Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity

Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity

Play all audios:

Loading...

ABSTRACT Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They are implicated in the regulation of


immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer. Recent studies have indicated key distinctions between MDSCs and classical


neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs. We explain how these characteristics shape MDSC function and


could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases. Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy,


neonatal biology and COVID-19. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS MYELOID-DERIVED SUPPRESSOR CELLS AS IMMUNOSUPPRESSIVE REGULATORS AND THERAPEUTIC TARGETS IN CANCER Article Open access 07 October 2021 NEUTROPHILS AND


POLYMORPHONUCLEAR MYELOID-DERIVED SUPPRESSOR CELLS: AN EMERGING BATTLEGROUND IN CANCER THERAPY Article Open access 03 May 2022 MYELOID-DERIVED SUPPRESSOR CELLS IN CANCER AND CANCER THERAPY


Article 08 January 2024 REFERENCES * Gabrilovich, D. I. et al. The terminology issue for myeloid-derived suppressor cells. _Cancer Res._ 67, 425 (2007). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Dorhoi, A. et al. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. _J. Clin. Invest._ 130, 2789–2799 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. _Nat. Immunol._ 19, 108–119 (2018). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Condamine, T., Mastio, J. & Gabrilovich, D. I. Transcriptional regulation of myeloid-derived suppressor cells. _J. Leukoc. Biol._ 98, 913–922 (2015). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Wang, W., Xia, X., Mao, L. & Wang, S. The CCAAT/enhancer-binding protein family: its roles in MDSC expansion and function. _Front.


Immunol._ 10, 1804 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ostrand-Rosenberg, S., Beury, D. W., Parker, K. H. & Horn, L. A. Survival of the fittest: how


myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. _Cancer Immunol. Immunother._ 69, 215–221 (2020). Article  CAS  PubMed  Google Scholar  * Bronte, V. et


al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. _Nat. Commun._ 7, 12150 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. _J. Exp. Med._ 216, 2150–2169 (2019). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in


cancer patients. _Sci. Immunol._ 1, aaf8943 (2016). THIS STUDY DESCRIBES, FOR THE FIRST TIME, THAT GENE EXPRESSION PROFILES OF PMN-MDSCS AND NEUTROPHILS FROM THE SAME PATIENT WERE VASTLY


DIFFERENT. IT ALSO IDENTIFIED LOX1 AS A SPECIFIC MARKER OF PMN-MDSCS IN PATIENTS WITH CANCER. Article  PubMed  PubMed Central  Google Scholar  * Nan, J. et al. Endoplasmic reticulum stress


induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. _Immunology_ 154, 144–155 (2018). Article  CAS  PubMed  Google Scholar  * Kim, H. R. et


al. The ratio of peripheral regulatory T cells to Lox-1+ polymorphonuclear myeloid-derived suppressor cells predicts the early response to anti-PD-1 therapy in patients with non-small cell


lung cancer. _Am. J. Respir. Crit. Care Med._ 199, 243–246 (2019). Article  PubMed  PubMed Central  Google Scholar  * Chai, E., Zhang, L. & Li, C. LOX-1+ PMN-MDSC enhances immune


suppression which promotes glioblastoma multiforme progression. _Cancer Manag. Res._ 11, 7307–7315 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Si, Y. et al.


Multidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissue. _Sci. Immunol._ 4, eaaw9159 (2019). Article  CAS  PubMed  Google


Scholar  * Tavukcuoglu, E. et al. Human splenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are strategically-located immune regulatory cells in cancer. _Eur. J. Immunol._


50, 2067–2074 (2020). Article  CAS  PubMed  Google Scholar  * Gabrilovich, D. I. Myeloid-derived suppressor cells. _Cancer Immunol. Res._ 5, 3–8 (2017). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. _Cancer Cell_ 16, 183–194 (2009). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Fridlender, Z. G. et al. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal


neutrophils. _PLoS ONE_ 7, e31524 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mishalian, I., Granot, Z. & Fridlender, Z. G. The diversity of circulating neutrophils


in cancer. _Immunobiology_ 222, 82–88 (2016). Article  PubMed  CAS  Google Scholar  * Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K. & Gabrilovich, D. I. Characterization of the


nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. _J. Leukoc. Biol._ 91, 167–181 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Condamine, T.


& Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. _Trends Immunol._ 32, 19–25 (2011). Article  CAS  PubMed  Google


Scholar  * Trovato, R. et al. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. _J. Immunother. Cancer_


7, 255 (2019). Article  PubMed  PubMed Central  Google Scholar  * Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell


transcriptomics. _Sci. Immunol._ 5, eaay6017 (2020). THIS STUDY CONFIRMED THAT PMN-MDSCS AND M-MDSCS ISOLATED FROM TUMOUR-BEARING HOSTS HAVE A GENE SIGNATURE THAT STRONGLY DIFFERS FROM


NEUTROPHILS AND MONOCYTES, RESPECTIVELY, AND IDENTIFIED CD84 AS NEW MARKER OF MDSCS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Song, Q. et al. Dissecting intratumoral myeloid


cell plasticity by single cell RNA-seq. _Cancer Med._ 8, 3072–3085 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Perez, C. et al. Immunogenomic identification and


characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. _Blood_ 136, 199–209 (2020). Article  PubMed  Google Scholar  * Dinh, H. Q. et al. Coexpression of CD71


and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. _Immunity_ 53, 319–334.e6 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Sasidharan Nair, V., Saleh, R., Toor, S. M., Alajez, N. M. & Elkord, E. Transcriptomic analyses of myeloid-derived suppressor cell subsets in the circulation of colorectal cancer


patients. _Front. Oncol._ 10, 1530 (2020). Article  PubMed  PubMed Central  Google Scholar  * Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor


microenvironment for cancer immunotherapy. _Mol. Cell_ 78, 1019–1033 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yan, D. et al. Polyunsaturated fatty acids promote the


expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. _Eur. J. Immunol._ 43, 2943–2955 (2013). Article  CAS  PubMed  Google Scholar  * Turbitt, W. J., Collins,


S. D., Meng, H. & Rogers, C. J. Increased adiposity enhances the accumulation of MDSCs in the tumor microenvironment and adipose tissue of pancreatic tumor-bearing mice and in immune


organs of tumor-free hosts. _Nutrients_ 11, 3012 (2019). Article  CAS  PubMed Central  Google Scholar  * Al-Khami, A. A. et al. Exogenous lipid uptake induces metabolic and functional


reprogramming of tumor-associated myeloid-derived suppressor cells. _Oncoimmunology_ 6, e1344804 (2017). Article  PubMed  PubMed Central  Google Scholar  * Hossain, F. et al. Inhibition of


fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. _Cancer Immunol. Res._ 3, 1236–1247 (2015). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. _Nature_ 569, 73–78 (2019). THIS STUDY IDENTIFIED FATP2 AS A REGULATOR


OF THE SUPPRESSIVE FUNCTIONS OF PMN-MDSCS AND AS A NEW SPECIFIC THERAPEUTIC TARGET FOR THE FUNCTIONAL REPROGRAMMING OF PMN-MDSCS IN CANCER. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Ugolini, A. et al. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. _JCI Insight_ 5, e138581 (2020). Article 


PubMed Central  Google Scholar  * Zhou, J., Nefedova, Y., Lei, A. & Gabrilovich, D. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. _Semin. Immunol._


35, 19–28 (2018). Article  CAS  PubMed  Google Scholar  * Cai, T. T. et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. _PLoS


Pathog._ 13, e1006503 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Goffaux, G., Hammami, I. & Jolicoeur, M. A dynamic metabolic flux analysis of myeloid-derived


suppressor cells confirms immunosuppression-related metabolic plasticity. _Sci. Rep._ 7, 9850 (2017). Article  PubMed  PubMed Central  Google Scholar  * Patel, S. et al. Unique pattern of


neutrophil migration and function during tumor progression. _Nat. Immunol._ 19, 1236–1247 (2018). THIS STUDY ELUCIDATES THE DYNAMIC CHANGES THAT NEUTROPHILS UNDERGO IN CANCER AND DEMONSTRATE


THE MECHANISM OF NEUTROPHIL CONTRIBUTION TO EARLY TUMOUR DISSEMINATION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Jian, S. L. et al. Glycolysis regulates the expansion of


myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. _Cell Death Dis._ 8, e2779 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. _Nature_ 496, 238–242 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. _Nat. Cell Biol._ 18, 356–365 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Liu, G. et al. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. _Cancer Res._ 74, 727–737 (2014). Article  CAS


  PubMed  Google Scholar  * Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. _J. Exp. Med._ 207, 2439–2453


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kumar, V. et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated


macrophage differentiation. _Immunity_ 44, 303–315 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Baumann, T. et al. Regulatory myeloid cells paralyze T cells through


cell-cell transfer of the metabolite methylglyoxal. _Nat. Immunol._ 21, 555–566 (2020). Article  CAS  PubMed  Google Scholar  * Rodriguez, P. C. et al. Arginase I production in the tumor


microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. _Cancer Res._ 64, 5839–5849 (2004). Article  CAS  PubMed  Google Scholar 


* Raber, P. L. et al. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. _Int. J. Cancer_ 134, 2853–2864 (2014).


Article  CAS  PubMed  Google Scholar  * Lu, T. et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. _J. Clin. Invest._ 121, 4015–4029 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. _Nat. Med._ 13, 828–835 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * De Sanctis, F. et al. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer


microenvironment. _Front. Immunol._ 5, 69 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis


development. _Cancer Discov._ 2, 722–735 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yu, J. et al. Myeloid-derived suppressor cells suppress antitumor immune responses


through IDO expression and correlate with lymph node metastasis in patients with breast cancer. _J. Immunol._ 190, 3783–3797 (2013). Article  CAS  PubMed  Google Scholar  * Platten, M.,


Nollen, E. A. A., Rohrig, U. F., Fallarino, F. & Opitz, C. A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. _Nat. Rev. Drug Discov._ 18,


379–401 (2019). Article  CAS  PubMed  Google Scholar  * Wang, D., Sun, H., Wei, J., Cen, B. & DuBois, R. N. CXCL1 is critical for premetastatic niche formation and metastasis in


colorectal cancer. _Cancer Res._ 77, 3655–3665 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Seubert, B. et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a


premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. _Hepatology_ 61, 238–248 (2015). Article  CAS  PubMed  Google Scholar  * Wang, Y., Ding, Y.,


Guo, N. & Wang, S. MDSCs: key criminals of tumor pre-metastatic niche formation. _Front. Immunol._ 10, 172 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, P. et al.


Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. _Nat. Immunol._ 21, 1444–1455 (2020). Article  PubMed  PubMed Central  CAS  Google Scholar


  * Rayes, R. F. et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. _JCI Insight_ 5, e128008 (2019). Article  Google Scholar  * Park,


J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. _Sci. Transl Med._ 8, 361ra138 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Lee, W.


et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. _J. Exp. Med._ 216, 176–194 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Najmeh, S. et al. Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions. _Int. J. Cancer_ 140, 2321–2330 (2017). Article  CAS  PubMed 


Google Scholar  * Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. _J. Clin. Invest._ 123, 3446–3458 (2013). Article  CAS 


PubMed Central  Google Scholar  * Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. _Nature_ 583, 133–138 (2020). THIS STUDY DESCRIBES A


TRANSMEMBRANE DNA RECEPTOR THAT MEDIATES NET-DEPENDENT METASTASIS AND SUGGESTS THAT ITS TARGETING COULD BE AN APPEALING THERAPEUTIC STRATEGY FOR THE PREVENTION OF CANCER METASTASIS. Article


  CAS  PubMed  Google Scholar  * Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. _Nat. Rev. Cancer_ 19, 553–567 (2019).


Article  CAS  PubMed  Google Scholar  * Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. _Nature_ 566, 553–557 (2019). THIS STUDY REVEALS


THAT THE ASSOCIATION BETWEEN NEUTROPHILS AND CTCS EXPANDS THE METASTATIC POTENTIAL OF CTCS. THIS FINDING PROVIDES A RATIONALE FOR TARGETING THIS INTERACTION IN THE TREATMENT OF BREAST


CANCER. Article  CAS  PubMed  Google Scholar  * Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. _Cancer Cell_ 32, 135–154 (2017). Article 


CAS  PubMed  Google Scholar  * Spiegel, A. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. _Cancer


Discov._ 6, 630–649 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells


in the tumor microenvironment. _Trends Immunol._ 37, 208–220 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stadtmann, A. & Zarbock, A. CXCR2: from bench to bedside.


_Front. Immunol._ 3, 263 (2012). Article  PubMed  PubMed Central  Google Scholar  * Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and


reduced clinical benefit of immune-checkpoint inhibitors. _Nat. Med._ 26, 688–692 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yuen, K. C. et al. High systemic and


tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. _Nat. Med._ 26, 693–698 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Highfill, S. L. et


al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. _Sci. Transl Med._ 6, 237ra67 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Greene, S.


et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. _Clin. Cancer Res._ 26, 1420–1431 (2020). Article  CAS


  PubMed  Google Scholar  * Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. _Cancer Cell_ 29, 832–845


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. _Nature_ 579, 284–290 (2020). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent


antitumor immunity. _Cancer Res._ 70, 3052–3061 (2010). Article  CAS  PubMed  Google Scholar  * Welters, M. J. et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters


robust T cell responses. _Sci. Transl Med._ 8, 334ra52 (2016). Article  PubMed  CAS  Google Scholar  * Dijkgraaf, E. M. et al. A phase 1/2 study combining gemcitabine, pegintron and p53 SLP


vaccine in patients with platinum-resistant ovarian cancer. _Oncotarget_ 6, 32228–32243 (2015). Article  PubMed  PubMed Central  Google Scholar  * Fultang, L. et al. MDSC targeting with


gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. _EBioMedicine_ 47, 235–246 (2019). Article  PubMed  PubMed Central  Google Scholar  * Lancet, J. E. et al. A


phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). _Blood Adv._ 4, 1683–1689 (2020). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Appelbaum, F. R. & Bernstein, I. D. Gemtuzumab ozogamicin for acute myeloid leukemia. _Blood_ 130, 2373–2376 (2017). Article  CAS  PubMed  Google Scholar  * Fournier, E. et


al. Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. _Blood_ 135, 542–546 (2020). Article  PubMed  Google Scholar  * Vallera, D. A. et al. IL15 trispecific


killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. _Clin. Cancer Res._ 22, 3440–3450


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sarhan, D. et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. _Blood Adv._


2, 1459–1469 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis.


_J. Clin. Invest._ 124, 2626–2639 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dominguez, G. A. et al. Selective targeting of myeloid-derived suppressor cells in cancer


patients using DS-8273a, an agonistic TRAIL-R2 antibody. _Clin. Cancer Res._ 23, 2942–2950 (2017). Article  CAS  PubMed  Google Scholar  * Tavazoie, M. F. et al. LXR/ApoE activation


restricts innate immune suppression in cancer. _Cell_ 172, 825–840.e18 (2018). THIS STUDY DEMONSTRATED THE NOVEL MECHANISM OF MDSC REGULATION AND SUGGESTED A NEW THERAPEUTIC OPTION. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Nefedova, Y. et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. _Cancer Res._ 67,


11021–11028 (2007). Article  CAS  PubMed  Google Scholar  * Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of


vaccination. _Cancer Res._ 63, 4441–4449 (2003). CAS  PubMed  Google Scholar  * Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. & Gabrilovich, D. Therapeutic regulation of


myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. _Cancer Immunol. Immunother._ 62, 909–918 (2013). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Bauer, R. et al. Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic


therapy. _Cancer Res._ 78, 3220–3232 (2018). Article  CAS  PubMed  Google Scholar  * Tobin, R. P. et al. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma


patients treated with Ipilimumab. _Int. Immunopharmacol._ 63, 282–291 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zelenay, S. et al. Cyclooxygenase-dependent tumor growth


through evasion of immunity. _Cell_ 162, 1257–1270 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fujita, M. et al. COX-2 blockade suppresses gliomagenesis by inhibiting


myeloid-derived suppressor cells. _Cancer Res._ 71, 2664–2674 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rodriguez, P. C. et al. Arginase I in myeloid suppressor cells


is induced by COX-2 in lung carcinoma. _J. Exp. Med._ 202, 931–939 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Veltman, J. D. et al. COX-2 inhibition improves


immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. _BMC Cancer_ 10, 464 (2010). Article  PubMed 


PubMed Central  CAS  Google Scholar  * He, Y. M. et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. _Nat. Med._ 24, 224–231


(2018). THIS STUDY DEMONSTRATED THE MECHANISM AND BIOLOGICAL ROLE OF TEMPORAL ACCUMULATION OF MDSCS IN NEWBORNS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Mohamed, E. et al.


The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. _Immunity_ 52, 668–682.e7 (2020). RECENT STUDY


DEMONSTRATING THE ROLE OF ER STRESS, SPECIFICALLY PERK, IN REGULATION OF MDSC FUNCTION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y., Lee, C., Geng, S. & Li, L.


Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. _JCI Insight_ 4, e122939 (2019). Article  PubMed Central  Google Scholar  * Iacobaeus, E. et al.


Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis. _Immunol. Cell Biol._ 96, 820–830 (2018). Article  CAS  PubMed 


Google Scholar  * Jiao, Z. et al. Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. _Scand. J. Rheumatol._


42, 85–90 (2013). Article  CAS  PubMed  Google Scholar  * Guo, C. et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. _Ann.


Rheum. Dis._ 75, 278–285 (2016). Article  CAS  PubMed  Google Scholar  * Rahman, S. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus


erythematosus. _Ann. Rheum. Dis._ 78, 957–966 (2019). Article  CAS  PubMed  Google Scholar  * Wang, Z. et al. Increased CD14+HLA-DR-/low myeloid-derived suppressor cells correlate with


disease severity in systemic lupus erythematosus patients in an iNOS-dependent manner. _Front. Immunol._ 10, 1202 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Florez-Pollack, S. et al. Expansion of myeloid-derived suppressor cells in the peripheral blood and lesional skin of cutaneous lupus patients. _J. Invest. Dermatol._ 139, 478–481 (2019).


Article  CAS  PubMed  Google Scholar  * Glenn, J. D., Liu, C. & Whartenby, K. A. Frontline science: induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting


myeloid derived suppressor cells to the lung. _J. Leukoc. Biol._ 105, 829–841 (2019). Article  CAS  PubMed  Google Scholar  * Xue, F. et al. Elevated granulocytic myeloid-derived suppressor


cells are closely related with elevation of Th17 cells in mice with experimental asthma. _Int. J. Biol. Sci._ 16, 2072–2083 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Pang, B. et al. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. _Clin. Sci._ 134,


2209–2222 (2020). Article  CAS  Google Scholar  * Geng, Z., Ming, B., Hu, S., Dong, L. & Ye, C. α-Difluoromethylornithine suppresses inflammatory arthritis by impairing myeloid-derived


suppressor cells. _Int. Immunopharmacol._ 71, 251–258 (2019). Article  CAS  PubMed  Google Scholar  * Knier, B. et al. Myeloid-derived suppressor cells control B cell accumulation in the


central nervous system during autoimmunity. _Nat. Immunol._ 19, 1341–1351 (2018). NEW EVIDENCE SUPPORTING THE IMPORTANT ROLE OF MDSCS IN THE SUPPRESSION OF B CELLS AND DESCRIBING THE


CRITICAL CONTRIBUTION OF THIS MECHANISM TO AUTOIMMUNE DISEASE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Elliott, D. M., Singh, N., Nagarkatti, M. & Nagarkatti, P. S.


Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. _Front. Immunol._ 9, 1782 (2018). Article


  PubMed  PubMed Central  CAS  Google Scholar  * Melero-Jerez, C. et al. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β


treatment in a murine model of multiple sclerosis. _Neurobiol. Dis._ 127, 13–31 (2019). Article  CAS  PubMed  Google Scholar  * Cao, Y. et al. Polymorphonuclear myeloid-derived suppressor


cells attenuate allergic airway inflammation by negatively regulating group 2 innate lymphoid cells. _Immunology_ 156, 402–412 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Zhang, Y. et al. Tumor-derived MDSCs inhibit airway remodeling in asthmatic mice through regulating IL-10 and IL-12. _Am. J. Transl. Res._ 11, 4192–4202 (2019). CAS  PubMed  PubMed Central


  Google Scholar  * Tian, J. et al. Increased GITRL impairs the function of myeloid-derived suppressor cells and exacerbates primary Sjogren syndrome. _J. Immunol._ 202, 1693–1703 (2019).


Article  CAS  PubMed  Google Scholar  * Nishimura, K. et al. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in SKG mice. _Arthritis


Rheumatol._ 67, 893–902 (2015). Article  CAS  PubMed  Google Scholar  * Sendo, S., Saegusa, J., Yamada, H., Nishimura, K. & Morinobu, A. Tofacitinib facilitates the expansion of


myeloid-derived suppressor cells and ameliorates interstitial lung disease in SKG mice. _Arthritis Res. Ther._ 21, 184 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Zhou,


J. et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. _Nat. Commun._ 10, 2427 (2019). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Shi, G. et al. mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. _J. Cell Physiol._ 234, 1618–1629 (2019).


Article  CAS  PubMed  Google Scholar  * van der Touw, W. et al. Glatiramer acetate enhances myeloid-derived suppressor cell function via recognition of paired Ig-like receptor B. _J.


Immunol._ 201, 1727–1734 (2018). Article  PubMed  CAS  Google Scholar  * Zhang, H. et al. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through


manipulating Th17 cell differentiation. _Clin. Immunol._ 157, 175–186 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, Y. et al. Lactoferrin-induced myeloid-derived


suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. _J. Clin. Invest._ 129, 4261–4275 (2019). Article  PubMed  PubMed Central  Google Scholar  *


Ostrand-Rosenberg, S. et al. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. _J. Leukoc. Biol._ 101, 1091–1101 (2017). Article  CAS 


PubMed  Google Scholar  * Ghaebi, M. et al. Immune regulatory network in successful pregnancy and reproductive failures. _Biomed. Pharmacother._ 88, 61–73 (2017). Article  CAS  PubMed 


Google Scholar  * Zhao, A. M., Xu, H. J., Kang, X. M., Zhao, A. M. & Lu, L. M. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk. _J.


Reprod. Immunol._ 113, 35–41 (2016). Article  CAS  PubMed  Google Scholar  * Pan, T. et al. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via


STAT3 signaling in mice. _J. Leukoc. Biol._ 100, 499–511 (2016). Article  CAS  PubMed  Google Scholar  * Ostrand-Rosenberg, S. et al. Frontline science: myeloid-derived suppressor cells


(MDSCs) facilitate maternal-fetal tolerance in mice. _J. Leukoc. Biol._ 101, 1091–1101 (2016). Article  PubMed  PubMed Central  Google Scholar  * Ren, J. et al. Myeloid-derived suppressor


cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells. _Am. J. Reprod. Immunol._ 81, e13099 (2019). Article  PubMed  CAS  Google Scholar


  * Gervassi, A. et al. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. _PLoS ONE_ 9, e107816 (2014). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Leiber, A. et al. Neonatal myeloid derived suppressor cells show reduced apoptosis and immunosuppressive activity upon infection with Escherichia coli.


_Eur. J. Immunol._ 47, 1009–1021 (2017). Article  CAS  PubMed  Google Scholar  * Schwarz, J. et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of


preterm infants and remain elevated during the neonatal period. _Clin. Exp. Immunol._ 191, 328–337 (2018). Article  CAS  PubMed  Google Scholar  * Reyes, M. et al. Induction of a regulatory


myeloid program in bacterial sepsis and severe COVID-19. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.09.02.280180 (2020). Article  PubMed  PubMed Central  Google Scholar  * Agrati, C.


et al. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). _Cell Death Differ._ 27, 3196–3207 (2020). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Thompson, E. et al. Mitochondrial induced T cell apoptosis and aberrant myeloid metabolic programs define distinct immune cell subsets during acute and recovered


SARS-CoV-2 infection. Preprint at _medRxiv_ https://doi.org/10.1101/2020.09.10.20186064 (2020). Article  PubMed  PubMed Central  Google Scholar  * Silvin, A. et al. Elevated calprotectin and


abnormal myeloid cell subsets discriminate severe from mild COVID-19. _Cell_ 182, 1401–1418.e18 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schulte-Schrepping, J. et al.


Severe COVID-19 is marked by a dysregulated myeloid cell compartment. _Cell_ 182, 1419–1440.e23 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Janols, H. et al. A high


frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. _J. Leukoc. Biol._ 96, 685–693 (2014). Article  PubMed  CAS  Google Scholar  *


Mathias, B. et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. _Ann. Surg._ 265, 827–834 (2017). Article  PubMed 


Google Scholar  * Darcy, C. J. et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. _Crit. Care_ 18, R163


(2014). Article  PubMed  PubMed Central  Google Scholar  * Bost, P. et al. Deciphering the state of immune silence in fatal COVID-19 patients. Preprint at _medRxiv_


https://doi.org/10.1101/2020.08.10.20170894 (2020). Article  Google Scholar  * Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. _Annu. Rev. Immunol._ 33,


107–138 (2015). Article  CAS  PubMed  Google Scholar  * Li, A., Song, N. J., Riesenberg, B. P. & Li, Z. The emerging roles of endoplasmic reticulum stress in balancing immunity and


tolerance in health and diseases: mechanisms and opportunities. _Front. Immunol._ 10, 3154 (2019). Article  CAS  PubMed  Google Scholar  * Grootjans, J., Kaser, A., Kaufman, R. J. &


Blumberg, R. S. The unfolded protein response in immunity and inflammation. _Nat. Rev. Immunol._ 16, 469–484 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thevenot, P. T.


et al. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. _Immunity_ 41, 389–401 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank S. Gabrilovich, Rutgers New Jersey Medical School, for help with editing the manuscript. AUTHOR INFORMATION


Author notes * These authors contributed equally: Filippo Veglia, Emilio Sanseviero. AUTHORS AND AFFILIATIONS * H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA Filippo


Veglia * Wistar Institute, Philadelphia, PA, USA Emilio Sanseviero * AstraZeneca, Gaithersburg, MD, USA Dmitry I. Gabrilovich Authors * Filippo Veglia View author publications You can also


search for this author inPubMed Google Scholar * Emilio Sanseviero View author publications You can also search for this author inPubMed Google Scholar * Dmitry I. Gabrilovich View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to all aspects of the article. CORRESPONDING AUTHOR Correspondence to


Dmitry I. Gabrilovich. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Immunology_ thanks


the anonymous, reviewers for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and


institutional affiliations. GLOSSARY * Monocyte-like precursor of granulocytes Recently identified population of monocytic precursors of granulocytes (primarily polymorphonuclear


myeloid-derived suppressor cells (MDSCs)) accumulated in tumour-bearing hosts. * S100A8/A9 Heterodimer, calcium binding pro-inflammatory protein that presents in neutrophils and monocytes


and greatly accumulates in MDSCs; it is considered as one of the hallmarks of these cells. * M1/M2 polarized macrophages ‘M1’ and ‘M2’ are classifications historically used to define


macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with IFNγ and lipopolysaccharides) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10),


respectively. However, in vivo macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regards to their phenotypes and functions, which are


continuously shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic to explain the true nature of in vivo macrophages, although these terms are


still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory. * Methylglyoxal CH3C(O)CHO is a reduced derivative of pyruvic acid involved


in the formation of advanced glycation end products. * STING Stimulator of interferon genes (STING) induces type I interferon production. * Lactoferrin A globular glycoprotein from the


transferrin family widely expressed in various secretory fluids such as milk, saliva, tears and nasal secretions. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Veglia, F., Sanseviero, E. & Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. _Nat Rev Immunol_ 21, 485–498 (2021).


https://doi.org/10.1038/s41577-020-00490-y Download citation * Accepted: 14 December 2020 * Published: 01 February 2021 * Issue Date: August 2021 * DOI:


https://doi.org/10.1038/s41577-020-00490-y SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative