Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus

Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus

Play all audios:

Loading...

ABSTRACT Bariatric surgery is an effective therapy for obesity, hypertension and type 2 diabetes mellitus that is refractory to maximal medical therapy. Results of long-term cohort studies


and emerging evidence from randomized clinical trials have revealed that, in addition to its beneficial effects on weight reduction, blood pressure and metabolic control, bariatric surgery


might reduce the incidence and long-term progression of chronic kidney disease (CKD). Preclinical studies have provided experimental verification that bariatric surgery improves key


parameters of kidney injury at the functional, structural and ultrastructural levels, and effects a programme of transcriptomic change in the kidney that is coherent with injury resolution.


Multiple mechanisms explain these observations, ranging from predictable aspects of risk-factor reduction to some novel and unforeseen renoprotective benefits of surgery. Current evidence


therefore supports the judicious use of bariatric surgery to treat patients with obesity, diabetes and CKD. Optimizing the benefits of surgery requires careful patient selection and


consideration of how to identify and mitigate some of the challenges associated with these surgical procedures. KEY POINTS * A causal link between elevated BMI and the incidence and


progression of chronic kidney disease (CKD) is now well substantiated. * Bariatric surgery reduces risk factors implicated in the progression of kidney injury in obesity and type 2 diabetes


mellitus. * Long-term outcomes of bariatric surgery confirm the role of obesity as a modifiable risk factor for advanced CKD. * Preclinical studies demonstrate that bariatric surgery


improves biochemical, structural and ultrastructural measures of experimental diabetic kidney disease and interrupts the transcriptional programme characteristic of progressive CKD. *


Definitive randomized clinical trial studies comparing kidney outcomes and safety following best medical therapy alone or best medical therapy in combination with bariatric surgery at


various stages of disease progression are required. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS REMISSION AND PROGRESSION OF PRE-EXISTING MICRO- AND MACROALBUMINURIA OVER 15 YEARS AFTER BARIATRIC SURGERY IN SWEDISH OBESE


SUBJECTS STUDY Article 07 November 2020 OBESITY AND THE KIDNEY: MECHANISTIC LINKS AND THERAPEUTIC ADVANCES Article 13 February 2024 SLEEVE GASTRECTOMY AMELIORATES RENAL INJURY IN


OBESITY-COMBINED HYPERURICEMIC NEPHROPATHY MICE BY MODULATING THE AMPK/NRF2/ABCG2 PATHWAY Article Open access 01 October 2024 REFERENCES * Kyle, T. K., Dhurandhar, E. J. & Allison, D. B.


Regarding obesity as a disease: evolving policies and their implications. _Endocrinol. Metab. Clin. North. Am._ 45, 511–520 (2016). PubMed  PubMed Central  Google Scholar  * NCD Risk Factor


Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. _Lancet_


386, 1377–1396 (2016). Google Scholar  * Lim, C. C. et al. Elevated serum leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney disease in Asian adults. _PloS


ONE_ 10, e0122009 (2015). PubMed  PubMed Central  Google Scholar  * Foster, M. C. et al. Overweight, obesity, and the development of stage 3 CKD: the Framingham heart study. _Am. J. Kidney


Dis._ 52, 39–48 (2008). PubMed  PubMed Central  Google Scholar  * Sinclair, P., Brennan, D. J. & le Roux, C. W. Gut adaptation after metabolic surgery and its influences on the brain,


liver and cancer. _Nat. Rev. Gastroenterol. Hepatol._ 15, 606–624 (2018). CAS  PubMed  Google Scholar  * Sinclair, P., Docherty, N. & le Roux, C. W. Metabolic effects of bariatric


surgery. _Clin. Chem._ 64, 72–81 (2018). CAS  PubMed  Google Scholar  * D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. _Nat.


Rev. Nephrol._ 12, 453–471 (2016). PubMed  Google Scholar  * Garofalo, C. et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the


general population. _Kidney Int._ 91, 1224–1235 (2017). PubMed  Google Scholar  * Vivante, A. et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. _Arch.


Intern. Med._ 172, 1644–1650 (2012). PubMed  PubMed Central  Google Scholar  * Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for


end-stage renal disease. _Ann. Intern. Med._ 144, 21–28 (2006). PubMed  Google Scholar  * Ntuk, U. E., Gill, J. M., Mackay, D. F., Sattar, N. & Pell, J. P. Ethnic-specific obesity


cutoffs for diabetes risk: cross-sectional study of 490,288 UK biobank participants. _Diabetes Care_ 37, 2500–2507 (2014). PubMed  Google Scholar  * Xu, H. et al. Higher body mass index is


associated with incident diabetes and chronic kidney disease independent of genetic confounding. _Kidney Int._ 95, 1225–1233 (2019). PubMed  Google Scholar  * Hall, J. E., do Carmo, J. M.,


da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. _Nat. Rev. Nephrol._ 15, 367–385 (2019). PubMed  PubMed Central  Google Scholar 


* Freedland, E. S. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. _Nutr. Metab._ 1, 12


(2004). Google Scholar  * Zhu, Q. & Scherer, P. E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. _Nat. Rev. Nephrol._ 14, 105–120 (2018). CAS 


PubMed  Google Scholar  * Thomas, M. C. et al. Diabetic kidney disease. _Nat. Rev. Dis. Prim._ 1, 15018 (2015). PubMed  Google Scholar  * Vallon, V. & Docherty, N. G. Intestinal


regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. _Exp. Physiol._ 99, 1140–1145


(2014). CAS  PubMed  PubMed Central  Google Scholar  * de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. _Lancet Diabetes Endocrinol._ 2,


417–426 (2014). PubMed  Google Scholar  * Choi, S. R. et al. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. _Metab. Clin.


Exp._ 85, 348–360 (2018). CAS  PubMed  Google Scholar  * Lennon, R. et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy.


_Nephrol. Dial. Transplant._ 24, 3288–3296 (2009). CAS  PubMed  Google Scholar  * Chandran, M., Phillips, S. A., Ciaraldi, T. & Henry, R. R. Adiponectin: more than just another fat cell


hormone? _Diabetes Care_ 26, 2442–2450 (2003). CAS  PubMed  Google Scholar  * Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating


AMP-activated protein kinase. _Nat. Med._ 8, 1288–1295 (2002). CAS  PubMed  Google Scholar  * Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. _J. Clin.


Invest._ 118, 1645–1656 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Kim, Y. & Park, C. W. Mechanisms of adiponectin action: implication of adiponectin receptor agonism in


diabetic kidney disease. _Int. J. Mol. Sci._ 20, 1782 (2019). CAS  PubMed Central  Google Scholar  * Briffa, J. F., McAinch, A. J., Poronnik, P. & Hryciw, D. H. Adipokines as a link


between obesity and chronic kidney disease. _Am. J. Physiol. Renal Physiol._ 305, F1629–F1636 (2013). CAS  PubMed  Google Scholar  * Cnop, M. et al. Relationship of adiponectin to body fat


distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. _Diabetologia_ 46, 459–469 (2003). CAS  PubMed  Google Scholar  * Kern, P. A., Di


Gregorio, G. B., Lu, T., Rassouli, N. & Ranganathan, G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha


expression. _Diabetes_ 52, 1779–1785 (2003). CAS  PubMed  Google Scholar  * Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. _Nat.


Rev. Endocrinol._ 15, 507–524 (2019). CAS  PubMed  Google Scholar  * La Cava, A. Leptin in inflammation and autoimmunity. _Cytokine_ 98, 51–58 (2017). PubMed  PubMed Central  Google Scholar


  * Caron, A., Lee, S., Elmquist, J. K. & Gautron, L. Leptin and brain-adipose crosstalks. _Nat. Rev. Neurosci._ 19, 153–165 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Shand,


B. I., Scott, R. S., Elder, P. A. & George, P. M. Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance. _Diabetes Obes. Metab._ 5, 349–353


(2003). CAS  PubMed  Google Scholar  * Oosterhuis, N. R. et al. Extravascular renal denervation ameliorates juvenile hypertension and renal damage resulting from experimental hyperleptinemia


in rats. _J. Hypertens._ 35, 2537–2547 (2017). CAS  PubMed  Google Scholar  * Shi, Z., Li, B. & Brooks, V. L. Role of the paraventricular nucleus of the hypothalamus in the


sympathoexcitatory effects of leptin. _Hypertension_ 66, 1034–1041 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Faulkner, J. L. & Belin de Chantemele, E. J. Leptin and


aldosterone. _Vitam. Horm._ 109, 265–284 (2019). CAS  PubMed  Google Scholar  * Yiannikouris, F. et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male


mice. _Hypertension_ 60, 1524–1530 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Nakamura, M. et al. Stimulatory effect of insulin on renal proximal tubule sodium transport is


preserved in type 2 diabetes with nephropathy. _Biochem. Biophys. Res. Commun._ 461, 154–158 (2015). CAS  PubMed  Google Scholar  * Artunc, F. et al. The impact of insulin resistance on the


kidney and vasculature. _Nat. Rev. Nephrol._ 12, 721–737 (2016). CAS  PubMed  Google Scholar  * Lay, A. C. et al. Prolonged exposure of mouse and human podocytes to insulin induces insulin


resistance through lysosomal and proteasomal degradation of the insulin receptor. _Diabetologia_ 60, 2299–2311 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Bailey, M. A.


11beta-hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome. _Curr. Hypertens. Rep._ 19, 100 (2017). PubMed  PubMed Central  Google Scholar  * Gant, C. M. et al. Lower


renal function is associated with derangement of 11-beta hydroxysteroid dehydrogenase in type 2 diabetes. _J. Endocr. Soc._ 2, 609–620 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Standeven, K. F. et al. Neprilysin, obesity and the metabolic syndrome. _Int. J. Obes._ 35, 1031–1040 (2011). CAS  Google Scholar  * Lamacchia, O. et al. Para- and perirenal fat thickness is


an independent predictor of chronic kidney disease, increased renal resistance index and hyperuricaemia in type-2 diabetic patients. _Nephrol. Dial. Transplant._ 26, 892–898 (2011). PubMed


  Google Scholar  * Foster, M. C. et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. _Hypertension_ 58, 784–790 (2011). CAS  PubMed  PubMed Central 


Google Scholar  * Welbourn, R. et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the second IFSO global registry report 2013–2015. _Obes. Surg._


28, 313–322 (2018). PubMed  Google Scholar  * DeMaria, E. J., Pate, V., Warthen, M. & Winegar, D. A. Baseline data from American society for metabolic and bariatric surgery-designated


bariatric surgery centers of excellence using the bariatric outcomes longitudinal database. _Surg. Obes. Relat. Dis._ 6, 347–355 (2010). PubMed  Google Scholar  * Fried, M. et al.


Interdisciplinary European guidelines on metabolic and bariatric surgery. _Obes. Surg._ 24, 42–55 (2014). CAS  PubMed  Google Scholar  * Rubino, F. et al. Metabolic surgery in the treatment


algorithm for type 2 diabetes: a joint statement by international diabetes organizations. _Diabetes Care_ 39, 861–877 (2016). CAS  PubMed  Google Scholar  * Peterli, R. et al. Laparoscopic


sleeve gastrectomy versus Roux-Y-Gastric bypass for morbid obesity-3-year outcomes of the prospective randomized swiss multicenter bypass or sleeve study (SM-BOSS). _Ann. Surg._ 265, 466–473


(2017). PubMed  Google Scholar  * Salminen, P. et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y Gastric bypass on weight loss at 5 years among patients with morbid


obesity: the SLEEVEPASS randomized clinical trial. _JAMA_ 319, 241–254 (2018). PubMed  PubMed Central  Google Scholar  * Kissler, H. J. & Settmacher, U. Bariatric surgery to treat


obesity. _Semin. Nephrol._ 33, 75–89 (2013). PubMed  Google Scholar  * Wolfe, B. M., Kvach, E. & Eckel, R. H. Treatment of obesity: weight loss and bariatric surgery. _Circ. Res._ 118,


1844–1855 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Thereaux, J. et al. Long-term adverse events after sleeve gastrectomy or gastric bypass: a 7-year nationwide, observational,


population-based, cohort study. _Lancet Diabetes Endocrinol._ 7, 786–795 (2019). PubMed  Google Scholar  * Hofso, D. et al. Gastric bypass versus sleeve gastrectomy in patients with type 2


diabetes (Oseberg): a single-centre, triple-blind, randomised controlled trial. _Lancet Diabetes Endocrinol._ 7, 912–924 (2019). PubMed  Google Scholar  * Sheetz, K. H. et al. Trends in


bariatric surgery procedures among patients with ESKD in the United States. _Clin. J. Am. Soc. Nephrol._ 14, 1193–1199 (2019). PubMed  PubMed Central  Google Scholar  * Sjostrom, L. Review


of the key results from the Swedish Obese Subjects (SOS) trial — a prospective controlled intervention study of bariatric surgery. _J. Intern. Med._ 273, 219–234 (2013). CAS  PubMed  Google


Scholar  * Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. _N. Engl. J. Med._ 357, 741–752 (2007). PubMed  Google Scholar  * Eliasson, B. et al.


Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. _Lancet Diabetes Endocrinol._ 3,


847–854 (2015). PubMed  Google Scholar  * Adams, T. D. et al. Long-term mortality after gastric bypass surgery. _N. Engl. J. Med._ 357, 753–761 (2007). CAS  PubMed  Google Scholar  *


Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. _N. Engl. J. Med._ 351, 2683–2693 (2004). PubMed  Google Scholar  * le Roux, C. W.


et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. _Ann. Surg._ 243, 108–114 (2006). PubMed  PubMed


Central  Google Scholar  * Docherty, N. G. & le Roux, C. W. Reconfiguration of the small intestine and diabetes remitting effects of Roux-en-Y gastric bypass surgery. _Curr. Opin.


Gastroenterol._ 32, 61–66 (2016). PubMed  Google Scholar  * Saeidi, N. et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. _Science_ 341,


406–410 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Quercia, I., Dutia, R., Kotler, D. P., Belsley, S. & Laferrere, B. Gastrointestinal changes after bariatric surgery.


_Diabetes Metab._ 40, 87–94 (2014). CAS  PubMed  Google Scholar  * Bojsen-Møller, K. N. et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with


increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. _Diabetes_ 63, 1725–1737 (2014). PubMed  Google Scholar  * Cummings, D. E. et


al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. _Diabetologia_ 59, 945–953 (2016). CAS  PubMed 


PubMed Central  Google Scholar  * Ikramuddin, S. et al. Roux-en-Y gastric bypass for diabetes (the diabetes surgery study): 2-year outcomes of a 5-year, randomised, controlled trial. _Lancet


Diabetes Endocrinol._ 3, 413–422 (2015). PubMed  PubMed Central  Google Scholar  * Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. _N. Engl.


J. Med._ 366, 1577–1585 (2012). CAS  PubMed  Google Scholar  * Courcoulas, A. P. et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus


treatment: a randomized clinical trial. _JAMA Surg._ 150, 931–940 (2015). PubMed  PubMed Central  Google Scholar  * Dixon, J. B. et al. Adjustable gastric banding and conventional therapy


for type 2 diabetes: a randomized controlled trial. _JAMA_ 299, 316–323 (2008). CAS  PubMed  Google Scholar  * Gloy, V. L. et al. Bariatric surgery versus non-surgical treatment for obesity:


a systematic review and meta-analysis of randomised controlled trials. _BMJ_ 347, f5934 (2013). PubMed  PubMed Central  Google Scholar  * Carlsson, L. M. et al. Bariatric surgery and


prevention of type 2 diabetes in Swedish obese subjects. _N. Engl. J. Med._ 367, 695–704 (2012). CAS  PubMed  Google Scholar  * Hallersund, P. et al. Gastric bypass surgery is followed by


lowered blood pressure and increased diuresis - long term results from the Swedish obese subjects (SOS) study. _PLoS ONE_ 7, e49696 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Schiavon, C. A. et al. Effects of bariatric surgery in obese patients with hypertension: the GATEWAY randomized trial (gastric bypass to treat obese patients with steady hypertension).


_Circulation_ 137, 1132–1142 (2018). PubMed  Google Scholar  * Rosenstock, J. L., Pommier, M., Stoffels, G., Patel, S. & Michelis, M. F. Prevalence of proteinuria and albuminuria in an


obese population and associated risk factors. _Front. Med._ 5, 122 (2018). Google Scholar  * Hallan, S. I. et al. Combining GFR and albuminuria to classify CKD improves prediction of ESRD.


_J. Am. Soc. Nephrol._ 20, 1069–1077 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Gaede, P., Tarnow, L., Vedel, P., Parving, H. H. & Pedersen, O. Remission to normoalbuminuria


during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. _Nephrol. Dial. Transplant._ 19, 2784–2788 (2004). PubMed  Google Scholar  *


Heerspink, H. J., Kropelin, T. F., Hoekman, J. & de Zeeuw, D. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis. _J. Am. Soc. Nephrol._


26, 2055–2064 (2015). CAS  PubMed  Google Scholar  * Bilha, S. C. et al. The effects of bariatric surgery on renal outcomes: a systematic review and meta-analysis. _Obes. Surg._ 28,


3815–3833 (2018). PubMed  Google Scholar  * Li, K. et al. Effects of bariatric surgery on renal function in obese patients: a systematic review and meta analysis. _PLoS ONE_ 11, e0163907


(2016). PubMed  PubMed Central  Google Scholar  * Scheurlen, K. M. et al. Metabolic surgery improves renal injury independent of weight loss: a meta-analysis. _Surg. Obes. Relat. Dis._ 15,


1006–1020 (2019). PubMed  Google Scholar  * Herder, C. et al. Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish Obese Subjects study.


_Diabetes Care_ 37, 1401–1409 (2014). CAS  PubMed  Google Scholar  * Stephens, J. W. et al. Temporal effects of laparoscopic sleeve gastrectomy on adipokines, inflammation, and oxidative


stress in patients with impaired glucose homeostasis. _Surg. Obes. Relat. Dis._ 15, 2011–2017 (2019). PubMed  Google Scholar  * Unamuno, X. et al. Increase of the adiponectin/leptin ratio in


patients with obesity and type 2 diabetes after Roux-en-Y gastric bypass. _Nutrients_ 11, 2069 (2019). CAS  PubMed Central  Google Scholar  * Billeter, A. T. et al. Meta-analysis of


metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. _Br. J. Surg._ 105, 168–181 (2018). CAS  PubMed  Google Scholar  *


Bjornstad, P. et al. Effect of surgical versus medical therapy on diabetic kidney disease over 5 years in severely obese adolescents with type 2 diabetes. _Diabetes Care_ 43, 187–195 (2020).


PubMed  Google Scholar  * Cohen, R. V. et al. Microvascular outcomes after metabolic surgery (MOMS) in patients with type 2 diabetes mellitus and class I obesity: rationale and design for a


randomised controlled trial. _BMJ Open_ 7, e013574 (2017). PubMed  PubMed Central  Google Scholar  * Cohen, R. V. et al. Effect of gastric bypass vs best medical treatment on early-stage


chronic kidney disease in patients with type 2 diabetes and obesity a randomized clinical trial. _JAMA Surg._ https://doi.org/10.1001/jamasurg.2020.0420 (2020). Article  PubMed  Google


Scholar  * Carlsson, L. M. et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish obese subjects (SOS): a prospective controlled intervention trial. _Int. J.


Obes._ 39, 169–175 (2015). CAS  Google Scholar  * Belle, S. H. et al. Baseline characteristics of participants in the longitudinal assessment of bariatric surgery-2 (LABS-2) study. _Surg.


Obes. Relat. Dis._ 9, 926–935 (2013). PubMed  PubMed Central  Google Scholar  * Friedman, A. N. et al. Effect of bariatric surgery on CKD risk. _J. Am. Soc. Nephrol._ 29, 1289–1300 (2018).


PubMed  PubMed Central  Google Scholar  * Funes, D. R. et al. Metabolic surgery reduces the risk of progression from chronic kidney disease to kidney failure. _Ann. Surg._ 270, 511–518


(2019). PubMed  Google Scholar  * Grams, M. E. et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate.


_Kidney Int._ 93, 1442–1451 (2018). PubMed  PubMed Central  Google Scholar  * Neff, K. J. et al. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in


the Zucker diabetic fatty rat. _Surg. Obes. Relat. Dis._ 13, 21–27 (2017). PubMed  Google Scholar  * Canney, A. L. et al. Improvements in diabetic albuminuria and podocyte differentiation


following Roux-en-Y gastric bypass surgery. _Diab. Vasc. Dis. Res._ 17, 1479164119879039 (2019). PubMed  Google Scholar  * Nair, M. et al. Characterisation of the renal cortical


transcriptome following roux-en-y gastric bypass surgery in experimental diabetic kidney disease. Preprint at bioRxiv https://doi.org/10.1101/2020.06.01.120980v1 (2020). * Wang, C., He, B.,


Piao, D. & Han, P. Roux-en-Y esophagojejunostomy ameliorates renal function through reduction of renal inflammatory and fibrotic markers in diabetic nephropathy. _Obes. Surg._ 26,


1402–1413 (2016). PubMed  Google Scholar  * Zhiqing, W. et al. Renal function is ameliorated in a diabetic nephropathy rat model through a duodenal-jejunal bypass. _Diabetes Res. Clin.


Pract._ 103, 26–34 (2014). PubMed  Google Scholar  * Wu, D. et al. Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat


model. _J. Physiol. Biochem._ 74, 431–439 (2018). PubMed  Google Scholar  * Carrara, F. et al. Simplified method to measure glomerular filtration rate by iohexol plasma clearance in


conscious rats. _Nephron_ 133, 62–70 (2016). CAS  PubMed  Google Scholar  * Schock-Kusch, D. et al. Transcutaneous assessment of renal function in conscious rats with a device for measuring


FITC-sinistrin disappearance curves. _Kidney Int._ 79, 1254–1258 (2011). CAS  PubMed  Google Scholar  * Mangan, A., Le Roux, C. W., Miller, N. G. & Docherty, N. G. Iron and vitamin


D/calcium deficiency after gastric bypass: mechanisms involved and strategies to improve oral supplement disposition. _Curr. Drug Metab._ 20, 244–252 (2019). CAS  PubMed  Google Scholar  *


Stein, J., Stier, C., Raab, H. & Weiner, R. Review article: the nutritional and pharmacological consequences of obesity surgery. _Aliment. Pharmacol. Ther._ 40, 582–609 (2014). CAS 


PubMed  Google Scholar  * Milone, M. et al. Incidence of successful pregnancy after weight loss interventions in infertile women: a systematic review and meta-analysis of the literature.


_Obes. Surg._ 26, 443–451 (2016). PubMed  Google Scholar  * Kwong, W., Tomlinson, G. & Feig, D. S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and


meta-analysis: do the benefits outweigh the risks? _Am. J. Obstetr. Gynecol._ 218, 573–580 (2018). Google Scholar  * Stephansson, O., Johansson, K., Söderling, J., Näslund, I. & Neovius,


M. Delivery outcomes in term births after bariatric surgery: population-based matched cohort study. _PLoS Med._ 15, e1002656 (2018). PubMed  PubMed Central  Google Scholar  * Luyckx, V. A.


& Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. _Nat. Rev. Nephrol._ 11, 135–149 (2015). PubMed  Google Scholar  * Lee, Y. Q. et al.


Relationship between maternal global nutrient restriction during pregnancy and offspring kidney structure and function: a systematic review of animal studies. _Am. J. Physiol. Renal


Physiol._ 316, F1227–F1235 (2019). CAS  PubMed  Google Scholar  * Lieske, J. C. et al. Kidney stones are common after bariatric surgery. _Kidney Int._ 87, 839–845 (2015). PubMed  Google


Scholar  * Nazzal, L., Puri, S. & Goldfarb, D. S. Enteric hyperoxaluria: an important cause of end-stage kidney disease. _Nephrol. Dial. Transplant._ 31, 375–382 (2016). PubMed  Google


Scholar  * Asplin, J. R. The management of patients with enteric hyperoxaluria. _Urolithiasis_ 44, 33–43 (2016). CAS  PubMed  Google Scholar  * Nor Hanipah, Z. et al. Impact of early


postbariatric surgery acute kidney injury on long-term renal function. _Obes. Surg._ 28, 3580–3585 (2018). PubMed  Google Scholar  * Montgomery, J. R., Waits, S. A., Dimick, J. B. &


Telem, D. A. Perioperative risks of sleeve gastrectomy versus Roux-en-Y gastric bypass among patients with chronic kidney disease: a review of the MBSAQIP database. _Ann. Surg_.


https://doi.org/10.1097/SLA.0000000000003627 (2019). Article  PubMed  Google Scholar  * Lee, J. E. et al. Risk of ESRD and all cause mortality in type 2 diabetes according to circulating


levels of FGF-23 and TNFR1. _PLoS ONE_ 8, e58007 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2


diabetes. _J. Am. Soc. Nephrol._ 23, 507–515 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Pavkov, M. E. et al. Tumor necrosis factor receptors 1 and 2 are associated with early


glomerular lesions in type 2 diabetes. _Kidney Int._ 89, 226–234 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Saulnier, P. J. et al. Association of serum concentration of TNFR1


with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: follow-up of the SURDIAGENE Cohort. _Diabetes Care_ 37, 1425–1431 (2014). CAS  PubMed  Google Scholar  *


Doody, A. et al. Validating the association between plasma tumour necrosis factor receptor 1 levels and the presence of renal injury and functional decline in patients with type 2 diabetes.


_J. Diabetes Complicat._ 32, 95–99 (2018). Google Scholar  * Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis


of six variables. _Lancet Diabetes Endocrinol._ 6, 361–369 (2018). PubMed  Google Scholar  * Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes


and with microvascular and macrovascular complications. _JAMA_ 311, 2297–2304 (2014). PubMed  Google Scholar  * Ahren, B. et al. Semaglutide induces weight loss in subjects with type 2


diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. _Diabetes, Obes. Metab._ 20, 2210–2219 (2018). CAS  Google Scholar  * Neuen, B. L. et al.


SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. _Lancet Diabetes Endocrinol._ 7, 845–854 (2019). CAS  PubMed 


Google Scholar  * Potluri, K. & Hou, S. Obesity in kidney transplant recipients and candidates. _Am. J. Kidney Dis._ 56, 143–156 (2010). PubMed  Google Scholar  * Sheetz, K. H.,


Gerhardinger, L., Dimick, J. B. & Waits, S. A. Bariatric surgery and long-term survival in patients with obesity and end-stage kidney disease. _JAMA Surg._


https://doi.org/10.1001/jamasurg.2020.0829 (2020). Article  PubMed  Google Scholar  * Hansel, B. et al. Severe chronic kidney disease is associated with a lower efficiency of bariatric


surgery. _Obes. Surg._ 29, 1514–1520 (2019). PubMed  Google Scholar  * Al-Bahri, S., Fakhry, T. K., Gonzalvo, J. P. & Murr, M. M. Bariatric surgery as a bridge to renal transplantation


in patients with end-stage renal disease. _Obes. Surg._ 27, 2951–2955 (2017). PubMed  Google Scholar  * Salehi, M., Vella, A., McLaughlin, T. & Patti, M. E. Hypoglycemia after gastric


bypass surgery: current concepts and controversies. _J. Clin. Endocrinol. Metab._ 103, 2815–2826 (2018). PubMed  PubMed Central  Google Scholar  * Abrahamsson, N., Engstrom, B. E., Sundbom,


M. & Karlsson, F. A. Gastric bypass surgery elevates NT-ProBNP levels. _Obes. Surg._ 23, 1421–1426 (2013). PubMed  Google Scholar  * Bueter, M. et al. Sodium and water handling after


gastric bypass surgery in a rat model. _Surg. Obes. Relat. Dis._ 7, 68–73 (2011). PubMed  Google Scholar  * Docherty, N. G., Fandriks, L., le Roux, C. W., Hallersund, P. & Werling, M.


Urinary sodium excretion after gastric bypass surgery. _Surg. Obes. Relat. Dis._ 13, 1506–1514 (2017). PubMed  Google Scholar  * Arapis, K., Kadouch, D., Caillieret, O., Roussel, R. &


Hansel, B. Bariatric surgery and chronic kidney disease: much hope, but proof is still awaited. _Int. J. Obes._ 42, 1532–1533 (2018). Google Scholar  * US National Library of Medicine.


_ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02612831 (2018). * Perakakis, N. et al. Circulating levels of gastrointestinal hormones in response to the most common types of


bariatric surgery and predictive value for weight loss over one year: evidence from two independent trials. _Metab. Clin. Exp._ 101, 153997 (2019). CAS  PubMed  Google Scholar  * Elliott, J.


A., Reynolds, J. V., le Roux, C. W. & Docherty, N. G. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. _Expert Rev. Endocrinol.


Metab._ 11, 475–499 (2016). CAS  PubMed  Google Scholar  * Werling, M. et al. Biliopancreatic diversion is associated with greater increases in energy expenditure than Roux-en-Y gastric


bypass. _PLoS ONE_ 13, e0194538 (2018). PubMed  PubMed Central  Google Scholar  * Werling, M. et al. Roux-en-Y gastric bypass surgery increases respiratory quotient and energy expenditure


during food intake. _PLoS ONE_ 10, e0129784 (2015). PubMed  PubMed Central  Google Scholar  * Sondergaard Nielsen, M. et al. Bariatric surgery does not affect food preferences, but


individual changes in food preferences may predict weight loss. _Obesity_ 26, 1879–1887 (2018). CAS  PubMed  Google Scholar  * Ghanim, H. et al. Decreases in neprilysin and vasoconstrictors


and increases in vasodilators following bariatric surgery. _Diabetes Obes. Metab._ 20, 2029–2033 (2018). CAS  PubMed  Google Scholar  * Sharma, A. M. & Kushner, R. F. A proposed clinical


staging system for obesity. _Int. J. Obes._ 33, 289–295 (2009). CAS  Google Scholar  * Yan, W., Bai, R., Yan, M. & Song, M. Preoperative fasting plasma C-peptide levels as predictors of


remission of type 2 diabetes mellitus after bariatric surgery: a systematic review and meta-analysis. _J. Investig. Surg._ 30, 383–393 (2017). Google Scholar  * Scheurlen, K. M. et al.


Serum uromodulin and Roux-en-Y gastric bypass: improvement of a marker reflecting nephron mass. _Surg. Obes. Relat. Dis._ 15, 1319–1325 (2019). PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS N.G.D. is also a visiting researcher at the Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden. C.W.l.R. also holds an adjunct Professor


position in Investigative Science at Imperial College London, UK. The authors acknowledge funding support from the following agencies: Swedish Medical Research Council (2015-02733) and


European Foundation for the Study of Diabetes/Boehringer Ingelheim European Diabetes Research Programme (BI 2017_3) to C.W.l.R. and N.G.D., and Science Foundation Ireland (12/YI/B2480) to


C.W.l.R. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College, Dublin, Ireland


Neil G. Docherty & Carel W. le Roux Authors * Neil G. Docherty View author publications You can also search for this author inPubMed Google Scholar * Carel W. le Roux View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Both authors researched data for the article, wrote the manuscript, made substantial contributions to


discussions of the content, and reviewed or edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence to Neil G. Docherty. ETHICS DECLARATIONS COMPETING INTERESTS C.W.l.R.


is an advisory board member for Novo Nordisk, Herbalife, Johnson & Johnson, Keyron and GI Dynamics, and has received honoraria for speaking from Novo Nordisk, Herbalife, Johnson &


Johnson, GI Dynamics, Lilly, MSD and Consilient Health. N.G.D. declares no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Nephrology_ thanks A.


Courcoulas, T. Diwan, R. Roussel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. GLOSSARY * Critical adipose threshold A concept that postulates that adipose storage capacity varies among


individuals owing to a threshold or upper limit in the triglyceride storage capacity of individual adipocytes. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Docherty, N.G., le Roux, C.W. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. _Nat Rev Nephrol_ 16, 709–720 (2020).


https://doi.org/10.1038/s41581-020-0323-4 Download citation * Accepted: 30 June 2020 * Published: 10 August 2020 * Issue Date: December 2020 * DOI: https://doi.org/10.1038/s41581-020-0323-4


SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative