The clinical benefits of sodium–glucose cotransporter type 2 inhibitors in people with gout

The clinical benefits of sodium–glucose cotransporter type 2 inhibitors in people with gout

Play all audios:

Loading...

ABSTRACT Gout is the most common form of inflammatory arthritis worldwide and is characterized by painful recurrent flares of inflammatory arthritis that are associated with a transiently


increased risk of adverse cardiovascular events. Furthermore, gout is associated with multiple cardiometabolic–renal comorbidities such as type 2 diabetes, chronic kidney disease and


cardiovascular disease. These comorbidities, potentially combined with gout flare-related inflammation, contribute to persistent premature mortality in gout, independently of serum urate


concentrations and traditional cardiovascular risk factors. Although better implementation of standard gout care could improve gout outcomes, deliberate efforts to address the cardiovascular


risk in patients with gout are likely to be required to reduce mortality. Sodium–glucose cotransporter type 2 (SGLT2) inhibitors are approved for multiple indications owing to their ability


to lower the risk of all-cause and cardiovascular death, hospitalizations for heart failure and chronic kidney disease progression, making them an attractive treatment option for gout.


These medications have also been shown to lower serum urate concentrations, the causal culprit in gout risk, and are associated with a reduced risk of incident and recurrent gout,


potentially owing to their purported anti-inflammatory effects. Thus, SGLT2 inhibition could simultaneously address both the symptoms of gout and its comorbidities. KEY POINTS *


Sodium-glucose cotransporter type 2 (SGLT2) inhibitors have revolutionized the management of type 2 diabetes, heart failure and chronic kidney disease and have been incorporated into


multiple subspecialty management guidelines. * SGLT2 inhibitors hold promise as an attractive multi-purpose treatment option for patients with gout to simultaneously address


cardiometabolic–renal comorbidities and gout-related morbidity. * SGLT2 inhibitors have been shown to lower serum urate concentrations and the risk of incident and recurrent gout flares


without apparently increasing the risk of paradoxical gout flares. * The exact mechanisms underlying the urate-lowering and anti-gout effects of SGLT2 inhibitors remain under active


investigation but might involve enhanced uricosuria and anti-inflammatory pathways. * Although additional research is required to determine the role of SGLT2 inhibitors in gout management,


available evidence suggests that these drugs have the potential to improve outcomes among patients with gout. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EXCESS COMORBIDITIES IN GOUT: THE CAUSAL PARADIGM AND


PLEIOTROPIC APPROACHES TO CARE Article 17 December 2021 MECHANISMS AND RATIONALE FOR URICASE USE IN PATIENTS WITH GOUT Article 08 September 2023 MANAGEMENT OF GOUT IN CHRONIC KIDNEY DISEASE:


A G-CAN CONSENSUS STATEMENT ON THE RESEARCH PRIORITIES Article Open access 30 July 2021 REFERENCES * Choi, H. K., Mount, D. B. & Reginato, A. M. Pathogenesis of gout. _Ann. Intern.


Med._ 143, 499–516 (2005). Article  CAS  PubMed  Google Scholar  * Yokose, C. et al. Trends in prevalence of gout among US Asian adults, 2011–2018. _JAMA Netw. Open_ 6, e239501 (2023).


Article  PubMed  PubMed Central  Google Scholar  * Xia, Y. et al. Global, regional and national burden of gout, 1990–2017: a systematic analysis of the Global Burden of Disease Study.


_Rheumatology_ 59, 1529–1538 (2020). Article  CAS  PubMed  Google Scholar  * Elfishawi, M. M. et al. The rising incidence of gout and the increasing burden of comorbidities: a


population-based study over 20 years. _J. Rheumatol._ 45, 574–579 (2018). Article  PubMed  Google Scholar  * Safiri, S. et al. Prevalence, incidence, and years lived with disability due to


gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the global burden of disease study 2017. _Arthritis Rheumatol._ 72, 1916–1927


(2020). Article  CAS  PubMed  Google Scholar  * Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. _Nat. Rev.


Rheumatol._ 16, 380–390 (2020). Article  PubMed  Google Scholar  * Edwards, N. L. Quality of care in patients with gout: why is management suboptimal and what can be done about it? _Curr.


Rheumatol. Rep._ 13, 154–159 (2011). Article  PubMed  Google Scholar  * Sarawate, C. A. et al. Gout medication treatment patterns and adherence to standards of care from a managed care


perspective. _Mayo Clin. Proc._ 81, 925–934 (2006). Article  PubMed  Google Scholar  * Neogi, T., Hunter, D. J., Chaisson, C. E., Allensworth-Davies, D. & Zhang, Y. Frequency and


predictors of inappropriate management of recurrent gout attacks in a longitudinal study. _J. Rheumatol._ 33, 104–109 (2006). PubMed  Google Scholar  * Chock, Y. P., Ross, J. S., Suter, L.


G. & Rhee, T. G. Gout treatment in the USA from 2009 to 2016: a repeated cross-sectional analysis. _J. Gen. Intern. Med._ 36, 1134–1136 (2021). Article  PubMed  Google Scholar  * Singh,


J. A. & Cleveland, J. D. Time trends in opioid use disorder hospitalizations in gout, rheumatoid arthritis, fibromyalgia, osteoarthritis, and low back pain. _J. Rheumatol._ 48, 775–784


(2021). Article  PubMed  Google Scholar  * Dalal, D. S. et al. Prescription opioid use among patients with acute gout discharged from the emergency department. _Arthritis care Res._ 72,


1163–1168 (2020). Article  Google Scholar  * Jinno, S., Hasegawa, K., Neogi, T., Goto, T. & Dubreuil, M. Trends in emergency department visits and charges for gout in the United States


between 2006 and 2012. _J. Rheumatol._ 43, 1589–1592 (2016). Article  PubMed  PubMed Central  Google Scholar  * Garg, R. et al. Gout-related health care utilization in US emergency


departments, 2006 through 2008. _Arthritis care Res._ 65, 571–577 (2013). Article  Google Scholar  * Lim, S. Y. et al. Trends in gout and rheumatoid arthritis hospitalizations in the United


States, 1993–2011. _J. Am. Med. Assoc._ 315, 2345–2347 (2016). Article  CAS  Google Scholar  * Rai, S. K. et al. Trends in gout and rheumatoid arthritis hospitalizations in Canada From 2000


to 2011. _Arthritis care Res._ 69, 758–762 (2017). Article  Google Scholar  * Russell, M. D. et al. Rising incidence of acute hospital admissions due to gout. _J. Rheumatol._ 47, 619–623


(2020). Article  CAS  PubMed  Google Scholar  * Dehlin, M. & Jacobsson, L. T. H. Trends in gout hospitalization in Sweden. _J. Rheumatol._ 45, 145–146 (2018). Article  PubMed  Google


Scholar  * Cipolletta, E. et al. Association Between gout flare and subsequent cardiovascular events among patients with gout. _J. Am. Med. Assoc._ 328, 440–450 (2022). Article  Google


Scholar  * Choi, H. K. & McCormick, N. Beyond joint pain, could each gout flare lead to heart attack? _Nat. Rev. Rheumatol._ 18, 619–620 (2022). Article  PubMed  Google Scholar  * Zhu,


Y., Pandya, B. J. & Choi, H. K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. _Am. J. Med._ 125, 679–687.e1 (2012). Article  PubMed  Google


Scholar  * Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. _Ann. Rheum. Dis._


75, 210–217 (2016). Article  PubMed  Google Scholar  * Choi, H. K. & Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. _Circulation_ 116, 894–900


(2007). Article  PubMed  Google Scholar  * Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. _J. Clin. Epidemiol._ 41,


237–242 (1988). Article  CAS  PubMed  Google Scholar  * Gupta, S. et al. The risk of cardiovascular disease among male and female participants treated for gout in the Multi-Ethnic Study of


Atherosclerosis (MESA). _Gout Urate Cryst. Depos. Dis._ 1, 89–98 (2023). Article  Google Scholar  * Bardin, T., Letavernier, E. & Correas, J.-M. The gouty kidney: a reappraisal. _Gout


Urate Cryst. Depos. Dis._ 1, 25–36 (2023). Article  Google Scholar  * Disveld, I. J. M. et al. Crystal-proven gout patients have an increased mortality due to cardiovascular diseases,


cancer, and infectious diseases especially when having tophi and/or high serum uric acid levels: a prospective cohort study. _Clin. Rheumatol._ 38, 1385–1391 (2019). Article  PubMed  Google


Scholar  * Kuo, C. F. et al. Gout: an independent risk factor for all-cause and cardiovascular mortality. _Rheumatology_ 49, 141–146 (2010). Article  PubMed  Google Scholar  * Fisher, M. C.,


Rai, S. K., Lu, N., Zhang, Y. & Choi, H. K. The unclosing premature mortality gap in gout: a general population-based study. _Ann. Rheum. Dis._ 76, 1289–1294 (2017). Article  PubMed 


Google Scholar  * Marty-Ane, A. et al. Crystal deposition measured with dual-energy computed tomography: association with mortality and cardiovascular risks in gout. _Rheumatology_ 60,


4855–4860 (2021). Article  CAS  PubMed  Google Scholar  * McCormick, N. et al. Persistent premature mortality in gout: nationwide prospective cohort study [Abstract]. _Ann. Rheum. Dis._ 82,


436 (2023). Google Scholar  * FitzGerald, J. D. et al. American College of Rheumatology guideline for the management of gout. _Arthritis Care Res._ 72, 744–760 (2020). Article  Google


Scholar  * Richette, P. et al. 2016 updated EULAR evidence-based recommendations for the management of gout. _Ann. Rheum. Dis._ 76, 29–42 (2017). Article  CAS  PubMed  Google Scholar  *


Doherty, M. et al. Nurse-led care versus general practitioner care of people with gout: a UK community-based randomised controlled trial. _Ann. Rheum. Dis._


https://doi.org/10.2139/ssrn.3221414 (2018). * Becker, M. A., Schumacher, H. R., MacDonald, P. A., Lloyd, E. & Lademacher, C. Clinical efficacy and safety of successful longterm urate


lowering with febuxostat or allopurinol in subjects with gout. _J. Rheumatol._ 36, 1273–1282 (2009). Article  CAS  PubMed  Google Scholar  * Schumacher, H. R. Jr, Becker, M. A., Lloyd, E.,


MacDonald, P. A. & Lademacher, C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. _Rheumatology_ 48, 188–194 (2009). Article  CAS  PubMed 


Google Scholar  * Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus


usual care for gout: a randomised controlled trial. _Lancet_ 392, 1403–1412 (2018). Article  PubMed  PubMed Central  Google Scholar  * Choi, H. K., McCormick, N. & Yokose, C. Excess


comorbidities in gout: the causal paradigm and pleiotropic approaches to care. _Nat. Rev. Rheumatol._ 18, 97–111 (2022). Article  PubMed  Google Scholar  * Mackenzie, I. S. et al. Long-term


cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. _Lancet_ 396, 1745–1757


(2020). Article  CAS  PubMed  Google Scholar  * Badve, S. V. et al. Effects of allopurinol on the progression of chronic kidney disease. _N. Engl. J. Med._ 382, 2504–2513 (2020). Article 


CAS  PubMed  Google Scholar  * Doria, A. et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. _N. Engl. J. Med._ 382, 2493–2503 (2020). Article  CAS  PubMed 


PubMed Central  Google Scholar  * US Food and Drug Administration. FDA adds Boxed Warning for increased risk of death with gout medicine Uloric (febuxostat).


https://www.fda.gov/drugs/drug-safety-and-availability/fda-adds-boxed-warning-increased-risk-death-gout-medicine-uloric-febuxostat (21 February 2019). * McMullan, C. J., Borgi, L., Fisher,


N., Curhan, G. & Forman, J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. _Clin. J. Am. Soc. Nephrol._ 12, 807–816


(2017). Article  PubMed  PubMed Central  Google Scholar  * Gaffo, A. L. et al. Effect of serum urate lowering with allopurinol on blood pressure in young adults: a randomized, controlled,


crossover trial. _Arthritis Rheumatol._ 73, 1514–1522 (2021). Article  CAS  PubMed  Google Scholar  * White, W. B. et al. Cardiovascular safety of febuxostat or allopurinol in patients with


gout. _N. Engl. J. Med._ 378, 1200–1210 (2018). Article  CAS  PubMed  Google Scholar  * Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the


OPT-CHF study. _J. Am. Coll. Cardiol._ 51, 2301–2309 (2008). Article  CAS  PubMed  Google Scholar  * Givertz, M. M. et al. Effects of xanthine oxidase inhibition in hyperuricemic heart


failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. _Circulation_ 131, 1763–1771 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Scheen, A. J. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. _Nat. Rev. Endocrinol._ 16, 556–577 (2020). Article  PubMed  Google


Scholar  * Khunti, K. SGLT2 inhibitors in people with and without T2DM. _Nat. Rev. Endocrinol._ 17, 75–76 (2021). Article  CAS  PubMed  Google Scholar  * ElSayed, N. A. et al. 9.


pharmacologic approaches to glycemic treatment: standards of care in diabetes — 2023. _Diabetes Care_ 46, S140–S157 (2023). Article  CAS  PubMed  Google Scholar  * Davies, M. J. et al.


Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). _Diabetes


Care_ 41, 2669–2701 (2018). Article  PubMed  PubMed Central  Google Scholar  * Kidney Disease: Improving Global Outcomes (KDGIO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline


for Diabetes Management in Chronic Kidney Disease. _Kidney Int._ 102, S1–S127 (2022). Article  Google Scholar  * de Boer, I. H. et al. Diabetes management in chronic kidney disease: a


consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). _Diabetes Care_ 45, 3075–3090 (2022). Article  PubMed  PubMed Central 


Google Scholar  * Heidenreich, P. A. et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint


Committee on Clinical Practice Guidelines. _J. Am. Coll. Cardiol._ 2022, e263–e421 (2022). Article  Google Scholar  * Arnett, D. K. et al. ACC/AHA guideline on the primary prevention of


cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. _J. Am. Coll. Cardiol._ 2019, e177–e232 (2019).


Article  Google Scholar  * US Food and Drug Administration. Highlights of Prescribing Information — Invokana. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204042s040lbl.pdf


(2023). * US Food and Drug Administration. Highlights of Prescribing Information — Farxiga. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202293s026lbl.pdf (2023). * US Food and


Drug Administration. Highlights of Prescribing Information — Jardiance. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s040lbl.pdf (2023). * Zhao, Y. et al. Effects of


sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. _Diabetes Obes. Metab._ 20, 458–462 (2018). Article  CAS  PubMed


  Google Scholar  * Yip, A. S. Y. et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and


meta-regression of 43 randomized controlled trials. _Ther. Adv. Chronic Dis._ 13, 20406223221083509 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, X. et al. Effects of


sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. _Diabetes Obes. Metab._ 24, 228–238


(2022). Article  CAS  PubMed  Google Scholar  * Xin, Y. et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with


an indirect comparison meta-analysis. _Saudi J. Biol. Sci._ 26, 421–426 (2019). Article  CAS  PubMed  Google Scholar  * Doehner, W. et al. Uric acid and sodium-glucose cotransporter-2


inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. _Eur. Heart J._ 43, 3435–3446 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. _N. Engl. J. Med._ 383, 1413–1424 (2020). Article  CAS  PubMed  Google Scholar  *


McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. _N. Engl. J. Med._ 381, 1995–2008 (2019). Article  CAS  PubMed  Google Scholar  *


McDowell, K. et al. Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF. _Eur. J. Heart Fail._ 24, 1066–1076 (2022). Article  CAS  PubMed 


Google Scholar  * Ferreira, J. P. et al. Empagliflozin and uric acid metabolism in diabetes: a post hoc analysis of the EMPA-REG OUTCOME trial. _Diabetes Obes. Metab._ 24, 135–141 (2022).


Article  CAS  PubMed  Google Scholar  * Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. _N. Engl. J. Med._ 373, 2117–2128 (2015). Article  CAS 


PubMed  Google Scholar  * Li, J. et al. The effects of canagliflozin on gout in type 2 diabetes: a post-hoc analysis of the CANVAS Program. _Lancet Rheumatol._ 1, e220–e228 (2019). Article 


PubMed  Google Scholar  * Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. _N. Engl. J. Med._ 377, 644–657 (2017). Article  CAS  PubMed  Google Scholar 


* Stack, A. G. et al. Dapagliflozin added to verinurad plus febuxostat further reduces serum uric acid in hyperuricemia: the QUARTZ Study. _J. Clin. Endocrinol. Metab._ 106, e2347–e2356


(2021). Article  PubMed  Google Scholar  * Yokose C et al. Serum urate change among gout patients initiating sodium-glucose cotransporter type 2 inhibitors (SGLT2i) vs. sulfonylureas: a


comparative effectiveness analysis [Abstract]. _Arthritis Rheum_at_ol._ 2023;75. * Vargas-Santos AB, Peloquin C, Kim SC, Neogi T. Sodium-glucose co-transporter-2 inhibitors and the risk for


gout — a comparison among canagliflozin, dapagliflozin and empagliflozin [Abstract]. _Arthritis Rheumatol_. 2020;72. * Butt, J. H. et al. Association of dapagliflozin use with clinical


outcomes and the introduction of uric acid-lowering therapy and colchicine in patients with heart failure with and without gout: a patient-level pooled meta-analysis of DAPA-HF and DELIVER.


_JAMA Cardiol._ 8, 386–393 (2023). Article  PubMed  PubMed Central  Google Scholar  * Neogi, T. et al. 2015 Gout classification criteria: an American College of Rheumatology/European League


Against Rheumatism collaborative initiative. _Ann. Rheum. Dis._ 74, 1789–1798 (2015). Article  CAS  PubMed  Google Scholar  * Gaffo, A. L. et al. Brief Report: validation of a definition of


flare in patients with established gout. _Arthritis Rheumatol._ 70, 462–467 (2018). Article  PubMed  Google Scholar  * Fralick, M., Chen, S. K., Patorno, E. & Kim, S. C. Assessing the


risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: a population-based cohort study. _Ann. Intern. Med._ 172, 186–194 (2020). Article  PubMed 


PubMed Central  Google Scholar  * Lund, L. C., Hojlund, M., Henriksen, D. P., Hallas, J. & Kristensen, K. B. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: a Danish


population based cohort study and symmetry analysis. _Pharmacoepidemiol. Drug. Saf._ 30, 1391–1395 (2021). Article  CAS  PubMed  Google Scholar  * Chung, M. C. et al. Association of


sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan. _JAMA Netw. Open_ 4, e2135353 (2021). Article  PubMed  PubMed Central  Google Scholar  *


Zhou, J. et al. Lower risk of gout in sodium glucose cotransporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP4) inhibitors in type-2 diabetes. _Rheumatology_ 62, 1501–1510


(2023). Article  PubMed  Google Scholar  * Yokose, C. et al. Risk of incident gout associated with initiation of sodium-glucose cotransporter-2 inhibitors versus other second-line agents


among metformin users with type 2 diabetes [Abstract]. _Ann. Rheum. Dis_. 2023:171. * Banerjee, M., Pal, R. & Mukhopadhyay, S. Can SGLT2 inhibitors prevent incident gout? A systematic


review and meta-analysis. _Acta Diabetol._ 59, 783–791 (2022). Article  CAS  PubMed  Google Scholar  * Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. _Diabetes


Obes. Metab._ 21, 1291–1298 (2019). Article  CAS  PubMed  Google Scholar  * Qaseem, A., Harris, R. P. & Forciea, M. A. Management of acute and recurrent gout: a clinical practice


guideline from the American College of Physicians. _Ann. Intern. Med._ 166, 58–68 (2017). Article  PubMed  Google Scholar  * McCormick, N. et al. Comparative effectiveness of sodium-glucose


cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations : a general population cohort study. _Ann. Intern. Med._ 176, 1067–1080


(2023). Article  PubMed  Google Scholar  * Choi, H. K., Zhang, Y. & Dalbeth, N. When underlying biology threatens the randomization principle - initial gout flares of urate-lowering


therapy. _Nat. Rev. Rheumatol._ 18, 543–549 (2022). Article  PubMed  PubMed Central  Google Scholar  * Wei, J. et al. Gout flares and mortality after sodium-glucose cotransporter-2 inhibitor


treatment for gout and type 2 diabetes. _JAMA Netw. Open_ 6, e2330885 (2023). Article  PubMed  PubMed Central  Google Scholar  * Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms


of cardiovascular benefit beyond glycaemic control. _Nat. Rev. Cardiol._ 17, 761–772 (2020). Article  CAS  PubMed  Google Scholar  * Zannad, F. et al. Effect of empagliflozin on circulating


proteomics in heart failure: mechanistic insights into the EMPEROR programme. _Eur. Heart J._ 43, 4991–5002 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahmadieh, H. &


Azar, S. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus. _Diabetes Technol. Ther._ 19, 507–512 (2017). Article  CAS  PubMed  Google


Scholar  * Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. _Nat. Rev. Nephrol._ 16, 317–336 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Nespoux, J. & Vallon, V. Renal effects of SGLT2 inhibitors: an update. _Curr. Opin. Nephrol. Hypertens._ 29, 190–198 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Dalbeth, N. et al. Gout. _Nat. Rev. Dis. Primers_ 5, 69 (2019). Article  PubMed  Google Scholar  * Novikov, A. et al. SGLT2 inhibition and renal urate excretion:


role of luminal glucose, GLUT9, and URAT1. _Am. J. Physiol. Renal Physiol._ 316, F173–F185 (2019). Article  CAS  PubMed  Google Scholar  * Quinones Galvan, A. et al. Effect of insulin on


uric acid excretion in humans. _Am. J. Physiol._ 268, E1–E5 (1995). CAS  PubMed  Google Scholar  * Cherney, D. Z., Odutayo, A., Aronson, R., Ezekowitz, J. & Parker, J. D. Sodium glucose


cotransporter-2 inhibition and cardiorenal protection: JACC Review Topic of the Week. _J. Am. Coll. Cardiol._ 74, 2511–2524 (2019). Article  CAS  PubMed  Google Scholar  * Muscelli, E. et


al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. _Am. J. Hypertens._ 9, 746–752 (1996). Article  CAS  PubMed  Google Scholar  * Ter Maaten, J. C. et


al. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. _Clin. Sci._ 92, 51–58 (1997). Article  Google Scholar  * Facchini, F., Chen, Y. D.,


Hollenbeck, C. B. & Reaven, G. M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. _J. Am. Med.


Assoc._ 266, 3008–3011 (1991). Article  CAS  Google Scholar  * McCormick, N. et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using


bidirectional mendelian randomization. _Arthritis Rheumatol._ 73, 2096–2104 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M. J.


& Seufert, J. Cardiovascular protection by SGLT2 inhibitors — do anti-inflammatory mechanisms play a role? _Mol. Metab._ 64, 101549 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Mancini, S. J. et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and


-independent mechanisms. _Sci. Rep._ 8, 5276 (2018). Article  PubMed  PubMed Central  Google Scholar  * Maayah, Z. H., Ferdaoussi, M., Takahara, S., Soni, S. & Dyck, J. R. B.


Empagliflozin suppresses inflammation and protects against acute septic renal injury. _Inflammopharmacology_ 29, 269–279 (2021). Article  CAS  PubMed  Google Scholar  * Hawley, S. A. et al.


The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. _Diabetes_ 65, 2784–2794 (2016). Article  CAS 


PubMed  Google Scholar  * Xu, J., Kitada, M., Ogura, Y., Liu, H. & Koya, D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells.


_Cells_ 10, 1457 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Theofilis, P. et al. The impact of SGLT2 inhibitors on inflammation: a systematic review and meta-analysis of


studies in rodents. _Int. Immunopharmacol._ 111, 109080 (2022). Article  CAS  PubMed  Google Scholar  * Scisciola, L. et al. Anti-inflammatory role of SGLT2 inhibitors as part of their


anti-atherosclerotic activity: data from basic science and clinical trials. _Front. Cardiovasc. Med._ 9, 1008922 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Heerspink, H.


J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.


_Diabetologia_ 62, 1154–1166 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced


NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure. _Circ. Heart Fail._ 13, e006277 (2020). Article  CAS  PubMed  Google Scholar  * Kim, S. R.


et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. _Nat. Commun._ 11, 2127 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Banerjee, M., Pal, R., Maisnam, I., Chowdhury, S. & Mukhopadhyay, S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout:


a meta-analysis and meta-regression of randomized controlled trials. _Diabetes Obes. Metab._ 25, 2697–2703 (2023). Article  CAS  PubMed  Google Scholar  * Zinman, B., Lachin, J. M. &


Inzucchi, S. E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. _N. Engl. J. Med._ 374, 1094 (2016). PubMed  Google Scholar  * Wanner, C., Inzucchi, S. E. &


Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. _N. Engl. J. Med._ 375, 1801–1802 (2016). Article  PubMed  Google Scholar  * Wiviott, S. D. et al.


Dapagliflozin and cardiovascular outcomes in type 2 diabetes. _N. Engl. J. Med._ 380, 347–357 (2019). Article  CAS  PubMed  Google Scholar  * Heerspink, H. J. L. et al. Dapagliflozin in


patients with chronic kidney disease. _N. Engl. J. Med._ 383, 1436–1446 (2020). Article  CAS  PubMed  Google Scholar  * Group, E.-K. C. et al. Empagliflozin in patients with chronic kidney


disease. _N. Engl. J. Med._ 388, 117–127 (2022). Google Scholar  * Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. _N. Engl. J. Med._ 385, 1451–1461


(2021). Article  CAS  PubMed  Google Scholar  * Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. _N. Engl. J. Med._ 387, 1089–1098


(2022). Article  PubMed  Google Scholar  * European Medicines Agency. Jardiance : EPAR - Product Information.


https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance#ema-inpage-item-product-info (accessed 29 January 2024). * European Medicines Agency. Forxiga.


https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (accessed 29 January 2024). * European Medicines Agency. Invokana. https://www.ema.europa.eu/en/medicines/human/EPAR/invokana


(accessed 29 January 2024). * Roughley, M. J., Belcher, J., Mallen, C. D. & Roddy, E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies.


_Arthritis Res. Ther._ 17, 90 (2015). Article  PubMed  PubMed Central  Google Scholar  * Liu, J. et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes


mellitus: a systematic review and meta-analysis. _Sci. Rep._ 7, 2824 (2017). Article  PubMed  PubMed Central  Google Scholar  * Gomez-Peralta, F. et al. Practical approach to initiating


SGLT2 inhibitors in type 2 diabetes. _Diabetes Ther._ 8, 953–962 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nauck, M. A. Update on developments with SGLT2 inhibitors in


the management of type 2 diabetes. _Drug. Des. Devel Ther._ 8, 1335–1380 (2014). Article  PubMed  PubMed Central  Google Scholar  * Vardeny, O. & Vaduganathan, M. Practical guide to


prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. _JACC Heart Fail._ 7, 169–172 (2019). Article  PubMed  Google Scholar  * Scheen, A. J. An update on the safety of


SGLT2 inhibitors. _Expert. Opin. Drug. Saf._ 18, 295–311 (2019). Article  CAS  PubMed  Google Scholar  * Banerjee, M., Maisnam, I., Pal, R. & Mukhopadhyay, S. Mineralocorticoid receptor


antagonists with sodium-glucose co-transporter-2 inhibitors in heart failure: a meta-analysis. _Eur. Heart J._ 44, 3686–3696 (2023). Article  CAS  PubMed  Google Scholar  * Chan, Y. H. et


al. Association of acute increases in serum creatinine with subsequent outcomes in patients with type 2 diabetes mellitus treated with sodium-glucose cotransporter 2 inhibitor or dipeptidyl


peptidase-4 inhibitor. _Eur. Heart J. Qual. Care Clin. Outcomes_ 9, 397–407 (2023). PubMed  Google Scholar  * US Food and Drug Administration. FDA drug safety communication: FDA confirms


increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR).


https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-confirms-increased-risk-leg-and-foot-amputations-diabetes-medicine (accessed 4 May 2023). * US Food


and Drug Administration. FDA drug safety communication: FDA removes Boxed Warning about risk of leg and foot amputations for the diabetes medicine canagliflozin (Invokana, Invokamet,


Invokamet XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-removes-boxed-warning-about-risk-leg-and-foot-amputations-diabetes-medicine-canagliflozin (accessed 4 May 4 2023). *


Rashid, N. et al. Patient and clinical characteristics associated with gout flares in an integrated healthcare system. _Rheumatol. Int._ 35, 1799–1807 (2015). Article  PubMed  PubMed


Central  Google Scholar  * Adhikari, R. et al. National trends in use of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists by cardiologists and other


specialties, 2015 to 2020. _J. Am. Heart Assoc._ 11, e023811 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Doehner, W. & Packer, M. Sodium-glucose cotransporter 2


inhibitor treatment lowers serum uric acid in patients with heart failure with reduced ejection fraction — lessons from clinical trials. Letter regarding the article ‘Dapagliflozin reduces


uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF’. _Eur. J. Heart Fail_. 24, 1993–1994 (2022). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors would like to thank S. Tanikella for assistance in generating the figures included in this manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Rheumatology


& Allergy Clinical Epidemiology Research Center (RACER), Mongan Institute, Massachusetts General Hospital, Boston, MA, USA Chio Yokose, Natalie McCormick & Hyon K. Choi * Division


of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA Chio Yokose, Natalie McCormick & Hyon K. Choi * Harvard Medical School, Boston, MA, USA Chio


Yokose, Natalie McCormick, Meghan E. Sise, James L. Januzzi, Deborah J. Wexler & Hyon K. Choi * Arthritis Research Canada, Vancouver, British Columbia, Canada Natalie McCormick & 


Hyon K. Choi * The University of Nottingham, Nottingham, UK Abhishek Abhishek * Department of Medicine, University of Auckland, Auckland, New Zealand Nicola Dalbeth * Department of


Rheumatology, Lille Catholic University, Saint-Philibert Hospital, Lille, France Tristan Pascart * Université Paris Cité, Inserm UMR 1132 Bioscar, centre Viggo Petersen, Hôpital


Lariboisière, Paris, France Frédéric Lioté * Rheumatology Department, Saint-Joseph Paris Hospital, Paris, France Frédéric Lioté * Division of Clinical Immunology and Rheumatology, University


of Alabama at Birmingham, Birmingham, AL, USA Angelo Gaffo * Birmingham VA Medical Center, Birmingham, AL, USA Angelo Gaffo * Department of Medicine/Rheumatology, David Geffen School of


Medicine at UCLA, Los Angeles, CA, USA John FitzGerald * Veterans Health Affairs, Greater Los Angeles, Los Angeles, CA, USA John FitzGerald * Division of Rheumatology, Allergy and


Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA Robert Terkeltaub * Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA Meghan


E. Sise * Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA James L. Januzzi * Baim Institute for Clinical Research, Boston, MA, USA James L. Januzzi * MGH Diabetes


Center, Massachusetts General Hospital, Boston, MA, USA Deborah J. Wexler Authors * Chio Yokose View author publications You can also search for this author inPubMed Google Scholar * Natalie


McCormick View author publications You can also search for this author inPubMed Google Scholar * Abhishek Abhishek View author publications You can also search for this author inPubMed 


Google Scholar * Nicola Dalbeth View author publications You can also search for this author inPubMed Google Scholar * Tristan Pascart View author publications You can also search for this


author inPubMed Google Scholar * Frédéric Lioté View author publications You can also search for this author inPubMed Google Scholar * Angelo Gaffo View author publications You can also


search for this author inPubMed Google Scholar * John FitzGerald View author publications You can also search for this author inPubMed Google Scholar * Robert Terkeltaub View author


publications You can also search for this author inPubMed Google Scholar * Meghan E. Sise View author publications You can also search for this author inPubMed Google Scholar * James L.


Januzzi View author publications You can also search for this author inPubMed Google Scholar * Deborah J. Wexler View author publications You can also search for this author inPubMed Google


Scholar * Hyon K. Choi View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS C.Y. and N.M. researched data for the article. C.Y. wrote the


article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence to Chio Yokose.


ETHICS DECLARATIONS COMPETING INTERESTS N.D. has received consulting fees, speaker fees or grants from Arthrosi, AstraZeneca, Dyve Biosciences, Hikma, Horizon, JPI, JW Pharmaceutical


Corporation, LG Chem, Novartis, PK Med, Protalix, PTC Therapeutics, Selecta and Unlocked Labs, outside the submitted work. F.L. has received consulting fees from Horizon Biosciences, Mayoly


Spindler, Novartis, Olatec and SOBI-Selecta, and unrestricted grants for the European Crystal Network workshops from Arthrosi, AstraZeneca, Dyve Biosciences, Horizon Biosciences, Mayoly


Spindler and Olatec, outside the submitted work. A.G has served as consultant SOBI, PK Med and serves on a data monitoring committee for Atom Bioscience. J.L.J. is a Trustee of the American


College of Cardiology and a board member of Imbria Pharmaceuticals; has received grant support from Abbott Diagnostics, Applied Therapeutics, HeartFlow, Innolife and Novartis; has received


consulting income from Abbott Diagnostics, AstraZeneca, Beckman Coulter, Jana Care, Janssen, Novartis, Prevencio, Quidel and Roche Diagnostics; and participates in clinical end point


committees/data safety monitoring boards for AbbVie, Abbott, Bayer, Siemens, Pfizer and Takeda, outside the submitted work. R.T. has served or serves as a consultant for Acquist


Therapeutics, Allena, AstraZeneca, Atom Bioscience, Fortress/Urica, Generate Biomedicines, Horizon Therapeutics, LG Chem, Selecta Biosciences and Synlogic, and was a previous recipient of a


research grant from AstraZeneca. R.T. serves as the non-salaried President of the G-CAN (Gout, Hyperuricemia and Crystal-Associated Disease Network) research society; over its 9 years of


existence, G-CAN annually has received unrestricted arms-length grant support from pharma donors. D.J.W. serves on a data monitoring committee for Novo Nordisk, outside the submitted work.


H.K.C. reports research support from Ironwood and Horizon, and consulting fees from Horizon, Ironwood, Kowa, Selecta, Takeda and Vaxart. M.E.S. receives research funding from AbbVie, Angion,


Cabaletta, EMD-Serono, Gilead, Novartis, Otsuka and Roche; serves on scientific advisory boards for Calliditas, Mallinckrodt, Novartis, Travere and Vera; and serves as a DSMB member for


Alpine Immunosciences. T.P. has received consulting and speaker fees from Novartis and consulting and research grants from Horizon Pharmaceuticals. C.Y., J.F., N.M. and A.A. declare no


competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Rheumatology_ thanks Mainak Banerjee and the other, anonymous, reviewer(s) for their contribution to the peer review


of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY INFORMATION RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing


agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement


and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Yokose, C., McCormick, N., Abhishek, A. _et al._ The clinical benefits of sodium–glucose cotransporter type


2 inhibitors in people with gout. _Nat Rev Rheumatol_ 20, 216–231 (2024). https://doi.org/10.1038/s41584-024-01092-x Download citation * Accepted: 07 February 2024 * Published: 12 March 2024


* Issue Date: April 2024 * DOI: https://doi.org/10.1038/s41584-024-01092-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative