Play all audios:
ABSTRACT Magnetic fluids, suspensions of magnetic particles in carrier liquids like water, oil or organic solvents, combine magnetic properties with fluidity to achieve features such as
rapid magnetic response, reversible viscosity, and tunable thermal and optical properties. However, these carriers tend to have low densities and boiling points, affecting the suspension
stability and working temperature range of magnetic fluids. Using liquid metals — which have high densities, boiling points and chemical stability in addition to excellent conductivity — as
the carrier liquid can not only overcome these issues but also make the resulting liquid-metal-based magnetic fluids (LMMFs) highly conductive, substantially expanding the functions of
magnetic fluids. Furthermore, LMMFs behave in complex yet versatile ways owing to synergies between the electrical conduction of the liquid metal and the magnetism of the suspended
particles. This Review provides a comprehensive overview of LMMFs, beginning with their fabrication methods and an interpretation of their suspension stability. We summarize the properties
and applications of LMMFs, highlighting their superiority over traditional magnetic fluids. Finally, we discuss the challenges and prospects of these materials. Access through your
institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio
journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles
$119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are
calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS
PERMANENT FLUIDIC MAGNETS FOR LIQUID BIOELECTRONICS Article 26 April 2024 THERMOMAGNETIC LIQUID METAL SWITCHES WITH FAST BIDIRECTIONAL RESPONSE Article Open access 17 March 2025
SHAPE-RECOVERING LIQUIDS Article 04 April 2025 REFERENCES * Stöhr, J. & Siegmann, H. C. in _Magnetism_ 61–103 (Springer, 2006). * Rosensweig, R. E. Magnetic fluids. _Annu. Rev. Fluid
Mech._ 19, 437–461 (1987). Article Google Scholar * Chantrell, R. W., Bradbury, A., Popplewell, J. & Charles, S. W. Agglomerate formation in a magnetic fluid. _J. Appl. Phys._ 53,
2742–2744 (1982). Article CAS Google Scholar * De Vicente, J., Klingenberg, D. J. & Hidalgo-Alvarez, R. Magnetorheological fluids: a review. _Soft Matter_ 7, 3701 (2011). Article
Google Scholar * Philip, J. Magnetic nanofluids (ferrofluids): recent advances, applications, challenges, and future directions. _Adv. Colloid Interface Sci._ 311, 102810 (2023). Article
CAS PubMed Google Scholar * Butter, K., Bomans, P. H. H., Frederik, P. M., Vroege, G. J. & Philipse, A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic
electron microscopy. _Nat. Mater._ 2, 88–91 (2003). Article CAS PubMed Google Scholar * Dunne, P. et al. Liquid flow and control without solid walls. _Nature_ 581, 58–62 (2020). Article
CAS PubMed Google Scholar * Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. _Science_ 365, 264–267 (2019). Article CAS PubMed Google Scholar * Wang, W. et al.
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. _Nature_ 559, 77–82 (2018). Article CAS PubMed Google Scholar * Zhang, J. et al. Wetting ridge
assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. _Nat. Commun._ 12, 7136 (2021). Article CAS PubMed PubMed Central Google Scholar * Seol, M.-L., Jeon,
S.-B., Han, J.-W. & Choi, Y.-K. Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. _Nano Energy_ 31, 233–238
(2017). Article CAS Google Scholar * Puga, J. B. et al. Novel thermal switch based on magnetic nanofluids with remote activation. _Nano Energy_ 31, 278–285 (2017). Article CAS Google
Scholar * Nkurikiyimfura, I., Wang, Y. & Pan, Z. Heat transfer enhancement by magnetic nanofluids — a review. _Renew. Sustain. Energy Rev._ 21, 548–561 (2013). Article CAS Google
Scholar * Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. _Proc. Natl Acad. Sci. USA_ 119, e2203116119 (2022). *
Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. _Nature_ 561, 401–405 (2018). Article CAS PubMed PubMed Central Google Scholar *
Mertelj, A., Lisjak, D., Drofenik, M. & Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. _Nature_ 504, 237–241 (2013). Article CAS PubMed Google
Scholar * Clark, N. A. Ferromagnetic ferrofluids. _Nature_ 504, 229–230 (2013). Article CAS PubMed Google Scholar * Rosensweig, R. E. _Ferrohydrodynamics_ (Cambridge Univ. Press, 1997).
* Ashtiani, M., Hashemabadi, S. H. & Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. _J. Magn. Magn. Mater._ 374, 716–730 (2015). Article CAS
Google Scholar * Chen, S., Wang, H. Z., Zhao, R. Q., Rao, W. & Liu, J. Liquid metal composites. _Matter_ 2, 1446–1480 (2020). Article Google Scholar * Yan, J., Lu, Y., Chen, G., Yang,
M. & Gu, Z. Advances in liquid metals for biomedical applications. _Chem. Soc. Rev._ 47, 2518–2533 (2018). Article CAS PubMed Google Scholar * Daeneke, T. et al. Liquid metals:
fundamentals and applications in chemistry. _Chem. Soc. Rev._ 47, 4073–4111 (2018). Article CAS PubMed Google Scholar * & Wang, D. et al. Liquid metal combinatorics toward materials
discovery. _Adv. Mater._ 35, 2303533 (2023). Article CAS Google Scholar * Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. _Nat.
Commun._ 13, 5576 (2022). Article CAS PubMed PubMed Central Google Scholar * Khoshmanesh, K. et al. Liquid metal enabled microfluidics. _Lab Chip_ 17, 974–993 (2017). Article CAS
PubMed Google Scholar * Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter
robotics and electronics. _Nat. Mater._ 17, 618–624 (2018). Article CAS PubMed Google Scholar * Mao, G. et al. Soft electromagnetic actuators. _Sci. Adv_.
https://doi.org/10.1126/sciadv.abc0251 (2020). * Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity.
_Sci. Robot_. https://doi.org/10.1126/scirobotics.abg2171 (2022). * Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic
gallium-indium. _Nat. Mater._ 20, 851–858 (2021). Article CAS PubMed Google Scholar * Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed
circuit board. _Science_ 378, 637–641 (2022). Article CAS PubMed Google Scholar * Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated
plasticity. _Nat. Electron._ 6, 154–163 (2023). Article Google Scholar * Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems.
_Science_ 379, 488–493 (2023). Article CAS PubMed Google Scholar * Liu, G. et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium–indium liquid metal–air
battery operated at room temperature. _Adv. Energy Mater._ 8, 1–9 (2018). Article Google Scholar * Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid
metals featuring atomically thin ceria interfaces. _Nat. Commun._ 10, 865 (2019). Article PubMed PubMed Central Google Scholar * Zuraiqi, K. et al. Liquid metals in catalysis for energy
applications. _Joule_ 4, 2290–2321 (2020). Article CAS Google Scholar * Agno, K.-C. et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. _Nat.
Biomed. Eng_. https://doi.org/10.1038/s41551-023-01116-z (2023). * Hu, H. et al. A wearable cardiac ultrasound imager. _Nature_ 613, 667–675 (2023). Article CAS PubMed PubMed Central
Google Scholar * Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. _Nat. Electron._ 6, 779–789 (2023). Article Google Scholar * Nan, K. et al. Low-cost
gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. _Nat. Biomed. Eng._ 6, 1092–1104 (2022). Article CAS PubMed Google Scholar * Greenwood, N.
N. in _Advances in Inorganic Chemistry and Radiochemistry_ Vol. 5, 91–134 (1963). * Kim, Y. & Zhao, X. Magnetic soft materials and robots. _Chem. Rev._ 122, 5317–5364 (2022). Article
CAS PubMed PubMed Central Google Scholar * Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. _Science_ 358,
332–335 (2017). Article CAS PubMed Google Scholar * Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. _Sci. Adv._ 7, 1–11 (2021). CAS
Google Scholar * Chang, H. et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. _Adv. Mater. Interfaces_ 5, 1800571 (2018). Article Google Scholar
* Xiong, M., Gao, Y. & Liu, J. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. _J. Magn. Magn. Mater._ 354, 279–283
(2014). Article CAS Google Scholar * Ma, B. et al. A versatile approach for direct patterning of liquid metal using magnetic field. _Adv. Funct. Mater._ 29, 1901370 (2019). Article
Google Scholar * Xing, W. et al. Construction of 3D conductive network in liquid gallium with enhanced thermal and electrical performance. _Adv. Mater. Technol._ 7, 2100970 (2022). Article
CAS Google Scholar * Daalkhaijav, U., Yirmibesoglu, O. D., Walker, S. & Mengüç, Y. Rheological modification of liquid metal for additive manufacturing of stretchable electronics.
_Adv. Mater. Technol._ 3, 1700351 (2018). Article Google Scholar * Kagan, I. Y., Rykov, V. G. & Yantovskii, E. I. Ferromagnetic electrically conducting liquids. _Magn. Gidrodin._ 6,
155–157 (1970). Google Scholar * Ito, R., Dodbiba, G. & Fujita, T. MR fluid of liquid gallium dispersing magnetic particles. _Int. J. Mod. Phys. B_ 19, 1430–1436 (2005). Article CAS
Google Scholar * Guo, R., Sun, X., Yuan, B., Wang, H. & Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable
electronics, and thermal transfer printing. _Adv. Sci._ 6, 1901478 (2019). Article CAS Google Scholar * Liu, T.-Y., Ye, J., Fu, J.-H., Li, D.-D. & Liu, J. in _Intelligent Robotics and
Applications_ (eds Liu, X. J. at al.) 412–421 (Springer, 2021). * Yang, C., Bian, X., Qin, J., Guo, T. & Zhao, X. Metal-based magnetic functional fluids with amorphous particles. _RSC
Adv._ 4, 59541–59547 (2014). Article CAS Google Scholar * Yang, C., Liu, Z., Yu, M. & Bian, X. Liquid metal Ga–Sn alloy based ferrofluids with amorphous nano-sized Fe–Co–B magnetic
particles. _J. Mater. Sci._ 55, 13303–13313 (2020). Article CAS Google Scholar * Shao, Z. et al. Eutectic crystallized FePd nanoparticles for liquid metal magnet. _Chem. Commun._ 56,
6555–6558 (2020). Article CAS Google Scholar * Zhao, S., Yang, C., Bian, X., Guo, T. & Yu, M. Ga-based magnetic fluid with Al2O3-coated Ni nanoparticles. _RSC Adv._ 5, 41961–41966
(2015). Article CAS Google Scholar * Huang, M., Lin, W., Tuersun, Y., Huang, X. & Chu, S. Core–shelled nanoparticle fillers for recoverable magnetic liquid metal with high stability.
_Adv. Mater. Technol._ 8, 2201231 (2023). Article CAS Google Scholar * Yu, M., Bian, X., Wang, T. & Wang, J. Metal-based magnetic fluids with core–shell structure FeB@SiO2 amorphous
particles. _Soft Matter_ 13, 6340–6348 (2017). Article CAS PubMed Google Scholar * Dodbiba, G., Ono, K., Park, H. S., Matsuo, S. & Fujita, T. FeNbVB alloy particles suspended in
liquid gallium: investigating the magnetic properties of the MR suspension. _Int. J. Mod. Phys. B_ 25, 947–955 (2011). Article CAS Google Scholar * Park, H. S., Cao, L. F., Dodbiba, G.
& Fujita, T. Liquid gallium based temperature sensitive functional fluid dispersing chemically synthesized FeMB nanoparticles. _J. Phys. Conf. Ser._ 149, 012108 (2009). Article Google
Scholar * Fujita, T. et al. Movement of liquid gallium dispersing low concentration of temperature sensitive magnetic particles under magnetic field. _J. Magn. Magn. Mater._ 323, 1207–1210
(2011). Article CAS Google Scholar * Cao, L. F., Park, H. S., Dodbiba, G. & Fujita, T. Dispersion of submicron Ni particles into liquid gallium. _Magnetohydrodynamics_ 44, 97–104
(2008). Article Google Scholar * Chang, H. et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. _ACS Appl. Mater. Interfaces_ 12,
14125–14135 (2020). Article CAS PubMed Google Scholar * Wang, D., Wang, X. & Rao, W. Precise regulation of Ga-based liquid metal oxidation. _Accounts_. _Mater. Res._ 2, 1093–1103
(2021). CAS Google Scholar * Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching
applications. _J. Microelectromech. Syst._ 25, 1050–1057 (2016). Article CAS Google Scholar * Kim, D. & Lee, J.-B. Magnetic-field-induced liquid metal droplet manipulation. _J. Korean
Phys. Soc._ 66, 282–286 (2015). Article CAS Google Scholar * Jeon, J., Lee, J.-B., Chung, S. K. & Kim, D. On-demand magnetic manipulation of liquid metal in microfluidic channels for
electrical switching applications. _Lab. Chip_ 17, 128–133 (2017). Article CAS Google Scholar * Chen, R. et al. Magnetically controllable liquid metal marbles. _Adv. Mater. Interfaces_
6, 1901057 (2019). Article CAS Google Scholar * Liu, H. et al. Magnetic steering of liquid metal mobiles. _Soft Matter_ 14, 3236–3245 (2018). Article CAS PubMed Google Scholar * Guo,
Z. et al. Nanoheterostructure by liquid metal sandwich‐based interfacial galvanic replacement for cancer targeted theranostics. _Small_ 19, 2300751 (2023). Article CAS Google Scholar *
Tang, J., Zhao, X., Li, J., Zhou, Y. & Liu, J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. _Adv. Sci._ 4, 1700024 (2017). Article Google Scholar
* A. de Castro, I. et al. A gallium-based magnetocaloric liquid metal ferrofluid. _Nano Lett._ 17, 7831–7838 (2017). Article CAS PubMed Google Scholar * Elbourne, A. et al. Antibacterial
liquid metals: biofilm treatment via magnetic activation. _ACS Nano_ 14, 802–817 (2020). Article CAS PubMed Google Scholar * Cheeseman, S. et al. Broad-spectrum treatment of bacterial
biofilms using magneto-responsive liquid metal particles. _J. Mater. Chem. B_ 8, 10776–10787 (2020). Article CAS PubMed Google Scholar * Carle, F., Bai, K., Casara, J., Vanderlick, K.
& Brown, E. Development of magnetic liquid metal suspensions for magnetohydrodynamics. _Phys. Rev. Fluids_ 2, 013301 (2017). Article Google Scholar * Kim, S., Kim, S., Hong, K.,
Dickey, M. D. & Park, S. Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal–elastomer conductors. _ACS
Appl. Mater. Interfaces_ 14, 37110–37119 (2022). Article CAS PubMed Google Scholar * Wang, H. et al. PLUS-M: a porous liquid-metal enabled ubiquitous soft material. _Mater. Horiz._ 5,
222–229 (2018). Article CAS Google Scholar * Ren, L. et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. _Adv. Mater._ 30, 1802595
(2018). Article Google Scholar * Lu, Y. et al. Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal
reinforcement. _ACS Appl. Mater. Interfaces_ 13, 5256–5265 (2021). Article CAS PubMed Google Scholar * Lu, Y. et al. Dynamic leakage-free liquid metals. _Adv. Funct. Mater._ 33, 2210961
(2023). Article CAS Google Scholar * Shen, Y. et al. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. _Nat. Commun._ 14, 6276
(2023). Article CAS PubMed PubMed Central Google Scholar * Scherer, C. & Figueiredo Neto, A. M. Ferrofluids: properties and applications. _Braz. J. Phys._ 35, 718–727 (2005).
Article CAS Google Scholar * Singh, R., Pathak, S., Jain, K., Noorjahan & Kim, S. Correlating the dipolar interactions induced magneto‐viscoelasticity and thermal conductivity
enhancements in nanomagnetic fluids. _Small_ https://doi.org/10.1002/smll.202205741 (2023). * Biedermann, A. R., Mazurek, M., Schröder, J. & Arenz, M. Physical and chemical stability of
nanoparticles in ferrofluid before and after impregnation: implications for magnetic pore fabric studies. _Geochemistry, Geophys. Geosyst._ 24, e2023GC011125 (2023). * Maity, D. &
Agrawal, D. C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. _J. Magn. Magn. Mater._ 308, 46–55 (2007). Article
CAS Google Scholar * Luo, Y.-R. _Comprehensive Handbook of Chemical Bond Energies_ (CRC, 2007). * Garrett, R. H. & Grisham, C. M. _Biochemistry_ (Cengage Learning, 2010). * Wu,
Y.-Y., Lin, W. P. & Lee, C. C. A study of chemical reactions of silver and indium at 180 °C. _J. Mater. Sci. Mater. Electron._ 23, 2235–2244 (2012). Article CAS Google Scholar * Lin,
S., Cho, C. & Chang, H. Interfacial reactions in Cu/Ga and Cu/Ga/Cu couples. _J. Electron. Mater._ 43, 204–211 (2014). Article CAS Google Scholar * Kadau, H. et al. Observing the
Rosensweig instability of a quantum ferrofluid. _Nature_ 530, 194–197 (2016). Article CAS PubMed Google Scholar * Wang, H. et al. A liquid gripper based on phase transitional metallic
ferrofluid. _Adv. Funct. Mater._ 31, 2100274 (2021). Article CAS Google Scholar * Bai, K. et al. Effective magnetic susceptibility of suspensions of ferromagnetic particles. _J. Appl.
Phys._ 124, 123901 (2018). Article Google Scholar * Martin, A., Odier, P., Pinton, J.-F. & Fauve, S. Magnetic permeability of a diphasic flow, made of liquid gallium and iron beads.
_Eur. Phys. J. B_ 18, 337–341 (2000). Article Google Scholar * Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. _J.
Phys. D_ 36, R167–R181 (2003). Article CAS Google Scholar * Chen, B. C. et al. Hysteresis loss-induced temperature in ferromagnetic nanoparticle. _IEEE Trans. Magn._
https://doi.org/10.1109/TMAG.2013.2278311 (2014). * Sun, X. et al. Stiffness tunable implanted electrode enabled by magnetic liquid metal for wireless hyperthermia. _Appl. Mater. Today_ 27,
101495 (2022). Article Google Scholar * Sun, X. et al. Flexible skin patch enabled tumor hybrid thermophysical therapy and adaptive antitumor immune response. _Adv. Healthc. Mater._ 12,
2202872 (2023). Article CAS Google Scholar * Wang, Q. et al. Magnetoactive liquid–solid phase transitional matter. _Matter_ 6, 855–872 (2023). Article CAS Google Scholar * Fiorillo, F.
in _Characterization and Measurement of Magnetic Materials_ 25–88 (Elsevier, 2004). * Zhao, R., Kim, Y., Chester, S. A., Sharma, P. & Zhao, X. Mechanics of hard-magnetic soft materials.
_J. Mech. Phys. Solids_ 124, 244–263 (2019). Article CAS Google Scholar * Lu, Y. et al. Liquid metal-based magnetorheological fluid with a large magnetocaloric effect. _ACS Appl. Mater.
Interfaces_ 12, 48748–48755 (2020). Article CAS PubMed Google Scholar * Sun, W., Yu, J. & Cai, Y. Influence of magnetic field, magnetic particle percentages, and particle diameters
on the stiffness of magnetorheological fluids. _J. Intell. Mater. Syst. Struct._ 31, 2312–2325 (2020). Article CAS Google Scholar * Lu, Y. et al. Iron oxide nanoclusters for T1 magnetic
resonance imaging of non-human primates. _Nat. Biomed. Eng._ 1, 637–643 (2017). Article CAS PubMed Google Scholar * McAteer, M. A. et al. In vivo magnetic resonance imaging of acute
brain inflammation using microparticles of iron oxide. _Nat. Med._ 13, 1253–1258 (2007). Article CAS PubMed PubMed Central Google Scholar * Li, C. et al. Design of biodegradable,
implantable devices towards clinical translation. _Nat. Rev. Mater._ 5, 61–81 (2019). Article Google Scholar * Liu, S., Zhao, Y., Hao, W., Zhang, X.-D. & Ming, D. Micro- and
nanotechnology for neural electrode–tissue interfaces. _Biosens. Bioelectron._ 170, 112645 (2020). Article CAS PubMed Google Scholar * Li, S., Dong, C. & Lv, Y. Magnetic liquid metal
scaffold with dynamically tunable stiffness for bone tissue engineering. _Biomater. Adv._ 139, 212975 (2022). Article CAS PubMed Google Scholar * Wang, D. et al. Magnetic liquid metal
loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. _Nanoscale_ 13, 8817–8836 (2021). Article CAS PubMed Google Scholar * Shen, B. G., Sun, J. R.,
Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. _Adv. Mater._ 21, 4545–4564 (2009). Article CAS Google Scholar * Liu, J., Gottschall, T.,
Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. _Nat. Mater._ 11, 620–626 (2012). Article CAS PubMed Google Scholar *
Lyubina, J., Schäfer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. _Adv. Mater._ 22, 3735–3739 (2010).
Article CAS PubMed Google Scholar * Lu, Y. et al. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. _Nat. Commun._ 13,
1397 (2022). Article CAS PubMed PubMed Central Google Scholar * Xing, W. et al. Cuttlefish-inspired self-adaptive liquid metal network enabling electromagnetic interference shielding
and thermal management. _Adv. Mater. Technol._ 8, 1–9 (2023). Article Google Scholar * Zou, Z. et al. 3D printing of liquid metals: recent advancements and challenges. _Adv. Funct. Mater_.
https://doi.org/10.1002/adfm.202213312 (2023). * Chen, S., Cui, Z., Wang, H., Wang, X. & Liu, J. Liquid metal flexible electronics: past, present, and future. _Appl. Phys. Rev_. 10,
021308 (2023). * Guo, R. et al. Semi-liquid-metal‐(Ni‐EGaIn)‐based ultraconformable electronic tattoo. _Adv. Mater. Technol._ 4, 1900183 (2019). Article CAS Google Scholar * Guo, R. et
al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. _Adv. Eng. Mater._ 20, 1800054 (2018). Article Google Scholar * Wang, X. et
al. Ni-doped liquid metal printed highly stretchable and conformable strain sensor for multifunctional human-motion monitoring. In _2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC)_ 3276–3279 (IEEE, 2018). * Hajalilou, A. et al. Digitally printable magnetic liquid metal composite for recyclable soft‐matter electronics.
_Adv. Mater. Technol._ 8, 2201621 (2023). Article CAS Google Scholar * Ma, B., Xu, C., Cui, L., Zhao, C. & Liu, H. Magnetic printing of liquid metal for perceptive soft actuators
with embodied intelligence. _ACS Appl. Mater. Interfaces_ 13, 5574–5582 (2021). Article CAS PubMed Google Scholar * Zhang, C. et al. Guiding magnetic liquid metal for flexible circuit.
_Int. J. Extrem. Manuf._ 3, 025102 (2021). Article CAS Google Scholar * Zhang, J. et al. Surface-embedded liquid metal electrodes with abrasion resistance via direct magnetic printing.
_ACS Appl. Mater. Interfaces_ 14, 53405–53412 (2022). Article CAS PubMed Google Scholar * Wu, Y. et al. A novel strategy for preparing stretchable and reliable biphasic liquid metal.
_Adv. Funct. Mater._ 29, 1903840 (2019). Article Google Scholar * Hoang, T. T. et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic,
and medical applications. _Adv. Intell. Syst._ 4, 2200282 (2022). Article Google Scholar * Baharfar, M. & Kalantar-Zadeh, K. Emerging role of liquid metals in sensing. _ACS Sens._ 7,
386–408 (2022). Article CAS PubMed Google Scholar * Kim, H. et al. Shape‐deformable and locomotive MXene (Ti3C2T_x_)‐encapsulated magnetic liquid metal for 3D‐motion-adaptive synapses.
_Adv. Funct. Mater._ 33, 2210385 (2023). Article CAS Google Scholar * Kim, S. et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. _ACS
Appl. Mater. Interfaces_ 15, 28954–28963 (2023). Article CAS PubMed PubMed Central Google Scholar * Cao, L. et al. Ferromagnetic liquid metal putty-like material with transformed shape
and reconfigurable polarity. _Adv. Mater._ 32, 2000827 (2020). Article CAS Google Scholar * Li, J. et al. Oriented magnetic liquid metal-filled interlocked bilayer films as
multifunctional smart electromagnetic devices. _Nano Res._ 16, 1764–1772 (2023). Article CAS Google Scholar * Zhu, R. et al. Anisotropic magnetic liquid metal film for wearable wireless
electromagnetic sensing and smart electromagnetic interference shielding. _Nano Energy_ 92, 106700 (2022). Article CAS Google Scholar * He, X., Ni, M., Wu, J., Xuan, S. & Gong, X.
Hard-magnetic liquid metal droplets with excellent magnetic field dependent mobility and elasticity. _J. Mater. Sci. Technol._ 92, 60–68 (2021). Article CAS Google Scholar * He, X., Wu,
J., Hu, T., Xuan, S. & Gong, X. A 3D-printed coaxial microfluidic device approach for generating magnetic liquid metal droplets with large size controllability. _Microfluid.
Nanofluidics_ 24, 30 (2020). Article CAS Google Scholar * Hu, L. et al. Magnetic liquid metals manipulated in the three-dimensional free space. _ACS Appl. Mater. Interfaces_ 11, 8685–8692
(2019). Article CAS PubMed Google Scholar * Wang, B. et al. Leech‐inspired shape-encodable liquid metal robots for reconfigurable circuit welding and transient electronics. _Adv.
Intell. Syst._ 4, 2200080 (2022). Article Google Scholar * Zhao, P., Yan, L. & Gao, X. Millirobot based on a phase-transformable magnetorheological liquid metal. _ACS Appl. Mater.
Interfaces_ 15, 37658–37667 (2023). Article CAS PubMed Google Scholar * Jeong, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnetic three dimensional liquid metal manipulation.
_Lab Chip_ 19, 3261–3267 (2019). Article CAS PubMed Google Scholar * Zhao, P., Yan, L. & Gao, X. Magnetic liquid metal droplet robot with multifunction and high output force in
milli-newton. _Soft Robot._ 10, 1146–1158 (2023). Article PubMed Google Scholar * Jeong, J., Seo, J., Lee, J.-B., Chung, S. K. & Kim, D. Electromagnet polarity dependent reversible
dynamic behavior of magnetic liquid metal marble. _Mater. Res. Express_ 7, 015708 (2020). Article CAS Google Scholar * Jeong, J., Seo, J., Chung, S. K., Lee, J.-B. & Kim, D. Magnetic
field-induced recoverable dynamic morphological change of gallium-based liquid metal. _J. Microelectromech. Syst._ 29, 1208–1215 (2020). Article CAS Google Scholar * Li, X. et al.
Programmable digital liquid metal droplets in reconfigurable magnetic fields. _ACS Appl. Mater. Interfaces_ 12, 37670–37679 (2020). Article CAS PubMed Google Scholar * Zhou, W., Liang,
Q. & Chen, T. 3D manipulation of magnetic liquid metals. _Adv. Intell. Syst._ 2, 1900170 (2020). Article Google Scholar * Zhang, Y. et al. Reconfigurable magnetic liquid metal robot
for high-performance droplet manipulation. _Nano Lett._ 22, 2923–2933 (2022). Article CAS PubMed Google Scholar * Li, F. et al. Magnetically- and electrically-controllable functional
liquid metal droplets. _Adv. Mater. Technol._ 4, 1800694 (2019). Article Google Scholar * Liu, C., Li, D., Huang, J., Guo, Z. & Liu, W. High-performance magnetic and electric control
of liquid metal droplets. _Langmuir_ 39, 7495–7502 (2023). Article CAS PubMed Google Scholar * Zhang, J., Guo, R. & Liu, J. Self-propelled liquid metal motors steered by a magnetic
or electrical field for drug delivery. _J. Mater. Chem. B_ 4, 5349–5357 (2016). Article CAS PubMed Google Scholar * Merhebi, S. et al. Magnetic and conductive liquid metal gels. _ACS
Appl. Mater. Interfaces_ 12, 20119–20128 (2020). Article CAS PubMed Google Scholar * Zhang, J., Soon, R. H., Wei, Z., Hu, W. & Sitti, M. Liquid metal–elastomer composites with
dual-energy transmission mode for multifunctional miniature untethered magnetic robots. _Adv. Sci._ 9, 2203730 (2022). Article CAS Google Scholar * Xu, Y. et al. Tailorable, lightweight
and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. _Nano-Micro Lett._ 14, 29 (2022). Article CAS Google Scholar * Li, W. et al.
Magneto-induced self-stratifying liquid metal–elastomer composites with high thermal conductivity for soft actuator. _Cell Rep. Phys. Sci._ 4, 101209 (2023). Article CAS Google Scholar *
Hong, K. et al. An ultrastretchable electrical switch fiber with a magnetic liquid metal core for remote magnetic actuation. _Polymers_ 13, 2407 (2021). Article CAS PubMed PubMed Central
Google Scholar * Peng, M. et al. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid._Soft Sci._ 3, 36 (2023). Article CAS Google Scholar *
Zhao, R., Dai, H. & Yao, H. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. _IEEE Robot. Autom. Lett._ 7, 4535–4541 (2022). Article Google Scholar *
Zhou, X. et al. Variable stiffness wires based on magnetorheological liquid metals. _Int. J. Smart Nano Mater._ 13, 232–243 (2022). Article Google Scholar * Zhang, M. et al. A magnetically
and thermally controlled liquid metal variable stiffness material. _Adv. Eng. Mater._ 25, 2201296 (2023). Article CAS Google Scholar * Ge, H., Li, H., Mei, S. & Liu, J. Low melting
point liquid metal as a new class of phase change material: an emerging frontier in energy area. _Renew. Sustain. Energy Rev._ 21, 331–346 (2013). Article CAS Google Scholar * Duan, L. et
al. Colourful liquid metals. _Nat. Rev. Mater._ 7, 929–931 (2022). Article Google Scholar * Duan, L. et al. Surface optics and color effects of liquid metal materials._Adv. Mater._ 35,
2210515 (2023). Article CAS Google Scholar * Cui, Y. et al. Interfacial wetting behaviors of liquid Ga alloys/FeGa3 based on metallic bond interaction. _Colloids Surf. A_ 569, 102–109
(2019). Article CAS Google Scholar * Pu, H., Jiang, F. & Yang, Z. Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite.
_Mater. Chem. Phys._ 100, 10–14 (2006). Article CAS Google Scholar * Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. _Nature_ 619, 73–77 (2023). Article CAS
PubMed Google Scholar * Wang, H. et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. _Adv. Mater_. 33, 2103104 (2021). * Tan,
S., Gui, H., Yuan, B. & Liu, J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. _Appl. Phys. Lett._ 107, 071904 (2015). Article Google Scholar * Jin,
S. W. et al. Stretchable loudspeaker using liquid metal microchannel. _Sci. Rep_. https://doi.org/10.1038/srep11695 (2015). * Guo, R., Sheng, L., Gong, H. Y. & Liu, J. Liquid metal
spiral coil enabled soft electromagnetic actuator. _Sci. China Technol. Sci._ 61, 516–521 (2018). Article CAS Google Scholar * Zhang, X.-D., Zhou, Y.-X. & Liu, J. A novel layered
stack electromagnetic pump towards circulating metal fluid: design, fabrication and test. _Appl. Therm. Eng._ 179, 115610 (2020). Article Google Scholar * Zhou, Y.-X., Zu, J.-S. & Liu,
J. Insights into fluidic endogenous magnetism and magnetic monopoles from a liquid metal droplet machine. _Soft Sci._ 1, 15 (2021). CAS Google Scholar * Tang, J. et al. Dynamic
configurations of metallic atoms in the liquid state for selective propylene synthesis. _Nat. Nanotechnol._ https://doi.org/10.1038/s41565-023-01540-x (2023). * Rahim, M. A. et al.
Low-temperature liquid platinum catalyst. _Nat. Chem._ 14, 935–941 (2022). Article CAS PubMed Google Scholar * Fatima, S. S. et al. Current state and future prospects of liquid metal
catalysis. _Nat. Catal._ 6, 1131–1139 (2023). Article Google Scholar * Cebeci, Y. & Sönmez, İ. A study on the relationship between critical surface tension of wetting and oil
agglomeration recovery of calcite. _J. Colloid Interface Sci._ 273, 300–305 (2004). Article CAS PubMed Google Scholar * Liu, T., Sen, P. & Kim, C.-J. Characterization of nontoxic
liquid-metal alloy galinstan for applications in microdevices. _J. Microelectromech. Syst._ 21, 443–450 (2012). Article CAS Google Scholar * Hao, Y., Gao, J., Lv, Y. & Liu, J. Low
melting point alloys enabled stiffness tunable advanced materials. _Adv. Funct. Mater._ 32, 2201942 (2022). Article CAS Google Scholar * Saien, J. & Fadaei, V. The study of
interfacial tension of kerosene–water under influence of CTAB surfactant and different size silica nanoparticles. _J. Mol. Liq._ 255, 439–446 (2018). Article CAS Google Scholar * Dai, J.
& Wang, Z. A comparison of the impregnation of cellulose insulation by ester and mineral oil. _IEEE Trans. Dielectr. Electr. Insul._ 15, 374–381 (2008). Article Google Scholar * Barca,
F., Caporossi, T. & Rizzo, S. Silicone oil: different physical proprieties and clinical applications. _Biomed. Res. Int._ https://doi.org/10.1155/2014/502143 (2014). * Haynes, W. M.
(ed.) _CRC Handbook of Chemistry and Physics_ (CRC, 2016). * Jain, N., Zhang, X., Hawkett, B. S. & Warr, G. G. Stable and water-tolerant ionic liquid ferrofluids. _ACS Appl. Mater.
Interfaces_ 3, 662–667 (2011). Article CAS PubMed Google Scholar * Handschuh-Wang, S., Stadler, F. J. & Zhou, X. Critical review on the physical properties of gallium-based liquid
metals and selected pathways for their alteration. _J. Phys. Chem. C_ 125, 20113–20142 (2021). Article CAS Google Scholar Download references ACKNOWLEDGEMENTS This work was supported by
the National Natural Science Foundation of China project nos. 51890893, 52076213 and 91748206; the Frontier Project of the Chinese Academy of Sciences; and the 2115 Talent Development
Program of China Agricultural University. The authors thank M. Guo and J. Gao for help with drawing some of the images in this work. AUTHOR INFORMATION Author notes * These authors
contributed equally: Wentao Xiang, Yongyu Lu. AUTHORS AND AFFILIATIONS * Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of
Sciences, Beijing, China Wentao Xiang, Yongyu Lu & Jing Liu * School of Future Technology, University of Chinese Academy of Sciences, Beijing, China Wentao Xiang & Jing Liu * Center
of Double Helix, Tsinghua Shenzhen International Graduate School, Shenzhen, China Hongzhang Wang * School of Engineering Medicine, Beihang University, Beijing, China Xuyang Sun * Institute
for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China Sen Chen * College of Engineering, China Agricultural University, Beijing, China Zhizhu He *
Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China Jing Liu Authors * Wentao Xiang View author publications You can also search for this author
inPubMed Google Scholar * Yongyu Lu View author publications You can also search for this author inPubMed Google Scholar * Hongzhang Wang View author publications You can also search for
this author inPubMed Google Scholar * Xuyang Sun View author publications You can also search for this author inPubMed Google Scholar * Sen Chen View author publications You can also search
for this author inPubMed Google Scholar * Zhizhu He View author publications You can also search for this author inPubMed Google Scholar * Jing Liu View author publications You can also
search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to the discussion, writing and editing of the Review. Y.L., Z.H. and J.L. supervised the Review.
CORRESPONDING AUTHORS Correspondence to Yongyu Lu, Zhizhu He or Jing Liu. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW
INFORMATION _Nature Reviews Materials_ thanks Yi Du, Long Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S
NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS CAMEO CHEMICALS DATABASE:
https://cameochemicals.noaa.gov/ EUROPEAN CHEMICALS AGENCY: https://echa.europa.eu/information-on-chemicals RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other
partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Xiang, W., Lu, Y., Wang, H. _et al._
Liquid-metal-based magnetic fluids. _Nat Rev Mater_ 9, 433–449 (2024). https://doi.org/10.1038/s41578-024-00679-w Download citation * Accepted: 29 March 2024 * Published: 15 May 2024 * Issue
Date: June 2024 * DOI: https://doi.org/10.1038/s41578-024-00679-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative