Liquid-metal-based magnetic fluids

Liquid-metal-based magnetic fluids

Play all audios:

Loading...

ABSTRACT Magnetic fluids, suspensions of magnetic particles in carrier liquids like water, oil or organic solvents, combine magnetic properties with fluidity to achieve features such as


rapid magnetic response, reversible viscosity, and tunable thermal and optical properties. However, these carriers tend to have low densities and boiling points, affecting the suspension


stability and working temperature range of magnetic fluids. Using liquid metals — which have high densities, boiling points and chemical stability in addition to excellent conductivity — as


the carrier liquid can not only overcome these issues but also make the resulting liquid-metal-based magnetic fluids (LMMFs) highly conductive, substantially expanding the functions of


magnetic fluids. Furthermore, LMMFs behave in complex yet versatile ways owing to synergies between the electrical conduction of the liquid metal and the magnetism of the suspended


particles. This Review provides a comprehensive overview of LMMFs, beginning with their fabrication methods and an interpretation of their suspension stability. We summarize the properties


and applications of LMMFs, highlighting their superiority over traditional magnetic fluids. Finally, we discuss the challenges and prospects of these materials. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles


$119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


PERMANENT FLUIDIC MAGNETS FOR LIQUID BIOELECTRONICS Article 26 April 2024 THERMOMAGNETIC LIQUID METAL SWITCHES WITH FAST BIDIRECTIONAL RESPONSE Article Open access 17 March 2025


SHAPE-RECOVERING LIQUIDS Article 04 April 2025 REFERENCES * Stöhr, J. & Siegmann, H. C. in _Magnetism_ 61–103 (Springer, 2006). * Rosensweig, R. E. Magnetic fluids. _Annu. Rev. Fluid


Mech._ 19, 437–461 (1987). Article  Google Scholar  * Chantrell, R. W., Bradbury, A., Popplewell, J. & Charles, S. W. Agglomerate formation in a magnetic fluid. _J. Appl. Phys._ 53,


2742–2744 (1982). Article  CAS  Google Scholar  * De Vicente, J., Klingenberg, D. J. & Hidalgo-Alvarez, R. Magnetorheological fluids: a review. _Soft Matter_ 7, 3701 (2011). Article 


Google Scholar  * Philip, J. Magnetic nanofluids (ferrofluids): recent advances, applications, challenges, and future directions. _Adv. Colloid Interface Sci._ 311, 102810 (2023). Article 


CAS  PubMed  Google Scholar  * Butter, K., Bomans, P. H. H., Frederik, P. M., Vroege, G. J. & Philipse, A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic


electron microscopy. _Nat. Mater._ 2, 88–91 (2003). Article  CAS  PubMed  Google Scholar  * Dunne, P. et al. Liquid flow and control without solid walls. _Nature_ 581, 58–62 (2020). Article


  CAS  PubMed  Google Scholar  * Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. _Science_ 365, 264–267 (2019). Article  CAS  PubMed  Google Scholar  * Wang, W. et al.


Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. _Nature_ 559, 77–82 (2018). Article  CAS  PubMed  Google Scholar  * Zhang, J. et al. Wetting ridge


assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. _Nat. Commun._ 12, 7136 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Seol, M.-L., Jeon,


S.-B., Han, J.-W. & Choi, Y.-K. Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. _Nano Energy_ 31, 233–238


(2017). Article  CAS  Google Scholar  * Puga, J. B. et al. Novel thermal switch based on magnetic nanofluids with remote activation. _Nano Energy_ 31, 278–285 (2017). Article  CAS  Google


Scholar  * Nkurikiyimfura, I., Wang, Y. & Pan, Z. Heat transfer enhancement by magnetic nanofluids — a review. _Renew. Sustain. Energy Rev._ 21, 548–561 (2013). Article  CAS  Google


Scholar  * Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. _Proc. Natl Acad. Sci. USA_ 119, e2203116119 (2022). *


Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. _Nature_ 561, 401–405 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mertelj, A., Lisjak, D., Drofenik, M. & Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. _Nature_ 504, 237–241 (2013). Article  CAS  PubMed  Google


Scholar  * Clark, N. A. Ferromagnetic ferrofluids. _Nature_ 504, 229–230 (2013). Article  CAS  PubMed  Google Scholar  * Rosensweig, R. E. _Ferrohydrodynamics_ (Cambridge Univ. Press, 1997).


* Ashtiani, M., Hashemabadi, S. H. & Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. _J. Magn. Magn. Mater._ 374, 716–730 (2015). Article  CAS 


Google Scholar  * Chen, S., Wang, H. Z., Zhao, R. Q., Rao, W. & Liu, J. Liquid metal composites. _Matter_ 2, 1446–1480 (2020). Article  Google Scholar  * Yan, J., Lu, Y., Chen, G., Yang,


M. & Gu, Z. Advances in liquid metals for biomedical applications. _Chem. Soc. Rev._ 47, 2518–2533 (2018). Article  CAS  PubMed  Google Scholar  * Daeneke, T. et al. Liquid metals:


fundamentals and applications in chemistry. _Chem. Soc. Rev._ 47, 4073–4111 (2018). Article  CAS  PubMed  Google Scholar  * & Wang, D. et al. Liquid metal combinatorics toward materials


discovery. _Adv. Mater._ 35, 2303533 (2023). Article  CAS  Google Scholar  * Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. _Nat.


Commun._ 13, 5576 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khoshmanesh, K. et al. Liquid metal enabled microfluidics. _Lab Chip_ 17, 974–993 (2017). Article  CAS 


PubMed  Google Scholar  * Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter


robotics and electronics. _Nat. Mater._ 17, 618–624 (2018). Article  CAS  PubMed  Google Scholar  * Mao, G. et al. Soft electromagnetic actuators. _Sci. Adv_.


https://doi.org/10.1126/sciadv.abc0251 (2020). * Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity.


_Sci. Robot_. https://doi.org/10.1126/scirobotics.abg2171 (2022). * Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic


gallium-indium. _Nat. Mater._ 20, 851–858 (2021). Article  CAS  PubMed  Google Scholar  * Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed


circuit board. _Science_ 378, 637–641 (2022). Article  CAS  PubMed  Google Scholar  * Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated


plasticity. _Nat. Electron._ 6, 154–163 (2023). Article  Google Scholar  * Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems.


_Science_ 379, 488–493 (2023). Article  CAS  PubMed  Google Scholar  * Liu, G. et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium–indium liquid metal–air


battery operated at room temperature. _Adv. Energy Mater._ 8, 1–9 (2018). Article  Google Scholar  * Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid


metals featuring atomically thin ceria interfaces. _Nat. Commun._ 10, 865 (2019). Article  PubMed  PubMed Central  Google Scholar  * Zuraiqi, K. et al. Liquid metals in catalysis for energy


applications. _Joule_ 4, 2290–2321 (2020). Article  CAS  Google Scholar  * Agno, K.-C. et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. _Nat.


Biomed. Eng_. https://doi.org/10.1038/s41551-023-01116-z (2023). * Hu, H. et al. A wearable cardiac ultrasound imager. _Nature_ 613, 667–675 (2023). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. _Nat. Electron._ 6, 779–789 (2023). Article  Google Scholar  * Nan, K. et al. Low-cost


gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. _Nat. Biomed. Eng._ 6, 1092–1104 (2022). Article  CAS  PubMed  Google Scholar  * Greenwood, N.


N. in _Advances in Inorganic Chemistry and Radiochemistry_ Vol. 5, 91–134 (1963). * Kim, Y. & Zhao, X. Magnetic soft materials and robots. _Chem. Rev._ 122, 5317–5364 (2022). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. _Science_ 358,


332–335 (2017). Article  CAS  PubMed  Google Scholar  * Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. _Sci. Adv._ 7, 1–11 (2021). CAS 


Google Scholar  * Chang, H. et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. _Adv. Mater. Interfaces_ 5, 1800571 (2018). Article  Google Scholar


  * Xiong, M., Gao, Y. & Liu, J. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. _J. Magn. Magn. Mater._ 354, 279–283


(2014). Article  CAS  Google Scholar  * Ma, B. et al. A versatile approach for direct patterning of liquid metal using magnetic field. _Adv. Funct. Mater._ 29, 1901370 (2019). Article 


Google Scholar  * Xing, W. et al. Construction of 3D conductive network in liquid gallium with enhanced thermal and electrical performance. _Adv. Mater. Technol._ 7, 2100970 (2022). Article


  CAS  Google Scholar  * Daalkhaijav, U., Yirmibesoglu, O. D., Walker, S. & Mengüç, Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics.


_Adv. Mater. Technol._ 3, 1700351 (2018). Article  Google Scholar  * Kagan, I. Y., Rykov, V. G. & Yantovskii, E. I. Ferromagnetic electrically conducting liquids. _Magn. Gidrodin._ 6,


155–157 (1970). Google Scholar  * Ito, R., Dodbiba, G. & Fujita, T. MR fluid of liquid gallium dispersing magnetic particles. _Int. J. Mod. Phys. B_ 19, 1430–1436 (2005). Article  CAS 


Google Scholar  * Guo, R., Sun, X., Yuan, B., Wang, H. & Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable


electronics, and thermal transfer printing. _Adv. Sci._ 6, 1901478 (2019). Article  CAS  Google Scholar  * Liu, T.-Y., Ye, J., Fu, J.-H., Li, D.-D. & Liu, J. in _Intelligent Robotics and


Applications_ (eds Liu, X. J. at al.) 412–421 (Springer, 2021). * Yang, C., Bian, X., Qin, J., Guo, T. & Zhao, X. Metal-based magnetic functional fluids with amorphous particles. _RSC


Adv._ 4, 59541–59547 (2014). Article  CAS  Google Scholar  * Yang, C., Liu, Z., Yu, M. & Bian, X. Liquid metal Ga–Sn alloy based ferrofluids with amorphous nano-sized Fe–Co–B magnetic


particles. _J. Mater. Sci._ 55, 13303–13313 (2020). Article  CAS  Google Scholar  * Shao, Z. et al. Eutectic crystallized FePd nanoparticles for liquid metal magnet. _Chem. Commun._ 56,


6555–6558 (2020). Article  CAS  Google Scholar  * Zhao, S., Yang, C., Bian, X., Guo, T. & Yu, M. Ga-based magnetic fluid with Al2O3-coated Ni nanoparticles. _RSC Adv._ 5, 41961–41966


(2015). Article  CAS  Google Scholar  * Huang, M., Lin, W., Tuersun, Y., Huang, X. & Chu, S. Core–shelled nanoparticle fillers for recoverable magnetic liquid metal with high stability.


_Adv. Mater. Technol._ 8, 2201231 (2023). Article  CAS  Google Scholar  * Yu, M., Bian, X., Wang, T. & Wang, J. Metal-based magnetic fluids with core–shell structure FeB@SiO2 amorphous


particles. _Soft Matter_ 13, 6340–6348 (2017). Article  CAS  PubMed  Google Scholar  * Dodbiba, G., Ono, K., Park, H. S., Matsuo, S. & Fujita, T. FeNbVB alloy particles suspended in


liquid gallium: investigating the magnetic properties of the MR suspension. _Int. J. Mod. Phys. B_ 25, 947–955 (2011). Article  CAS  Google Scholar  * Park, H. S., Cao, L. F., Dodbiba, G.


& Fujita, T. Liquid gallium based temperature sensitive functional fluid dispersing chemically synthesized FeMB nanoparticles. _J. Phys. Conf. Ser._ 149, 012108 (2009). Article  Google


Scholar  * Fujita, T. et al. Movement of liquid gallium dispersing low concentration of temperature sensitive magnetic particles under magnetic field. _J. Magn. Magn. Mater._ 323, 1207–1210


(2011). Article  CAS  Google Scholar  * Cao, L. F., Park, H. S., Dodbiba, G. & Fujita, T. Dispersion of submicron Ni particles into liquid gallium. _Magnetohydrodynamics_ 44, 97–104


(2008). Article  Google Scholar  * Chang, H. et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. _ACS Appl. Mater. Interfaces_ 12,


14125–14135 (2020). Article  CAS  PubMed  Google Scholar  * Wang, D., Wang, X. & Rao, W. Precise regulation of Ga-based liquid metal oxidation. _Accounts_. _Mater. Res._ 2, 1093–1103


(2021). CAS  Google Scholar  * Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching


applications. _J. Microelectromech. Syst._ 25, 1050–1057 (2016). Article  CAS  Google Scholar  * Kim, D. & Lee, J.-B. Magnetic-field-induced liquid metal droplet manipulation. _J. Korean


Phys. Soc._ 66, 282–286 (2015). Article  CAS  Google Scholar  * Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. On-demand magnetic manipulation of liquid metal in microfluidic channels for


electrical switching applications. _Lab. Chip_ 17, 128–133 (2017). Article  CAS  Google Scholar  * Chen, R. et al. Magnetically controllable liquid metal marbles. _Adv. Mater. Interfaces_


6, 1901057 (2019). Article  CAS  Google Scholar  * Liu, H. et al. Magnetic steering of liquid metal mobiles. _Soft Matter_ 14, 3236–3245 (2018). Article  CAS  PubMed  Google Scholar  * Guo,


Z. et al. Nanoheterostructure by liquid metal sandwich‐based interfacial galvanic replacement for cancer targeted theranostics. _Small_ 19, 2300751 (2023). Article  CAS  Google Scholar  *


Tang, J., Zhao, X., Li, J., Zhou, Y. & Liu, J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. _Adv. Sci._ 4, 1700024 (2017). Article  Google Scholar 


* A. de Castro, I. et al. A gallium-based magnetocaloric liquid metal ferrofluid. _Nano Lett._ 17, 7831–7838 (2017). Article  CAS  PubMed  Google Scholar  * Elbourne, A. et al. Antibacterial


liquid metals: biofilm treatment via magnetic activation. _ACS Nano_ 14, 802–817 (2020). Article  CAS  PubMed  Google Scholar  * Cheeseman, S. et al. Broad-spectrum treatment of bacterial


biofilms using magneto-responsive liquid metal particles. _J. Mater. Chem. B_ 8, 10776–10787 (2020). Article  CAS  PubMed  Google Scholar  * Carle, F., Bai, K., Casara, J., Vanderlick, K.


& Brown, E. Development of magnetic liquid metal suspensions for magnetohydrodynamics. _Phys. Rev. Fluids_ 2, 013301 (2017). Article  Google Scholar  * Kim, S., Kim, S., Hong, K.,


Dickey, M. D. & Park, S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal–elastomer conductors. _ACS


Appl. Mater. Interfaces_ 14, 37110–37119 (2022). Article  CAS  PubMed  Google Scholar  * Wang, H. et al. PLUS-M: a porous liquid-metal enabled ubiquitous soft material. _Mater. Horiz._ 5,


222–229 (2018). Article  CAS  Google Scholar  * Ren, L. et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. _Adv. Mater._ 30, 1802595


(2018). Article  Google Scholar  * Lu, Y. et al. Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal


reinforcement. _ACS Appl. Mater. Interfaces_ 13, 5256–5265 (2021). Article  CAS  PubMed  Google Scholar  * Lu, Y. et al. Dynamic leakage-free liquid metals. _Adv. Funct. Mater._ 33, 2210961


(2023). Article  CAS  Google Scholar  * Shen, Y. et al. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. _Nat. Commun._ 14, 6276


(2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scherer, C. & Figueiredo Neto, A. M. Ferrofluids: properties and applications. _Braz. J. Phys._ 35, 718–727 (2005).


Article  CAS  Google Scholar  * Singh, R., Pathak, S., Jain, K., Noorjahan & Kim, S. Correlating the dipolar interactions induced magneto‐viscoelasticity and thermal conductivity


enhancements in nanomagnetic fluids. _Small_ https://doi.org/10.1002/smll.202205741 (2023). * Biedermann, A. R., Mazurek, M., Schröder, J. & Arenz, M. Physical and chemical stability of


nanoparticles in ferrofluid before and after impregnation: implications for magnetic pore fabric studies. _Geochemistry, Geophys. Geosyst._ 24, e2023GC011125 (2023). * Maity, D. &


Agrawal, D. C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. _J. Magn. Magn. Mater._ 308, 46–55 (2007). Article


  CAS  Google Scholar  * Luo, Y.-R. _Comprehensive Handbook of Chemical Bond Energies_ (CRC, 2007). * Garrett, R. H. & Grisham, C. M. _Biochemistry_ (Cengage Learning, 2010). * Wu,


Y.-Y., Lin, W. P. & Lee, C. C. A study of chemical reactions of silver and indium at 180 °C. _J. Mater. Sci. Mater. Electron._ 23, 2235–2244 (2012). Article  CAS  Google Scholar  * Lin,


S., Cho, C. & Chang, H. Interfacial reactions in Cu/Ga and Cu/Ga/Cu couples. _J. Electron. Mater._ 43, 204–211 (2014). Article  CAS  Google Scholar  * Kadau, H. et al. Observing the


Rosensweig instability of a quantum ferrofluid. _Nature_ 530, 194–197 (2016). Article  CAS  PubMed  Google Scholar  * Wang, H. et al. A liquid gripper based on phase transitional metallic


ferrofluid. _Adv. Funct. Mater._ 31, 2100274 (2021). Article  CAS  Google Scholar  * Bai, K. et al. Effective magnetic susceptibility of suspensions of ferromagnetic particles. _J. Appl.


Phys._ 124, 123901 (2018). Article  Google Scholar  * Martin, A., Odier, P., Pinton, J.-F. & Fauve, S. Magnetic permeability of a diphasic flow, made of liquid gallium and iron beads.


_Eur. Phys. J. B_ 18, 337–341 (2000). Article  Google Scholar  * Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. _J.


Phys. D_ 36, R167–R181 (2003). Article  CAS  Google Scholar  * Chen, B. C. et al. Hysteresis loss-induced temperature in ferromagnetic nanoparticle. _IEEE Trans. Magn._


https://doi.org/10.1109/TMAG.2013.2278311 (2014). * Sun, X. et al. Stiffness tunable implanted electrode enabled by magnetic liquid metal for wireless hyperthermia. _Appl. Mater. Today_ 27,


101495 (2022). Article  Google Scholar  * Sun, X. et al. Flexible skin patch enabled tumor hybrid thermophysical therapy and adaptive antitumor immune response. _Adv. Healthc. Mater._ 12,


2202872 (2023). Article  CAS  Google Scholar  * Wang, Q. et al. Magnetoactive liquid–solid phase transitional matter. _Matter_ 6, 855–872 (2023). Article  CAS  Google Scholar  * Fiorillo, F.


in _Characterization and Measurement of Magnetic Materials_ 25–88 (Elsevier, 2004). * Zhao, R., Kim, Y., Chester, S. A., Sharma, P. & Zhao, X. Mechanics of hard-magnetic soft materials.


_J. Mech. Phys. Solids_ 124, 244–263 (2019). Article  CAS  Google Scholar  * Lu, Y. et al. Liquid metal-based magnetorheological fluid with a large magnetocaloric effect. _ACS Appl. Mater.


Interfaces_ 12, 48748–48755 (2020). Article  CAS  PubMed  Google Scholar  * Sun, W., Yu, J. & Cai, Y. Influence of magnetic field, magnetic particle percentages, and particle diameters


on the stiffness of magnetorheological fluids. _J. Intell. Mater. Syst. Struct._ 31, 2312–2325 (2020). Article  CAS  Google Scholar  * Lu, Y. et al. Iron oxide nanoclusters for T1 magnetic


resonance imaging of non-human primates. _Nat. Biomed. Eng._ 1, 637–643 (2017). Article  CAS  PubMed  Google Scholar  * McAteer, M. A. et al. In vivo magnetic resonance imaging of acute


brain inflammation using microparticles of iron oxide. _Nat. Med._ 13, 1253–1258 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, C. et al. Design of biodegradable,


implantable devices towards clinical translation. _Nat. Rev. Mater._ 5, 61–81 (2019). Article  Google Scholar  * Liu, S., Zhao, Y., Hao, W., Zhang, X.-D. & Ming, D. Micro- and


nanotechnology for neural electrode–tissue interfaces. _Biosens. Bioelectron._ 170, 112645 (2020). Article  CAS  PubMed  Google Scholar  * Li, S., Dong, C. & Lv, Y. Magnetic liquid metal


scaffold with dynamically tunable stiffness for bone tissue engineering. _Biomater. Adv._ 139, 212975 (2022). Article  CAS  PubMed  Google Scholar  * Wang, D. et al. Magnetic liquid metal


loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. _Nanoscale_ 13, 8817–8836 (2021). Article  CAS  PubMed  Google Scholar  * Shen, B. G., Sun, J. R.,


Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. _Adv. Mater._ 21, 4545–4564 (2009). Article  CAS  Google Scholar  * Liu, J., Gottschall, T.,


Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. _Nat. Mater._ 11, 620–626 (2012). Article  CAS  PubMed  Google Scholar  *


Lyubina, J., Schäfer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. _Adv. Mater._ 22, 3735–3739 (2010).


Article  CAS  PubMed  Google Scholar  * Lu, Y. et al. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. _Nat. Commun._ 13,


1397 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xing, W. et al. Cuttlefish-inspired self-adaptive liquid metal network enabling electromagnetic interference shielding


and thermal management. _Adv. Mater. Technol._ 8, 1–9 (2023). Article  Google Scholar  * Zou, Z. et al. 3D printing of liquid metals: recent advancements and challenges. _Adv. Funct. Mater_.


https://doi.org/10.1002/adfm.202213312 (2023). * Chen, S., Cui, Z., Wang, H., Wang, X. & Liu, J. Liquid metal flexible electronics: past, present, and future. _Appl. Phys. Rev_. 10,


021308 (2023). * Guo, R. et al. Semi-liquid-metal‐(Ni‐EGaIn)‐based ultraconformable electronic tattoo. _Adv. Mater. Technol._ 4, 1900183 (2019). Article  CAS  Google Scholar  * Guo, R. et


al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. _Adv. Eng. Mater._ 20, 1800054 (2018). Article  Google Scholar  * Wang, X. et


al. Ni-doped liquid metal printed highly stretchable and conformable strain sensor for multifunctional human-motion monitoring. In _2018 40th Annual International Conference of the IEEE


Engineering in Medicine and Biology Society (EMBC)_ 3276–3279 (IEEE, 2018). * Hajalilou, A. et al. Digitally printable magnetic liquid metal composite for recyclable soft‐matter electronics.


_Adv. Mater. Technol._ 8, 2201621 (2023). Article  CAS  Google Scholar  * Ma, B., Xu, C., Cui, L., Zhao, C. & Liu, H. Magnetic printing of liquid metal for perceptive soft actuators


with embodied intelligence. _ACS Appl. Mater. Interfaces_ 13, 5574–5582 (2021). Article  CAS  PubMed  Google Scholar  * Zhang, C. et al. Guiding magnetic liquid metal for flexible circuit.


_Int. J. Extrem. Manuf._ 3, 025102 (2021). Article  CAS  Google Scholar  * Zhang, J. et al. Surface-embedded liquid metal electrodes with abrasion resistance via direct magnetic printing.


_ACS Appl. Mater. Interfaces_ 14, 53405–53412 (2022). Article  CAS  PubMed  Google Scholar  * Wu, Y. et al. A novel strategy for preparing stretchable and reliable biphasic liquid metal.


_Adv. Funct. Mater._ 29, 1903840 (2019). Article  Google Scholar  * Hoang, T. T. et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic,


and medical applications. _Adv. Intell. Syst._ 4, 2200282 (2022). Article  Google Scholar  * Baharfar, M. & Kalantar-Zadeh, K. Emerging role of liquid metals in sensing. _ACS Sens._ 7,


386–408 (2022). Article  CAS  PubMed  Google Scholar  * Kim, H. et al. Shape‐deformable and locomotive MXene (Ti3C2T_x_)‐encapsulated magnetic liquid metal for 3D‐motion-adaptive synapses.


_Adv. Funct. Mater._ 33, 2210385 (2023). Article  CAS  Google Scholar  * Kim, S. et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. _ACS


Appl. Mater. Interfaces_ 15, 28954–28963 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cao, L. et al. Ferromagnetic liquid metal putty-like material with transformed shape


and reconfigurable polarity. _Adv. Mater._ 32, 2000827 (2020). Article  CAS  Google Scholar  * Li, J. et al. Oriented magnetic liquid metal-filled interlocked bilayer films as


multifunctional smart electromagnetic devices. _Nano Res._ 16, 1764–1772 (2023). Article  CAS  Google Scholar  * Zhu, R. et al. Anisotropic magnetic liquid metal film for wearable wireless


electromagnetic sensing and smart electromagnetic interference shielding. _Nano Energy_ 92, 106700 (2022). Article  CAS  Google Scholar  * He, X., Ni, M., Wu, J., Xuan, S. & Gong, X.


Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity. _J. Mater. Sci. Technol._ 92, 60–68 (2021). Article  CAS  Google Scholar  * He, X., Wu,


J., Hu, T., Xuan, S. & Gong, X. A 3D-printed coaxial microfluidic device approach for generating magnetic liquid metal droplets with large size controllability. _Microfluid.


Nanofluidics_ 24, 30 (2020). Article  CAS  Google Scholar  * Hu, L. et al. Magnetic liquid metals manipulated in the three-dimensional free space. _ACS Appl. Mater. Interfaces_ 11, 8685–8692


(2019). Article  CAS  PubMed  Google Scholar  * Wang, B. et al. Leech‐inspired shape-encodable liquid metal robots for reconfigurable circuit welding and transient electronics. _Adv.


Intell. Syst._ 4, 2200080 (2022). Article  Google Scholar  * Zhao, P., Yan, L. & Gao, X. Millirobot based on a phase-transformable magnetorheological liquid metal. _ACS Appl. Mater.


Interfaces_ 15, 37658–37667 (2023). Article  CAS  PubMed  Google Scholar  * Jeong, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnetic three dimensional liquid metal manipulation.


_Lab Chip_ 19, 3261–3267 (2019). Article  CAS  PubMed  Google Scholar  * Zhao, P., Yan, L. & Gao, X. Magnetic liquid metal droplet robot with multifunction and high output force in


milli-newton. _Soft Robot._ 10, 1146–1158 (2023). Article  PubMed  Google Scholar  * Jeong, J., Seo, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnet polarity dependent reversible


dynamic behavior of magnetic liquid metal marble. _Mater. Res. Express_ 7, 015708 (2020). Article  CAS  Google Scholar  * Jeong, J., Seo, J., Chung, S. K., Lee, J.-B. & Kim, D. Magnetic


field-induced recoverable dynamic morphological change of gallium-based liquid metal. _J. Microelectromech. Syst._ 29, 1208–1215 (2020). Article  CAS  Google Scholar  * Li, X. et al.


Programmable digital liquid metal droplets in reconfigurable magnetic fields. _ACS Appl. Mater. Interfaces_ 12, 37670–37679 (2020). Article  CAS  PubMed  Google Scholar  * Zhou, W., Liang,


Q. & Chen, T. 3D manipulation of magnetic liquid metals. _Adv. Intell. Syst._ 2, 1900170 (2020). Article  Google Scholar  * Zhang, Y. et al. Reconfigurable magnetic liquid metal robot


for high-performance droplet manipulation. _Nano Lett._ 22, 2923–2933 (2022). Article  CAS  PubMed  Google Scholar  * Li, F. et al. Magnetically- and electrically-controllable functional


liquid metal droplets. _Adv. Mater. Technol._ 4, 1800694 (2019). Article  Google Scholar  * Liu, C., Li, D., Huang, J., Guo, Z. & Liu, W. High-performance magnetic and electric control


of liquid metal droplets. _Langmuir_ 39, 7495–7502 (2023). Article  CAS  PubMed  Google Scholar  * Zhang, J., Guo, R. & Liu, J. Self-propelled liquid metal motors steered by a magnetic


or electrical field for drug delivery. _J. Mater. Chem. B_ 4, 5349–5357 (2016). Article  CAS  PubMed  Google Scholar  * Merhebi, S. et al. Magnetic and conductive liquid metal gels. _ACS


Appl. Mater. Interfaces_ 12, 20119–20128 (2020). Article  CAS  PubMed  Google Scholar  * Zhang, J., Soon, R. H., Wei, Z., Hu, W. & Sitti, M. Liquid metal–elastomer composites with


dual-energy transmission mode for multifunctional miniature untethered magnetic robots. _Adv. Sci._ 9, 2203730 (2022). Article  CAS  Google Scholar  * Xu, Y. et al. Tailorable, lightweight


and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. _Nano-Micro Lett._ 14, 29 (2022). Article  CAS  Google Scholar  * Li, W. et al.


Magneto-induced self-stratifying liquid metal–elastomer composites with high thermal conductivity for soft actuator. _Cell Rep. Phys. Sci._ 4, 101209 (2023). Article  CAS  Google Scholar  *


Hong, K. et al. An ultrastretchable electrical switch fiber with a magnetic liquid metal core for remote magnetic actuation. _Polymers_ 13, 2407 (2021). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Peng, M. et al. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid._Soft Sci._ 3, 36 (2023). Article  CAS  Google Scholar  *


Zhao, R., Dai, H. & Yao, H. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. _IEEE Robot. Autom. Lett._ 7, 4535–4541 (2022). Article  Google Scholar  *


Zhou, X. et al. Variable stiffness wires based on magnetorheological liquid metals. _Int. J. Smart Nano Mater._ 13, 232–243 (2022). Article  Google Scholar  * Zhang, M. et al. A magnetically


and thermally controlled liquid metal variable stiffness material. _Adv. Eng. Mater._ 25, 2201296 (2023). Article  CAS  Google Scholar  * Ge, H., Li, H., Mei, S. & Liu, J. Low melting


point liquid metal as a new class of phase change material: an emerging frontier in energy area. _Renew. Sustain. Energy Rev._ 21, 331–346 (2013). Article  CAS  Google Scholar  * Duan, L. et


al. Colourful liquid metals. _Nat. Rev. Mater._ 7, 929–931 (2022). Article  Google Scholar  * Duan, L. et al. Surface optics and color effects of liquid metal materials._Adv. Mater._ 35,


2210515 (2023). Article  CAS  Google Scholar  * Cui, Y. et al. Interfacial wetting behaviors of liquid Ga alloys/FeGa3 based on metallic bond interaction. _Colloids Surf. A_ 569, 102–109


(2019). Article  CAS  Google Scholar  * Pu, H., Jiang, F. & Yang, Z. Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite.


_Mater. Chem. Phys._ 100, 10–14 (2006). Article  CAS  Google Scholar  * Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. _Nature_ 619, 73–77 (2023). Article  CAS 


PubMed  Google Scholar  * Wang, H. et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. _Adv. Mater_. 33, 2103104 (2021). * Tan,


S., Gui, H., Yuan, B. & Liu, J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. _Appl. Phys. Lett._ 107, 071904 (2015). Article  Google Scholar  * Jin,


S. W. et al. Stretchable loudspeaker using liquid metal microchannel. _Sci. Rep_. https://doi.org/10.1038/srep11695 (2015). * Guo, R., Sheng, L., Gong, H. Y. & Liu, J. Liquid metal


spiral coil enabled soft electromagnetic actuator. _Sci. China Technol. Sci._ 61, 516–521 (2018). Article  CAS  Google Scholar  * Zhang, X.-D., Zhou, Y.-X. & Liu, J. A novel layered


stack electromagnetic pump towards circulating metal fluid: design, fabrication and test. _Appl. Therm. Eng._ 179, 115610 (2020). Article  Google Scholar  * Zhou, Y.-X., Zu, J.-S. & Liu,


J. Insights into fluidic endogenous magnetism and magnetic monopoles from a liquid metal droplet machine. _Soft Sci._ 1, 15 (2021). CAS  Google Scholar  * Tang, J. et al. Dynamic


configurations of metallic atoms in the liquid state for selective propylene synthesis. _Nat. Nanotechnol._ https://doi.org/10.1038/s41565-023-01540-x (2023). * Rahim, M. A. et al.


Low-temperature liquid platinum catalyst. _Nat. Chem._ 14, 935–941 (2022). Article  CAS  PubMed  Google Scholar  * Fatima, S. S. et al. Current state and future prospects of liquid metal


catalysis. _Nat. Catal._ 6, 1131–1139 (2023). Article  Google Scholar  * Cebeci, Y. & Sönmez, İ. A study on the relationship between critical surface tension of wetting and oil


agglomeration recovery of calcite. _J. Colloid Interface Sci._ 273, 300–305 (2004). Article  CAS  PubMed  Google Scholar  * Liu, T., Sen, P. & Kim, C.-J. Characterization of nontoxic


liquid-metal alloy galinstan for applications in microdevices. _J. Microelectromech. Syst._ 21, 443–450 (2012). Article  CAS  Google Scholar  * Hao, Y., Gao, J., Lv, Y. & Liu, J. Low


melting point alloys enabled stiffness tunable advanced materials. _Adv. Funct. Mater._ 32, 2201942 (2022). Article  CAS  Google Scholar  * Saien, J. & Fadaei, V. The study of


interfacial tension of kerosene–water under influence of CTAB surfactant and different size silica nanoparticles. _J. Mol. Liq._ 255, 439–446 (2018). Article  CAS  Google Scholar  * Dai, J.


& Wang, Z. A comparison of the impregnation of cellulose insulation by ester and mineral oil. _IEEE Trans. Dielectr. Electr. Insul._ 15, 374–381 (2008). Article  Google Scholar  * Barca,


F., Caporossi, T. & Rizzo, S. Silicone oil: different physical proprieties and clinical applications. _Biomed. Res. Int._ https://doi.org/10.1155/2014/502143 (2014). * Haynes, W. M.


(ed.) _CRC Handbook of Chemistry and Physics_ (CRC, 2016). * Jain, N., Zhang, X., Hawkett, B. S. & Warr, G. G. Stable and water-tolerant ionic liquid ferrofluids. _ACS Appl. Mater.


Interfaces_ 3, 662–667 (2011). Article  CAS  PubMed  Google Scholar  * Handschuh-Wang, S., Stadler, F. J. & Zhou, X. Critical review on the physical properties of gallium-based liquid


metals and selected pathways for their alteration. _J. Phys. Chem. C_ 125, 20113–20142 (2021). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by


the National Natural Science Foundation of China project nos. 51890893, 52076213 and 91748206; the Frontier Project of the Chinese Academy of Sciences; and the 2115 Talent Development


Program of China Agricultural University. The authors thank M. Guo and J. Gao for help with drawing some of the images in this work. AUTHOR INFORMATION Author notes * These authors


contributed equally: Wentao Xiang, Yongyu Lu. AUTHORS AND AFFILIATIONS * Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of


Sciences, Beijing, China Wentao Xiang, Yongyu Lu & Jing Liu * School of Future Technology, University of Chinese Academy of Sciences, Beijing, China Wentao Xiang & Jing Liu * Center


of Double Helix, Tsinghua Shenzhen International Graduate School, Shenzhen, China Hongzhang Wang * School of Engineering Medicine, Beihang University, Beijing, China Xuyang Sun * Institute


for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China Sen Chen * College of Engineering, China Agricultural University, Beijing, China Zhizhu He *


Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China Jing Liu Authors * Wentao Xiang View author publications You can also search for this author


inPubMed Google Scholar * Yongyu Lu View author publications You can also search for this author inPubMed Google Scholar * Hongzhang Wang View author publications You can also search for


this author inPubMed Google Scholar * Xuyang Sun View author publications You can also search for this author inPubMed Google Scholar * Sen Chen View author publications You can also search


for this author inPubMed Google Scholar * Zhizhu He View author publications You can also search for this author inPubMed Google Scholar * Jing Liu View author publications You can also


search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to the discussion, writing and editing of the Review. Y.L., Z.H. and J.L. supervised the Review.


CORRESPONDING AUTHORS Correspondence to Yongyu Lu, Zhizhu He or Jing Liu. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW


INFORMATION _Nature Reviews Materials_ thanks Yi Du, Long Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S


NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS CAMEO CHEMICALS DATABASE:


https://cameochemicals.noaa.gov/ EUROPEAN CHEMICALS AGENCY: https://echa.europa.eu/information-on-chemicals RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other


partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this


article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Xiang, W., Lu, Y., Wang, H. _et al._


Liquid-metal-based magnetic fluids. _Nat Rev Mater_ 9, 433–449 (2024). https://doi.org/10.1038/s41578-024-00679-w Download citation * Accepted: 29 March 2024 * Published: 15 May 2024 * Issue


Date: June 2024 * DOI: https://doi.org/10.1038/s41578-024-00679-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative