Synthesis of non-canonical amino acids through dehydrogenative tailoring

Synthesis of non-canonical amino acids through dehydrogenative tailoring

Play all audios:

Loading...

ABSTRACT Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of


structurally diverse analogues1,2,3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry


and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to


transform unactivated C–H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally


diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which


provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests


possibilities for the late-stage modification of more complex oligopeptides. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS BIOMIMETIC 1,2-AMINO MIGRATION VIA PHOTOREDOX CATALYSIS Article Open access 07 March 2025


MODULAR AND DIVERSE SYNTHESIS OF AMINO ACIDS VIA ASYMMETRIC DECARBOXYLATIVE PROTONATION OF AMINOMALONIC ACIDS Article 16 November 2023 HARNESSING TRANSAMINASES TO CONSTRUCT AZACYCLIC


NON-CANONICAL AMINO ACIDS Article 28 March 2024 DATA AVAILABILITY All data supporting the findings of this paper are available in the main text or the Supplementary Information. REFERENCES *


Hruby, V. J. & Qian, X. in _Peptide Synthesis Protocols_ (eds Pennington, M. W. & Dunn, B. M.) 249–286 (Humana, 1995). * Nájera, C. & Sansano, J. M. Catalytic asymmetric


synthesis of α-amino acids. _Chem. Rev._ 107, 4584–4671 (2007). Article  PubMed  Google Scholar  * Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical


amino acid synthesis. _Chem. Soc. Rev._ 47, 8980–8997 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific


peptide modification: a chemist’s guide. _Biochemistry_ 56, 3863–3873 (2017). Article  PubMed  CAS  Google Scholar  * Noisier, A. F. M. & Brimble, M. A. C–H functionalization in the


synthesis of amino acids and peptides. _Chem. Rev._ 114, 8775–8806 (2014). Article  PubMed  CAS  Google Scholar  * Walsh, C. T., O’Brien, R. V. & Khosla, C. Nonproteinogenic amino acid


building blocks for nonribosomal peptide and hybrid polyketide scaffolds. _Angew. Chem. Int. Ed. Engl._ 52, 7098–7124 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  *


Blaskovich, M. A. T. Unusual amino acids in medicinal chemistry. _J. Med. Chem._ 59, 10807–10836 (2016). Article  PubMed  CAS  Google Scholar  * Hickey, J. L., Sindhikara, D., Zultanski, S.


L. & Schultz, D. M. Beyond 20 in the 21st century: prospects and challenges of non-canonical amino acids in peptide drug discovery. _ACS Med. Chem. Lett._ 14, 557–565 (2023). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Reetz, M. T. New approaches to the use of amino acids as chiral building blocks in organic synthesis. _Angew. Chem. Int. Ed. Engl._ 30,


1531–1546 (1991). Article  Google Scholar  * Rezhdo, A., Islam, M., Huang, M. & Van Deventer, J. A. Future prospects for noncanonical amino acids in biological therapeutics. _Curr. Opin.


Biotechnol._ 60, 168–178 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Saleh, A. M., Wilding, K. M., Calve, S., Bundy, B. C. & Kinzer-Ursem, T. L. Non-canonical amino


acid labeling in proteomics and biotechnology. _J. Biol. Eng._ 13, 43 (2019). Article  PubMed  PubMed Central  Google Scholar  * Lugtenburg, T., Gran-Scheuch, A. & Drienovská, I.


Non-canonical amino acids as a tool for the thermal stabilization of enzymes. _Protein Eng. Des. Sel._ 36, gzad003 (2023). Article  PubMed  PubMed Central  Google Scholar  * Aguilar Troyano,


F. J., Merkens, K., Anwar, K. & Gómez‐Suárez, A. Radical‐based synthesis and modification of amino acids. _Angew. Chem. Int. Ed. Engl._ 60, 1098–1115 (2021). Article  PubMed  CAS 


Google Scholar  * Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. _Chem. Rev._ 115, 2174–2195 (2015). Article  PubMed  CAS  Google Scholar  * Capecchi, A.


& Reymond, J.-L. Peptides in chemical space. _Med. Drug Discov._ 9, 100081 (2021). Article  CAS  Google Scholar  * Voica, A.-F., Mendoza, A., Gutekunst, W. R., Fraga, J. O. & Baran,


P. S. Guided desaturation of unactivated aliphatics. _Nat. Chem._ 4, 629–635 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Herbort, J. H., Bednar, T. N., Chen, A. D.,


RajanBabu, T. V. & Nagib, D. A. γ C–H functionalization of amines via triple H-atom transfer of a vinyl sulfonyl radical chaperone. _J. Am. Chem. Soc._ 144, 13366–13373 (2022). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Chuentragool, P., Parasram, M., Shi, Y. & Gevorgyan, V. General, mild, and selective method for desaturation of aliphatic amines. _J. Am.


Chem. Soc._ 140, 2465–2468 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wang, K. et al. Selective dehydrogenation of small and large molecules by a chloroiridium catalyst.


_Sci. Adv._ 8, eabo6586 (2022). Article  PubMed  PubMed Central  CAS  Google Scholar  * Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in


homogeneous transition-metal catalysis. _Chem. Rev._ 110, 681–703 (2010). Article  PubMed  CAS  Google Scholar  * Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S.


Dehydrogenation and related reactions catalyzed by iridium pincer complexes. _Chem. Rev._ 111, 1761–1779 (2011). Article  PubMed  CAS  Google Scholar  * Parasram, M., Chuentragool, P., Wang,


Y., Shi, Y. & Gevorgyan, V. General, auxiliary-enabled photoinduced Pd-catalyzed remote desaturation of aliphatic alcohols. _J. Am. Chem. Soc._ 139, 14857–14860 (2017). Article  PubMed


  PubMed Central  CAS  Google Scholar  * Stateman, L. M., Dare, R. M., Paneque, A. N. & Nagib, D. A. Aza-heterocycles via copper-catalyzed, remote C–H desaturation of amines. _Chem_ 8,


210–224 (2022). Article  PubMed  CAS  Google Scholar  * Zhou, S., Zhang, Z.-J. & Yu, J.-Q. Copper-catalysed dehydrogenation or lactonization of C(_sp_3)–H bonds. _Nature_ 629, 363–369


(2024). Article  ADS  PubMed  CAS  Google Scholar  * West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis.


_Nat. Commun._ 6, 10093 (2015). Article  ADS  PubMed  Google Scholar  * Ritu, Kolb, D., Jain, N. & König, B. Synthesis of linear enamides and enecarbamates via photoredox acceptorless


dehydrogenation. _Adv. Synth. Catal._ 365, 605–611 (2023). * Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion


photocatalysis: synergistic control by polar and steric effects expands the reaction scope. _ACS Catal._ 8, 701–713 (2018). Article  CAS  Google Scholar  * Zhao, H. et al. Merging


halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: a mild route toward _contra_-thermodynamic olefins. _J. Am. Chem. Soc._ 143,


14806–14813 (2021). Article  PubMed  CAS  Google Scholar  * Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, _contra_-thermodynamic positional alkene isomerization. _J. Am. Chem.


Soc._ 144, 145–152 (2022). Article  PubMed  CAS  Google Scholar  * Yamase, T., Takabayashi, N. & Kaji, M. Solution photochemistry of tetrakis(tetrabutylammonium) decatungstate(VI) and


catalytic hydrogen evolution from alcohols. _J. Chem. Soc. Dalton Trans._ https://doi.org/10.1039/DT9840000793 (1984). * Wrzyszczyński, A. et al. Unexpected Hofmann elimination in the


benzophenone−(phenylthio)acetic tetrabutylammonium salt photoredox system. _J. Am. Chem. Soc._ 125, 11182–11183 (2003). Article  PubMed  Google Scholar  * Fuse, H., Kojima, M., Mitsunuma, H.


& Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal-free hybrid catalyst system. _Org. Lett._ 20, 2042–2045 (2018). Article  PubMed  CAS  Google Scholar  * Zhou,


M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. _J. Am. Chem. Soc._ 143,


16470–16485 (2021). Article  PubMed  CAS  Google Scholar  * Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. _Science_


378, 383–390 (2022). Article  ADS  PubMed  PubMed Central  CAS  Google Scholar  * Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic


fluorination of unactivated C–H bonds. _Angew. Chem. Int. Ed. Engl._ 53, 4690–4693 (2014). Article  PubMed  CAS  Google Scholar  * Yuan, Z. et al. Site‐selective, late‐stage C–H


18F‐fluorination on unprotected peptides for positron emission tomography imaging. _Angew. Chem. Int. Ed. Engl._ 57, 12733–12736 (2018). Article  PubMed  CAS  Google Scholar  * Bogart, J. W.


& Bowers, A. A. Dehydroamino acids: chemical multi-tools for late-stage diversification. _Org. Biomol. Chem._ 17, 3653–3669 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar


  * Edagwa, B. J. & Taylor, C. M. Peptides containing γ,δ-dihydroxy-l-leucine. _J. Org. Chem._ 74, 4132–4136 (2009). Article  PubMed  CAS  Google Scholar  * McLean, J. T., Milbeo, P.,


Lynch, D. M., McSweeney, L. & Scanlan, E. M. Radical‐mediated acyl thiol‐ene reaction for rapid synthesis of biomolecular thioester derivatives. _Eur. J. Org. Chem._ 2021, 4148–4160


(2021). Article  CAS  Google Scholar  * Wakimoto, T. et al. Proof of the existence of an unstable amino acid: pleurocybellaziridine in _Pleurocybella porrigens_. _Angew. Chem. Int. Ed.


Engl._ 50, 1168–1170 (2011). Article  PubMed  CAS  Google Scholar  * Zwick, C. R. & Renata, H. Remote C–H hydroxylation by an α-ketoglutarate-dependent dioxygenase enables efficient


chemoenzymatic synthesis of manzacidin C and proline analogs. _J. Am. Chem. Soc._ 140, 1165–1169 (2018). Article  PubMed  CAS  Google Scholar  * Tao, H. et al. Stereoselectivity and


substrate specificity of the FeII/α-ketoglutarate-dependent oxygenase TqaL. _J. Am. Chem. Soc._ 144, 21512–21520 (2022). Article  PubMed  CAS  Google Scholar  * Gomez, C. A., Mondal, D., Du,


Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)‐ and α‐ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C–H bonds. _Angew. Chem.


Int. Ed. Engl._ 62, e202301370 (2023). Article  PubMed  PubMed Central  CAS  Google Scholar  * Nanjo, T., De Lucca, E. C. & White, M. C. Remote, late-stage oxidation of aliphatic C–H


bonds in amide-containing molecules. _J. Am. Chem. Soc._ 139, 14586–14591 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Sarver, P. J., Bissonnette, N. B. & MacMillan,


D. W. C. Decatungstate-catalyzed C(_sp_3)–H sulfinylation: rapid access to diverse organosulfur functionality. _J. Am. Chem. Soc._ 143, 9737–9743 (2021). Article  PubMed  PubMed Central  CAS


  Google Scholar  * Galonić, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during


barbamide biosynthesis. _J. Am. Chem. Soc._ 128, 3900–3901 (2006). Article  PubMed  Google Scholar  * Cudic, M., Marí, F. & Fields, G. B. Synthesis and solid-phase application of


suitably protected γ-hydroxyvaline building blocks. _J. Org. Chem._ 72, 5581–5586 (2007). Article  PubMed  PubMed Central  CAS  Google Scholar  * Shu, C., Noble, A. & Aggarwal, V. K.


Metal-free photoinduced C(_sp_3)–H borylation of alkanes. _Nature_ 586, 714–719 (2020). Article  ADS  PubMed  CAS  Google Scholar  * Barbie, P. & Kazmaier, U. Total synthesis of


cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities. _Org. Biomol. Chem._ 14, 6036–6054 (2016). Article  PubMed  CAS  Google Scholar


  * Agami, C. et al. Asymmetric syntheses of enantiopure 4-substituted pipecolic acid derivatives. _Eur. J. Org. Chem._ 2001, 2385–2389 (2001). Article  Google Scholar  * Ferraboschi, P.,


Mieri, M. D., Grisenti, P., Lotz, M. & Nettekoven, U. Diastereoselective synthesis of an argatroban intermediate, ethyl (2_R_,4_R_)-4-methylpipecolate, by means of a mandyphos/rhodium


complex-catalyzed hydrogenation. _Tetrahedron Asymmetry_ 22, 1626–1631 (2011). Article  CAS  Google Scholar  * Smaligo, A. J. et al. Hydrodealkenylative C(_sp_3)–C(_sp_2) bond fragmentation.


_Science_ 364, 681–685 (2019). Article  ADS  PubMed  PubMed Central  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank J. Yang (MIT) for HPLC separation of product 2P and


S. Garhwal (MIT) for supercritical fluid chromatography data collection. Financial support for this work was provided by the National Institutes of Health (GM146248) and the National Science


Foundation (NSF) through a Graduate Research Fellowship to G.O. (DGE1745303). AUTHOR INFORMATION Author notes * These authors contributed equally: Xin Gu, Yu-An Zhang AUTHORS AND


AFFILIATIONS * Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA Xin Gu, Yu-An Zhang, Shuo Zhang, Leon Wang, Xiyun Ye, Gino Occhialini, Jonah Barbour, 


Bradley L. Pentelute & Alison E. Wendlandt Authors * Xin Gu View author publications You can also search for this author inPubMed Google Scholar * Yu-An Zhang View author publications


You can also search for this author inPubMed Google Scholar * Shuo Zhang View author publications You can also search for this author inPubMed Google Scholar * Leon Wang View author


publications You can also search for this author inPubMed Google Scholar * Xiyun Ye View author publications You can also search for this author inPubMed Google Scholar * Gino Occhialini


View author publications You can also search for this author inPubMed Google Scholar * Jonah Barbour View author publications You can also search for this author inPubMed Google Scholar *


Bradley L. Pentelute View author publications You can also search for this author inPubMed Google Scholar * Alison E. Wendlandt View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS A.E.W., X.G. and Y.-A.Z. conceived the work, designed experiments and analysed the data. L.W. and S.Z. contributed equally to substrate synthesis and


characterization. X.Y. and B.L.P. provided expertise on the synthesis and analysis of oligopeptides. G.O. and J.B. performed exploratory experiments establishing the feasibility of


terminal-selective aliphatic dehydrogenation. A.E.W., X.G. and Y.-A.Z. drafted the manuscript with input from all authors. A.E.W. directed the research. All authors have given approval to


the final version of the manuscript. CORRESPONDING AUTHOR Correspondence to Alison E. Wendlandt. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER


REVIEW PEER REVIEW INFORMATION _Nature_ thanks Jonathan Clayden, Christopher Teskey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION This file contains Supplementary Information; for details, see Table of Contents. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds


exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely


governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Gu, X., Zhang, YA., Zhang, S. _et al._ Synthesis of


non-canonical amino acids through dehydrogenative tailoring. _Nature_ 634, 352–358 (2024). https://doi.org/10.1038/s41586-024-07988-8 Download citation * Received: 22 November 2023 *


Accepted: 22 August 2024 * Published: 29 August 2024 * Issue Date: 10 October 2024 * DOI: https://doi.org/10.1038/s41586-024-07988-8 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative