholar  * Davoren, J. E. et


al. Design and optimization of selective azaindole amide M1 positive allosteric modulators. _Bioorg. Med. Chem. Lett._ 26, 650–655 (2016). Article  CAS  PubMed  Google Scholar  * Voss, T. et


al. Randomized, controlled, proof-of-concept trial of MK-7622 in Alzheimer’s disease. _Alzheimers Dement._ 4, 173–181 (2018). Google Scholar  * Rook, J. M. et al. Diverse effects on M1


signaling and adverse effect liability within a series of M1 Ago-PAMs. _ACS Chem. Neurosci._ 8, 866–883 (2017). DEMONSTRATION OF DIFFERENTIAL ADVERSE EFFECTS OF M1-RECEPTOR PAMS WITH VARIOUS


LEVELS OF INTRINSIC ACTIVITY. Article  CAS  PubMed  Google Scholar  * Newhouse, P. A. et al. Development of the muscarinic cholinergic PAM VU319 for cognitive enhencement: phase 1 tests of


safety and target engagement. _Alzheimers Dement._ 15, P574 (2019). Article  Google Scholar  * Digby, G. J., Shirey, J. K. & Conn, P. J. Allosteric activators of muscarinic receptors as


novel approaches for treatment of CNS disorders. _Mol. BioSyst._ 6, 1345–1354 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Melancon, B. J. et al. Optimization of M4


positive allosteric modulators (PAMs): the discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. _Bioorg. Med. Chem. Lett._ 27, 2296–2301 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Wood, M. R. et al. Discovery of VU0467485/AZ13713945: an M4 PAM evaluated as a preclinical candidate for the treatment of


schizophrenia. _ACS Med. Chem. Lett._ 8, 233–238 (2017). Article  CAS  PubMed  Google Scholar  * Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1


muscarinic receptors reveals multiple modes of activity. _Mol. Pharmacol._ 75, 577–588 (2009). Article  CAS  PubMed  Google Scholar  * Shirey, J. K. et al. An allosteric potentiator of M4


mAChR modulates hippocampal synaptic transmission. _Nat. Chem. Biol._ 4, 42–50 (2008). Article  CAS  PubMed  Google Scholar  * Brady, A. E. et al. Centrally active allosteric potentiators of


the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. _J. Pharmacol. Exp. Ther._ 327, 941–953 (2008). Article  CAS  PubMed  Google Scholar  *


Wood, M. R. et al. Challenges in the development of an M4 PAM in vivo tool compound: the discovery of VU0467154 and unexpected DMPK profiles of close analogs. _Bioorg. Med. Chem. Lett._ 27,


171–175 (2017). Article  CAS  PubMed  Google Scholar  * Engers, D. W. et al. VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical


development candidate. _Bioorg. Med. Chem. Lett._ 29, 1714–1718 (2019). Article  CAS  PubMed  Google Scholar  * Krystal, J. H. et al. Emraclidine, a novel positive allosteric modulator of


cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. _Lancet_ 400, 2210–2220 (2022). Article  CAS  PubMed 


Google Scholar  * Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. _Annu. Rev. Pharmacol.


Toxicol._ 55, 399–417 (2015). Article  CAS  PubMed  Google Scholar  * Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a


family of G protein-coupled receptors potently activated by an inert ligand. _Proc. Natl Acad. Sci. USA_ 104, 5163–5168 (2007). FIRST DESCRIPTION OF THE WIDELY USED MUSCARINIC RECEPTOR


CHEMOGENETIC VARIANT CALLED A DREADD. Article  PubMed  PubMed Central  Google Scholar  * Alt, A. et al. Evidence for classical cholinergic toxicity associated with selective activation of m1


muscarinic receptors. _J. Pharmacol. Exp. Ther._ 356, 293–304 (2016). Article  CAS  PubMed  Google Scholar  * Kenakin, T. & Christopoulos, A. Analytical pharmacology: the impact of


numbers on pharmacology. _Trends Pharmacol. Sci._ 32, 189–196 (2011). Article  CAS  PubMed  Google Scholar  * Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A


simple method for quantifying functional selectivity and agonist bias. _ACS Chem. Neurosci._ 3, 193–203 (2012). Article  CAS  PubMed  Google Scholar  * Porter, A. C. et al. M1 muscarinic


receptor signaling in mouse hippocampus and cortex. _Brain Res._ 944, 82–89 (2002). Article  CAS  PubMed  Google Scholar  * Lebois, E. P., Thorn, C., Edgerton, J. R., Popiolek, M. & Xi,


S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. _Neuropharmacology_ 136, 362–373 (2018). Article  CAS  PubMed 


Google Scholar  * Potter, P. E. et al. Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer’s


disease. _Acta Neuropathol._ 122, 49–60 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection,


quantification and therapeutic impact. _Nat. Rev. Drug Discov._ 12, 205–216 (2013). Article  CAS  PubMed  Google Scholar  * Donthamsetti, P. et al. Arrestin recruitment to dopamine D2


receptor mediates locomotion but not incentive motivation. _Mol. Psychiatry_ 25, 2086–2100 (2020). Article  CAS  PubMed  Google Scholar  * Bradley, S. J. & Tobin, A. B. Design of


next-generation G protein-coupled receptor drugs: linking novel pharmacology and in vivo animal models. _Annu. Rev. Pharmacol. Toxicol._ 56, 535–559 (2016). Article  CAS  PubMed  Google


Scholar  * Barch, D. M. et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. _Arch. Gen. Psychiatry_ 58, 280–288 (2001). Article  CAS 


PubMed  Google Scholar  * Allen, G. et al. Reduced hippocampal functional connectivity in Alzheimer disease. _Arch. Neurol._ 64, 1482–1487 (2007). Article  PubMed  Google Scholar  * Nitsch,


R. M., Slack, B. E., Wurtman, R. J. & Growdon, J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. _Science_ 258,


304–307 (1992). Article  CAS  PubMed  Google Scholar  * Farber, S. A., Nitsch, R. M., Schulz, J. G. & Wurtman, R. J. Regulated secretion of beta-amyloid precursor protein in rat brain.


_J. Neurosci._ 15, 7442–7451 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hock, C. et al. Treatment with the selective muscarinic m1 agonist talsaclidine decreases


cerebrospinal fluid levels of Aβ 42 in patients with Alzheimer’s disease. _Amyloid_ 10, 1–6 (2003). Article  CAS  PubMed  Google Scholar  * Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld,


D. & Growdon, J. H. The selective muscarinic M1 agonist AF102B decreases levels of total Aβ in cerebrospinal fluid of patients with Alzheimer’s disease. _Ann. Neurol._ 48, 913–918


(2000). Article  CAS  PubMed  Google Scholar  * Davis, A. A., Fritz, J. J., Wess, J., Lah, J. J. & Levey, A. I. Deletion of M1 muscarinic acetylcholine receptors increases amyloid


pathology in vitro and in vivo. _J. Neurosci._ 30, 4190–4196 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Medeiros, R. et al. Loss of muscarinic M1 receptor exacerbates


Alzheimer’s disease-like pathology and cognitive decline. _Am. J. Pathol._ 179, 980–991 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jones, C. K. et al. Novel selective


allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. _J. Neurosci._ 28, 10422–10433 (2008). EARLY


DEMONSTRATION THAT M1 RECEPTORS CAN REGULATE THE PROCESSING OF APP AND THEREBY POTENTIALLY SLOW THE PROGRESSION OF NEURODEGENERATIVE DISEASE. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Caccamo, A. et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. _Neuron_ 49, 671–682 (2006). Article  CAS  PubMed  Google Scholar  *


Lebois, E. P. et al. Disease-modifying effects of M1 muscarinic acetylcholine receptor activation in an Alzheimer’s disease mouse model. _ACS Chem. Neurosci._ 8, 1177–1187 (2017). Article 


CAS  PubMed  Google Scholar  * Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. _Nature_ 349, 704–706 (1991).


Article  CAS  PubMed  Google Scholar  * Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. _Nature_ 375, 754–760 (1995). Article


  CAS  PubMed  Google Scholar  * Karran, E. & De Strooper, B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. _Nat. Rev. Drug Discov._ 21, 306–318


(2022). Article  CAS  PubMed  Google Scholar  * Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of


therapeutics. _Nat. Rev. Drug Discov._ 10, 698–712 (2011). Article  CAS  PubMed  Google Scholar  * Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia:


a meta-analysis. _JAMA_ 313, 1924–1938 (2015). Article  PubMed  PubMed Central  Google Scholar  * Yiannopoulou, K. G., Anastasiou, A. I., Zachariou, V. & Pelidou, S. H. Reasons for


failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. _Biomedicines_ 7, 97 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Lowe, V. J. et al. Cross-sectional associations of tau-PET signal with cognition in cognitively unimpaired adults. _Neurology_ 93, e29–e39 (2019). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. _Acta Neuropathol._ 128, 755–766 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. _Nat. Rev. Neurosci._ 19, 687–700 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pontecorvo, M. J. et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. _Brain_ 140, 748–763 (2017).


PubMed  PubMed Central  Google Scholar  * Halliday, M., Radford, H. & Mallucci, G. R. Prions: generation and spread versus neurotoxicity. _J. Biol. Chem._ 289, 19862–19868 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Mallucci, G. Spreading proteins in neurodegeneration: where do they take us? _Brain_ 136, 994–995 (2013). Article  PubMed  Google


Scholar  * Dwomoh, L. et al. M1 muscarinic receptor activation reduces the molecular pathology and slows the progression of prion-mediated neurodegenerative disease. _Sci. Signal._ 15,


eabm3720 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scarpa, M. et al. Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative


disease. _Proc. Natl Acad. Sci. USA_ 118, e2107389118 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gunter, B. W. et al. Selective inhibition of M5 muscarinic acetylcholine


receptors attenuates cocaine self-administration in rats. _Addict. Biol._ 23, 1106–1116 (2018). Article  CAS  PubMed  Google Scholar  * Basile, A. S. et al. Deletion of the M5 muscarinic


acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. _Proc. Natl Acad. Sci. USA_ 99, 11452–11457 (2002). STUDY DESCRIBING THE POTENTIAL FOR


M5-RECEPTOR INHIBITORS TO PREVENT THE ACQUISITION OF ADDICTION TO SUBSTANCES OF ABUSE, INCLUDING OPIOIDS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Steidl, S., Miller, A. D.,


Blaha, C. D. & Yeomans, J. S. M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. _PloS ONE_ 6, e27538


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Teal, L. B. et al. Selective M(5) muscarinic acetylcholine receptor negative allosteric modulator VU6008667 blocks acquisition


of opioid self-administration. _Neuropharmacology_ 227, 109424 (2023). Article  CAS  PubMed  Google Scholar  * Gould, R. W. et al. Acute negative allosteric modulation of M5 muscarinic


acetylcholine receptors inhibits oxycodone self-administration and cue-induced reactivity with no effect on antinociception. _ACS Chem. Neurosci._ 10, 3740–3750 (2019). Article  CAS  PubMed


  Google Scholar  * McGowan, K. M. et al. Continued optimization of the M5 NAM ML375: discovery of VU6008667, an M5 NAM with high CNS penetration and a desired short half-life in rat for


addiction studies. _Bioorg. Med. Chem. Lett._ 27, 1356–1359 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garrison, A. T. et al. Development of VU6019650: a potent, highly


selective, and systemically active orthosteric antagonist of the M5 muscarinic acetylcholine receptor for the treatment of opioid use disorder. _J. Med. Chem._ 65, 6273–6286 (2022). Article


  CAS  PubMed  Google Scholar  * Nunes, E. J. et al. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats.


_Neuropharmacology_ 171, 108089 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nunes, E. J. et al. Ventral tegmental area M5 muscarinic receptors mediate effort-choice


responding and nucleus accumbens dopamine in a sex-specific manner. _J. Pharmacol. Exp. Ther._ 385, 146–156 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dulawa, S. C.


& Janowsky, D. S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. _Mol. Psychiatry_ 24, 694–709 (2019). Article  CAS  PubMed  Google Scholar  *


Janowsky, D. S., el-Yousef, M. K. & Davis, J. M. Acetylcholine and depression. _Psychosom. Med._ 36, 248–257 (1974). Article  CAS  PubMed  Google Scholar  * Leach, K. et al. Molecular


mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. _Neuropsychopharmacology_ 35, 855–869


(2010). Article  CAS  PubMed  Google Scholar  * Black, J. W. & Leff, P. Operational models of pharmacological agonism. _Proc. R. Soc. Lond. B_ 220, 141–162 (1983). Article  CAS  PubMed 


Google Scholar  * Brannan, S. K. et al. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. _N. Engl. J. Med._ 384, 717–726 (2021). Article  CAS  PubMed 


PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The author thanks the Wellcome Trust, who provided a Collaborative Award (201529/Z/16/Z) to A.B.T., and the generous 


donations of the Rice family, and Alan and Ann Boyd. Thanks also to C. Jones (Vanderbilt University) for proofreading and advice. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Centre for


Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK Andrew B. Tobin Authors * Andrew B. Tobin View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Andrew B. Tobin. ETHICS DECLARATIONS COMPETING INTERESTS A.T. is fully


employed by the University of Glasgow but is also co-founder and CEO of the spin-out company Keltic Pharma Therapeutics Ltd, which has an interest in targeting muscarinic receptors in


neurological disease. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Drug Discovery_ thanks Jan Jakubik, Daniel Foster and Christian Felder for their contribution to the peer review of


this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Tobin, A.B. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. _Nat Rev Drug


Discov_ 23, 743–758 (2024). https://doi.org/10.1038/s41573-024-01007-1 Download citation * Accepted: 28 June 2024 * Published: 14 August 2024 * Issue Date: October 2024 * DOI:


https://doi.org/10.1038/s41573-024-01007-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative