Neoarchaean oxygen-based nitrogen cycle en route to the great oxidation event

Neoarchaean oxygen-based nitrogen cycle en route to the great oxidation event

Play all audios:

Loading...

ABSTRACT The nitrogen isotopic composition of sedimentary rocks (δ15N) can trace redox-dependent biological pathways and early Earth oxygenation1,2. However, there is no substantial change


in the sedimentary δ15N record across the Great Oxidation Event about 2.45 billion years ago (Ga)3, a prominent redox change. This argues for a temporal decoupling between the emergence of


the first oxygen-based oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 2.45 Ga (ref. 3). The transition between both states shows strongly positive


δ15N values (10–50‰) in rocks deposited between 2.8 Ga and 2.6 Ga, but their origin and spatial extent remain uncertain4,5. Here we report strongly positive δ15N values (>30‰) in the


2.68-Gyr-old shallow to deep marine sedimentary deposit of the Serra Sul Formation6, Amazonian Craton, Brazil. Our findings are best explained by regionally variable extents of ammonium


oxidation to N2 or N2O tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was operating at 2.7 Ga. Molecular oxygen production probably shifted the redox potential so that


an intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in surface waters. We propose to name this period, when strongly positive nitrogen isotopic


compositions are superimposed on the usual range of Precambrian δ15N values, the Nitrogen Isotope Event. We suggest that it marks the earliest steps of the biogeochemical reorganizations


that led to the Great Oxidation Event. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this


journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS ANOMALOUS Δ15N VALUES IN THE NEOARCHEAN ASSOCIATED WITH AN ABUNDANT SUPPLY OF HYDROTHERMAL AMMONIUM Article Open access 22 February 2025


MACKINAWITE PARTIAL OXIDATION TO GREEN RUST PRODUCES A LARGE, ABIOTIC URANIUM ISOTOPE FRACTIONATION Article Open access 08 February 2025 EXTENSIVE PRIMARY PRODUCTION PROMOTED THE RECOVERY OF


THE EDIACARAN SHURAM EXCURSION Article Open access 10 January 2022 DATA AVAILABILITY All data are available in the main text or the supplementary materials, and at


https://doi.org/10.25666/DATAUBFC-2024-06-27. REFERENCES * Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives.


_Chem. Geol._ 429, 93–110 (2016). Article  ADS  CAS  Google Scholar  * Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle.


_Earth-Sci. Rev._ 160, 220–239 (2016). Article  ADS  Google Scholar  * Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. _Nature_


506, 307–315 (2014). Article  ADS  CAS  PubMed  Google Scholar  * Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point


in the nitrogen cycle. _Geobiology_ 9, 107–120 (2011). Article  CAS  PubMed  Google Scholar  * Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on


late Archean continents. _Earth Planet. Sci. Lett._ 411, 1–10 (2015). Article  ADS  Google Scholar  * Rossignol, C. et al. Stratigraphy and geochronological constraints of the Serra Sul


Formation (Carajás Basin, Amazonian Craton, Brazil). _Precambrian Res._ 351, 105981 (2020). Article  CAS  Google Scholar  * Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic


ratio as a recorder for surface ocean nitrate utilization. _Global Biogeochem. Cycles_ 8, 103–116 (1994). Article  ADS  CAS  Google Scholar  * Zhang, X., Sigman, D. M., Morel, F. M. M. &


Kraepiel, A. M. L. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. _Proc. Natl Acad. Sci._ 111, 4782–4787 (2014). Article  ADS  CAS  PubMed  PubMed Central


  Google Scholar  * Sigman, D. M., Karsh, K. L. & Casciotti, K. L. in _Encyclopedia of Ocean Sciences_ 2nd edn (Steele, J. H.) 40–54 (Academic Press, 2009). * Möbius, J. Isotope


fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. _Geochim. Cosmochim. Acta_ 105, 422–432 (2013). Article  ADS  Google


Scholar  * Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. _Plant


Soil_ 62, 413–430 (1981). Article  CAS  Google Scholar  * Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. _Appl. Environ.


Microbiol._ 68, 3802–3808 (2002). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Nishizawa, M., Sano, Y., Ueno, Y. & Maruyama, S. Speciation and isotope ratios of nitrogen


in fluid inclusions from seafloor hydrothermal deposits at ∼ 3.5 Ga. _Earth Planet. Sci. Lett._ 254, 332–344 (2007). Article  ADS  CAS  Google Scholar  * Marty, B., Zimmermann, L., Pujol,


M., Burgess, R. & Philippot, P. Nitrogen isotopic composition and density of the Archean atmosphere. _Science_ 342, 101–104 (2013). Article  ADS  CAS  PubMed  Google Scholar  * Stüeken,


E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. _Nature_ 520, 666–669 (2015). Article  ADS 


PubMed  Google Scholar  * Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A. & Buick, R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. _Earth


Planet. Sci. Lett._ 500, 117–126 (2018). Article  ADS  CAS  Google Scholar  * Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation


recorded in the ∼2.66-Ga Jeerinah Formation, Australia. _Proc. Natl Acad. Sci._ 115, 7711–7716 (2018). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Zerkle, A. L. et al. Onset


of the aerobic nitrogen cycle during the Great Oxidation Event. _Nature_ 542, 465–467 (2017). Article  ADS  CAS  PubMed  Google Scholar  * Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L.


& Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. _Science_ 323, 1045–1048 (2009). Article  ADS  CAS  PubMed  Google Scholar  * Godfrey, L. V.


& Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. _Nat. Geosci._ 2, 725–729 (2009). Article  ADS  CAS  Google Scholar  * Beaumont, V. & Robert, F.


Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? _Precambrian Res._ 96, 63–82 (1999). Article  ADS  CAS  Google Scholar  * Jia,


Y. & Kerrich, R. Nitrogen 15–enriched Precambrian kerogen and hydrothermal systems. _Geochem. Geophys. Geosyst._ 5, Q07005 (2004). Article  ADS  Google Scholar  * Kerrich, R., Jia, Y.,


Manikyamba, C. & Naqvi, S. M. Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. _Geol. Soc. Am. Bull._ 198, 81–104 (2006). Google Scholar  * Stüeken, E. E. et


al. Environmental niches and metabolic diversity in Neoarchean lakes. _Geobiology_ 15, 767–783 (2017). Article  PubMed  Google Scholar  * Hayes, J. M. in _Early Life Earth, Nobel Symposium,


No. 84_ (ed. Bengston, S.) 220–236 (Columbia Univ. Press, 1994). * Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation;


Fortescue Group), Western Australia. _Precambrian Res._ 174, 215–240 (2009). Article  ADS  CAS  Google Scholar  * Rossignol, C. et al. Unraveling one billion years of geological evolution of


the southeastern Amazonia Craton from detrital zircon analyses. _Geosci. Front._ 13, 101202 (2021). Article  Google Scholar  * Perelló, J., Zulliger, G., García, A. & Creaser, R. A.


Revisiting the IOCG geology and age of Alemão in the Igarapé Bahia camp, Carajás province, Brazil. _J. South Am. Earth Sci._ 124, 104273 (2023). Article  Google Scholar  * Tomkins, A. G. et


al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. _Nature_ 533, 235–238 (2016). Article  ADS  CAS  PubMed  Google Scholar  * Stüeken, E. E., Boocock, T. J.,


Robinson, A., Mikhail, S. & Johnson, B. W. Hydrothermal recycling of sedimentary ammonium into oceanic crust and the Archean ocean at 3.24 Ga. _Geology_ 49, 822–826 (2021). Article  ADS


  Google Scholar  * Figueiredo e Silva, R. C., Lobato, L. M., Zucchetti, M., Hagemann, S. & Vennemann, T. Geotectonic signature and hydrothermal alteration of metabasalts under- and


overlying the giant Serra Norte iron deposits, Carajás mineral Province. _Ore Geol. Rev._ 120, 103407 (2020). Article  Google Scholar  * Martins, P. L. G. et al. Low paleolatitude of the


Carajás Basin at ∼2.75 Ga: paleomagnetic evidence from basaltic flows in Amazonia. _Precambrian Res._ 365, 106411 (2021). Article  CAS  Google Scholar  * Li, L., Lollar, B. S., Li, H.,


Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for NH4+–NH3(aq)–NH3(gas) systems at 20–70 °C and pH of 2–13: applications to habitability


and nitrogen cycling in low-temperature hydrothermal systems. _Geochim. Cosmochim. Acta_ 84, 280–296 (2012). Article  ADS  CAS  Google Scholar  * Halevy, I. & Bachan, A. The geologic


history of seawater pH. _Science_ 355, 1069–1071 (2017). Article  ADS  CAS  PubMed  Google Scholar  * Tesdal, J.-E., Galbraith, E. & Kienast, M. Nitrogen isotopes in bulk marine


sediment: linking seafloor observations with subseafloor records. _Biogeosciences_ 10, 101–118 (2013). Article  ADS  Google Scholar  * Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope


fractionation associated with ammonium uptake by a marine bacterium. _Limnol. Oceanogr._ 37, 1447–1459 (1992). Article  ADS  CAS  Google Scholar  * Papineau, D. et al. High primary


productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. _Precambrian Res._ 171, 37–56 (2009). Article  ADS  CAS  Google Scholar  *


Yang, J. et al. Ammonium availability in the Late Archaean nitrogen cycle. _Nat. Geosci._ 12, 553–557 (2019). Article  ADS  CAS  Google Scholar  * Saitoh, M. et al. Nitrogen isotope record


from a mid-oceanic paleo-atoll limestone to constrain the redox state of the Panthalassa ocean in the Capitanian (Late Guadalupian, Permian). _Paleoceanogr. Paleoclimatol._ 38, e2022PA004573


(2023). Article  Google Scholar  * Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. _Science_ 330, 192–196 (2010). Article  ADS  CAS


  PubMed  Google Scholar  * Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T. & Kinney, C. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by


methanotrophic bacteria. _Chem. Geol._ 267, 96–107 (2009). Article  ADS  CAS  Google Scholar  * Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation.


_Geochim. Cosmochim. Acta_ 73, 2061–2076 (2009). Article  ADS  CAS  Google Scholar  * Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. _J. Geol._ 101,


235–243 (1993). Article  ADS  CAS  PubMed  Google Scholar  * Pellerin, A. et al. Iron-mediated anaerobic ammonium oxidation recorded in the early Archean ferruginous ocean. _Geobiology_ 21,


277–289 (2023). Article  CAS  PubMed  Google Scholar  * Bouyon, A. et al. Multiple sulfur isotope record from the Precambrian of South America shows an unusual trend. American Geophysical


Union, Fall Meeting 2018, abstract #V31B-04 (2018). * Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the


Mesoarchean (Tumbiana Formation, Western Australia). _Earth Planet. Sci. Lett._ 279, 65–75 (2009). Article  ADS  CAS  Google Scholar  * Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier,


R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. _Proc. Natl Acad. Sci._ 109, 15996–16003 (2012). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 


* Boocock, T. J., Mikhail, S., Prytulak, J., Di Rocco, T. & Stüeken, E. E. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: evaluating the


applicability of elemental analyser versus sealed tube combustion methods. _Geostand. Geoanalytical Res._ 44, 537–551 (2020). Article  CAS  Google Scholar  * Ader, M. et al. Ocean redox


structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. _Earth Planet. Sci. Lett._ 396, 1–13 (2014). Article  ADS  CAS  Google Scholar  * Kendall, C.


& Grim, E. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. _Anal. Chem._ 62, 526–529 (1990). Article


  CAS  Google Scholar  * Busigny, V., Ader, M. & Cartigny, P. Quantification and isotopic analysis of nitrogen in rocks at the ppm level using sealed tube combustion technique: a prelude


to the study of altered oceanic crust. _Chem. Geol._ 223, 249–258 (2005). Article  ADS  CAS  Google Scholar  * Fraga-Ferreira, P. L. et al. The Nitrogen Cycle in an epeiric sea in the core


of Gondwana Supercontinent: a study on the Ediacaran-Cambrian Bambuí Group, east-central Brazil. _Front. Earth Sci._ 9, 692895 (2021). Article  Google Scholar  * Blake, T. S., Buick, R.,


Brown, S. J. A. & Barley, M. E. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary


accumulation, and continental drift rates. _Precambrian Res._ 133, 143–173 (2004). Article  ADS  CAS  Google Scholar  * Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F. &


Thorne, A. M. The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U‐Pb results. _Aust. J. Earth Sci._ 38, 261–281 (1991). Article  ADS  Google


Scholar  * Kasbohm, J., Schoene, B., Maclennan, S. A., Evans, D. A. D. & Weiss, B. P. Paleogeography and high-precision geochronology of the Neoarchean Fortescue Group, Pilbara, Western


Australia. _Precambrian Res._ 394, 107114 (2023). Article  CAS  Google Scholar  * Martins, P. L. G. et al. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: petrography,


geochemistry and tectonic significance of basalts from the Carajás Basin. _Precambrian Res._ 302, 340–357 (2017). Article  ADS  CAS  Google Scholar  * Lepot, K., Benzerara, K., Brown, G. E.


& Philippot, P. Microbially influenced formation of 2,724-million-year-old stromatolites. _Nat. Geosci._ 1, 118–121 (2008). Article  ADS  CAS  Google Scholar  * Vasquez, M. L. & da


Rosa-Costa, L. T. _Geologia e Recursos Minerais do Estado do Pará_ (CPRM, 2008). * Rego, E. S. et al. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil).


_Geobiology_ 19, 326–341 (2021). Article  CAS  PubMed  Google Scholar  * Kamber, B. S., Webb, G. E. & Gallagher, M. The rare earth element signal in Archaean microbial carbonate:


information on ocean redox and biogenicity. _J. Geol. Soc._ 171, 745–763 (2014). Article  ADS  CAS  Google Scholar  * de Melo, G. H. C. et al. Evolution of the Igarapé Bahia Cu-Au deposit,


Carajás Province (Brazil): early syngenetic chalcopyrite overprinted by IOCG mineralization. _Ore Geol. Rev._ 111, 102993 (2019). Article  Google Scholar  * Dreher, A. M., Xavier, R. P.


& Martini, S. L. Fragmental rocks of the Igarapé Bahia Cu-Au deposit, Carajas Mineral Province, Brazil. _Rev. Bras. Geociências_ 35, 359–368 (2005). Article  Google Scholar  * Dreher, A.


M., Xavier, R. P., Taylor, B. E. & Martini, S. L. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu–Au deposit, Carajás Province, Brazil.


_Miner. Deposita_ 43, 161–184 (2008). Article  ADS  CAS  Google Scholar  * Galarza, M. A., Macambira, M. J. B. & Villas, R. N. Dating and isotopic characteristics (Pb and S) of the Fe


oxide–Cu–Au–U–REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. _J. South Am. Earth Sci._ 25, 377–397 (2008). Article  ADS  CAS  Google Scholar  * Ronzê, P. C.,


Soares, A. D., dos Santos, M. & Barreira, C. F. in _Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective_ (ed. Porter, T. M.) 191–202 (PGC Publishing, 2000).


* Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue


Group, Western Australia. _Precambrian Res._ 236, 282–296 (2013). Article  ADS  CAS  Google Scholar  * Lowe, D. R. Sediment gravity flows; II, depositional models with special reference to


the deposits of high-density turbidity currents. _J. Sediment. Res._ 52, 279–297 (1982). Google Scholar  * Mulder, T. & Alexander, J. The physical character of subaqueous sedimentary


density flows and their deposits. _Sedimentology_ 48, 269–299 (2001). Article  ADS  Google Scholar  * Nemec, W. & Steel, R. J. Alluvial and coastal conglomerates: their significant


features and some comments on gravelly mass-flow deposits. Sedimentology of Gravels and Conglomerates — Memoir 10, 1–31 (1984). * Postma, G., Kleverlaan, K. & Cartigny, M. J. B.


Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. _Sedimentology_ 61, 2268–2290 (2014). Article  Google Scholar  * Postma,


G. & Cartigny, M. J. B. Supercritical and subcritical turbidity currents and their deposits—a synthesis. _Geology_ 42, 987–990 (2014). Article  ADS  Google Scholar  * Walker, R. G.


Generalized facies models for resedimented conglomerates of turbidite association. _Geol. Soc. Am. Bull._ 86, 737–748 (1975). Article  ADS  Google Scholar  * Myrow, P. M. et al. Flat-pebble


conglomerate: its multiple origins and relationship to metre-scale depositional cycles. _Sedimentology_ 51, 973–996 (2004). Article  ADS  Google Scholar  * Lehmann, M. F., Bernasconi, S. M.,


Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis.


_Geochim. Cosmochim. Acta_ 66, 3573–3584 (2002). Article  ADS  CAS  Google Scholar  * Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina


Schist, California: implications for metamorphic devolatilization history. _Geochim. Cosmochim. Acta_ 56, 2839–2849 (1992). Article  ADS  CAS  Google Scholar  * Boyd, S. R. & Philippot,


P. Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. _Chem. Geol._ 144, 257–268 (1998). Article  ADS  CAS  Google Scholar  * Haendel, D., Mühle, K.,


Nitzsche, H.-M., Stiehl, G. & Wand, U. Isotopic variations of the fixed nitrogen in metamorphic rocks. _Geochim. Cosmochim. Acta_ 50, 749–758 (1986). Article  ADS  CAS  Google Scholar  *


Jia, Y. Nitrogen isotope fractionations during progressive metamorphism: a case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. _Geochim. Cosmochim. Acta_


70, 5201–5214 (2006). Article  ADS  CAS  Google Scholar  * Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study on organic nitrogen of Westphalian anthracites from


the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). _Org. Geochem._ 29, 315–323 (1998). Article  ADS  CAS  Google Scholar  * Ader, M. et al. Nitrogen


isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. _Chem. Geol._ 232, 152–169 (2006). Article  ADS  CAS  Google Scholar  * Boudou, J.-P. et


al. Organic nitrogen chemistry during low-grade metamorphism. _Geochim. Cosmochim. Acta_ 72, 1199–1221 (2008). Article  ADS  CAS  Google Scholar  * Stüeken, E. E., Zaloumis, J., Meixnerová,


J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. _Geochim. Cosmochim. Acta_ 217, 80–94 (2017). Article  ADS  Google Scholar  *


Stüeken, E. E., Gregory, D. D., Mukherjee, I. & McGoldrick, P. Sedimentary exhalative venting of bioavailable nitrogen into the early ocean. _Earth Planet. Sci. Lett._ 565, 116963


(2021). Article  Google Scholar  * Cordani, U. G. et al. _Tectonic map of South America=Mapa tectônico da América do Sul_ (Commission for the Geological Map of the World, 2016). * Vasquez,


M. L., Sousa, C. S. & Carvalho, J. M. A. Mapa geológico e de recursos minerais do Estado do Pará, escala 1: 1.000. 000. _Programa Geol. Bras. Belém CPRM_ (2008). * Machado, N.,


Lindenmayer, Z., Krogh, T. E. & Lindenmayer, D. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. _Precambrian Res._ 49,


329–354 (1991). Article  ADS  CAS  Google Scholar  * Trendall, A. F., Basei, M. A. S., de Laeter, J. R. & Nelson, D. R. SHRIMP zircon U–Pb constraints on the age of the Carajás


formation, Grão ParáGroup, Amazon Craton. _J. South Am. Earth Sci._ 11, 265–277 (1998). Article  ADS  Google Scholar  * Rossignol, C. et al. Neoarchean environments associated with the


emplacement of a large igneous province: insights from the Carajás Basin, Amazonia Craton. _J. South Am. Earth Sci._ 130, 104574 (2023). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS For technical support, we would like to thank A.-L. Santoni and the GISMO platform (Université de Bourgogne, France) and G. Landais, R. Tchibinda, G. Bardoux and V. Rojas


(Institut de Physique du Globe de Paris, France). Funding: Institut Universitaire de France (IUF) – project EVOLINES (C.T.); Observatoire des Sciences de l’Univers Terre Homme Environnement


Temps Astronomie of Bourgogne-Franche-Comté (OSU THETA) – project NITROPAST (C.T.); Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP projects 2019/16271-0, 2018/05892-0,


2015/16235-2, 2018/02645-2 and 2019/16066-7 (P.P.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France Alice


Pellerin & Christophe Thomazo * Institut Universitaire de France (IUF), Paris, France Christophe Thomazo * Institut de Physique du Globe de Paris, Université Paris-Cité, CNRS, Paris,


France Magali Ader & Vincent Busigny * Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Cagliari, Italy Camille Rossignol * Scripps Institution of


Oceanography, Geosciences Research Division, University of California, San Diego, La Jolla, CA, USA Eric Siciliano Rego * Géosciences Montpellier, Université de Montpellier, CNRS,


Montpellier, France Pascal Philippot * Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil Pascal Philippot


Authors * Alice Pellerin View author publications You can also search for this author inPubMed Google Scholar * Christophe Thomazo View author publications You can also search for this


author inPubMed Google Scholar * Magali Ader View author publications You can also search for this author inPubMed Google Scholar * Camille Rossignol View author publications You can also


search for this author inPubMed Google Scholar * Eric Siciliano Rego View author publications You can also search for this author inPubMed Google Scholar * Vincent Busigny View author


publications You can also search for this author inPubMed Google Scholar * Pascal Philippot View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


Conceptualization: A.P., C.T., M.A., P.P. Investigation: A.P. Funding acquisition: C.T., P.P. Supervision: C.T., M.A. Writing—original draft: A.P. Review and editing: A.P., C.T., M.A.,


V.B., E.S.R., C.R., P.P. CORRESPONDING AUTHOR Correspondence to Alice Pellerin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW


INFORMATION _Nature_ thanks Timothy Lyons and Eva Stüeken for their contribution to the peer review of this work. Peer reviewer reports are available. ADDITIONAL INFORMATION PUBLISHER’S NOTE


Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. EXTENDED DATA FIGURES AND TABLES EXTENDED DATA FIG. 1 SEDIMENTOLOGICAL


LOGS OF THE DRILL CORES GT13 AND GT16 WITH PHOTOGRAPHS OF THE MAIN FACIES AND SEDIMENTARY STRUCTURES. Arrows point to the stratigraphic top. Top left, conglomerate with oriented clasts and


sandy matrix; middle left, alternations of siltstone and fine sandstone; bottom left and middle, syn-sedimentary, centimetric-scale faults within fine sandstone to siltstone. Top right,


sandstone with wave ripples, framboidal pyrite (blue circles) and load casts; middle right, normally graded conglomerate with rounded quartz pebbles and sub-angular sedimentary clasts,


grading to coarse sandstone; bottom right, flat-pebble conglomerate comprising elongated and deformed intraformational clasts. EXTENDED DATA FIG. 2 CROSS-PLOTS FOR DRILL CORES GT13 (ORANGE)


AND GT16 (RED). TOC (wt%) versus TN (ppm); δ15N (‰ versus air) versus TN (ppm); δ15N (‰ versus air) versus TOC/TN ratio and δ13Corg (‰ versus PDB) versus δ15N (‰ versus air). EXTENDED DATA


FIG. 3 MAPS ILLUSTRATING THE LOCATION OF THE CARAJÁS BASIN. A, Main tectonic elements of South America84. B, Geological map of the Carajás Basin85. C, Location of the drill cores. EXTENDED


DATA FIG. 4 MAIN SEDIMENTARY UNITS OF THE CARAJÁS BASIN AND AGE CONSTRAINTS. 1: ref. 86; 2,3: ref. 87; 4: ref. 88; 5: ref. 6; 6: ref. 28. SUPPLEMENTARY INFORMATION PEER REVIEW FILE


SUPPLEMENTARY TABLE 1 RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the


author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Pellerin, A., Thomazo, C., Ader, M. _et al._ Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event.


_Nature_ 633, 365–370 (2024). https://doi.org/10.1038/s41586-024-07842-x Download citation * Received: 31 August 2023 * Accepted: 17 July 2024 * Published: 21 August 2024 * Issue Date: 12


September 2024 * DOI: https://doi.org/10.1038/s41586-024-07842-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative