Computational redesign of enzymes for regio- and enantioselective hydroamination

Computational redesign of enzymes for regio- and enantioselective hydroamination

Play all audios:

Loading...

ABSTRACT Introduction of innovative biocatalytic processes offers great promise for applications in green chemistry. However, owing to limited catalytic performance, the enzymes harvested


from nature's biodiversity often need to be improved for their desired functions by time-consuming iterative rounds of laboratory evolution. Here we describe the use of structure-based


computational enzyme design to convert _Bacillus_ sp. YM55-1 aspartase, an enzyme with a very narrow substrate scope, to a set of complementary hydroamination biocatalysts. The redesigned


enzymes catalyze asymmetric addition of ammonia to substituted acrylates, affording enantiopure aliphatic, polar and aromatic Β-amino acids that are valuable building blocks for the


synthesis of pharmaceuticals and bioactive compounds. Without a requirement for further optimization by laboratory evolution, the redesigned enzymes exhibit substrate tolerance up to a


concentration of 300 g/L, conversion up to 99%, Β-regioselectivity >99% and product enantiomeric excess >99%. The results highlight the use of computational design to rapidly adapt an


enzyme to industrially viable reactions. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this


journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS BIOCATALYTIC SYNTHESIS OF NON-STANDARD AMINO ACIDS BY A DECARBOXYLATIVE ALDOL REACTION Article 21 February 2022 DEVELOPMENT OF A VERSATILE AND


EFFICIENT C–N LYASE PLATFORM FOR ASYMMETRIC HYDROAMINATION VIA COMPUTATIONAL ENZYME REDESIGN Article 29 April 2021 ENGINEERING AN EFFICIENT AND ENANTIOSELECTIVE ENZYME FOR THE


MORITA–BAYLIS–HILLMAN REACTION Article 16 December 2021 REFERENCES * Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. _Nature_ 485, 185–194 (2012). Article  CAS  PubMed


  Google Scholar  * Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. _J. Am. Chem. Soc._ 135, 12480–12496 (2013). Article  CAS  PubMed  Google


Scholar  * Nestl, B. M., Hammer, S. C., Nebel, B. A. & Hauer, B. New generation of biocatalysts for organic synthesis. _Angew. Chem. Int. Ed. Engl._ 53, 3070–3095 (2014). Article  CAS 


PubMed  Google Scholar  * Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. _Science_ 329, 305–309 (2010). Article  CAS


  PubMed  Google Scholar  * Pavlidis, I. V. et al. Identification of (_S_)-selective transaminases for the asymmetric synthesis of bulky chiral amines. _Nat. Chem._ 8, 1076–1082 (2016).


Article  CAS  PubMed  Google Scholar  * Abrahamson, M. J., Vázquez-Figueroa, E., Woodall, N. B., Moore, J. C. & Bommarius, A. S. Development of an amine dehydrogenase for synthesis of


chiral amines. _Angew. Chem. Int. Ed. Engl._ 51, 3969–3972 (2012). Article  CAS  PubMed  Google Scholar  * Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion


of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. _Science_ 349, 1525–1529 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kille, S., Zilly,


F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. _Nat. Chem._ 3, 738–743 (2011). Article


  CAS  PubMed  Google Scholar  * Kan, S. B., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome _c_ for carbon-silicon bond formation: bringing silicon to life.


_Science_ 354, 1048–1051 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase.


_Nature_ 503, 418–421 (2013). Article  CAS  PubMed  Google Scholar  * Jochens, H. & Bornscheuer, U. T. Natural diversity to guide focused directed evolution. _ChemBioChem_ 11, 1861–1866


(2010). Article  CAS  PubMed  Google Scholar  * Bendl, J. et al. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. _Nucleic Acids


Res._ 44(W1), W479–W487 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nobili, A. et al. Simultaneous use of in silico design and a correlated mutation network as a tool to


efficiently guide enzyme engineering. _ChemBioChem_ 16, 805–810 (2015). Article  CAS  PubMed  Google Scholar  * Lutz, S. Beyond directed evolution—semi-rational protein engineering and


design. _Curr. Opin. Biotechnol._ 21, 734–743 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sebestova, E., Bendl, J., Brezovsky, J. & Damborsky, J. Computational tools


for design smart libraries. in _Directed Evolution Library Creation_ (Springer, New York, 2014). * Ebert, M. C. & Pelletier, J. N. Computational tools for enzyme improvement: why


everyone can — and should — use them. _Curr. Opin. Chem. Biol._ 37, 89–96 (2017). Article  CAS  PubMed  Google Scholar  * Santiago, G. et al. Computer-aided laccase engineering: towards


biological oxidation of arylamines. _ACS Catal._ 6, 5415–5423 (2016). Article  CAS  Google Scholar  * Moroz, Y. S. et al. New tricks for old proteins: single mutations in a nonenzymatic


protein give rise to various enzymatic activities. _J. Am. Chem. Soc._ 137, 14905–14911 (2015). Article  CAS  PubMed  Google Scholar  * Romero-Rivera, A., Garcia-Borràs, M. & Osuna, S.


Computational tools for the evaluation of laboratory-engineered biocatalysts. _Chem. Commun. (Camb.)_ 53, 284–297 (2016). Article  CAS  Google Scholar  * Huang, P. S., Boyken, S. E. &


Baker, D. The coming of age of de novo protein design. _Nature_ 537, 320–327 (2016). Article  CAS  PubMed  Google Scholar  * Constable, D. J. C. et al. Key green chemistry research areas – a


perspective from pharmaceutical manufacturers. _Green Chem._ 9, 411–420 (2007). Article  CAS  Google Scholar  * Kudo, F., Miyanaga, A. & Eguchi, T. Biosynthesis of natural products


containing β-amino acids. _Nat. Prod. Rep._ 31, 1056–1073 (2014). Article  CAS  PubMed  Google Scholar  * Ashfaq, M. et al. Enantioselective synthesis of β-amino acids: a review. _Med.


Chem._ 5, 295–309 (2015). Article  CAS  Google Scholar  * Liljeblad, A. & Kanerva, L. T. Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids.


_Tetrahedron_ 62, 5831–5854 (2006). Article  CAS  Google Scholar  * Rehdorf, J., Mihovilovic, M. D. & Bornscheuer, U. T. Exploiting the regioselectivity of Baeyer-Villiger monooxygenases


for the formation of β-amino acids and β-amino alcohols. _Angew. Chem. Int. Ed. Engl._ 49, 4506–4508 (2010). Article  CAS  PubMed  Google Scholar  * Zhang, D. et al. Development of β-amino


acid dehydrogenase for the synthesis of β-amino acids via reductive amination of β-keto acids. _ACS Catal._ 5, 2220–2224 (2015). Article  CAS  Google Scholar  * Turner, N. J. Ammonia lyases


and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. _Curr. Opin. Chem. Biol._ 15, 234–240 (2011). Article  CAS  PubMed  Google Scholar  * Weise, N. J.,


Parmeggiani, F., Ahmed, S. T. & Turner, N. J. The bacterial ammonia lyase EncP: a tunable biocatalyst for the synthesis of unnatural amino acids. _J. Am. Chem. Soc._ 137, 12977–12983


(2015). Article  CAS  PubMed  Google Scholar  * Kawata, Y. et al. Cloning and over-expression of thermostable _Bacillus_ sp. YM55-1 aspartase and site-directed mutagenesis for probing a


catalytic residue. _Eur. J. Biochem._ 267, 1847–1857 (2000). Article  CAS  PubMed  Google Scholar  * Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic


applications of ammonia-lyases and aminomutases. _Chem. Rev._ 118, 73–118 (2018). Article  CAS  PubMed  Google Scholar  * Viola, R. E. L-Aspartase: new tricks from an old enzyme. _Adv.


Enzymol._ 74, 295–341 (2000). CAS  PubMed  Google Scholar  * Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided


directed evolution. _Angew. Chem. Int. Ed. Engl._ 54, 3351–3367 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Levin, K. B. et al. Following evolutionary paths to


protein-protein interactions with high affinity and selectivity. _Nat. Struct. Mol. Biol._ 16, 1049–1055 (2009). Article  CAS  PubMed  Google Scholar  * Asano, Y., Kira, I. & Yokozeki,


K. Alteration of substrate specificity of aspartase by directed evolution. _Biomol. Eng._ 22, 95–101 (2005). Article  CAS  PubMed  Google Scholar  * Vogel, A., Schmiedel, R., Hofmann, U.,


Gruber, K. & Zangger, K. Converting aspartase into a β-amino acid lyase by cluster screening. _ChemCatChem_ 6, 965–968 (2014). Article  CAS  Google Scholar  * Wu, B. et al. Versatile


peptide C-terminal functionalization via a computationally engineered peptide amidase. _ACS Catal._ 6, 5405–5414 (2016). Article  CAS  Google Scholar  * Wijma, H. J. et al. Enantioselective


enzymes by computational design and in silico screening. _Angew. Chem. Int. Ed. Engl._ 54, 3726–3730 (2015). Article  CAS  PubMed  Google Scholar  * Fibriansah, G., Veetil, V. P.,


Poelarends, G. J. & Thunnissen, A. M. Structural basis for the catalytic mechanism of aspartate ammonia lyase. _Biochemistry_ 50, 6053–6062 (2011). Article  CAS  PubMed  Google Scholar 


* Zhang, J. & Liu, Y. A QM/MM study of the catalytic mechanism of aspartate ammonia lyase. _J. Mol. Graph. Model._ 51, 113–119 (2014). Article  CAS  PubMed  Google Scholar  * Cohen, Y.,


Vaknin, M. & Mauch-Mani, B. BABA-induced resistance: milestones along a 55-year journey. _Phytoparasitica_ 44, 513–538 (2016). Article  CAS  Google Scholar  * Lima-Ramos, J., Neto, W.


& Woodley, J. M. Engineering of biocatalysts and biocatalytic processes. _Top. Catal._ 57, 301–320 (2014). Article  CAS  Google Scholar  * Huisman, G. W. & Collier, S. J. On the


development of new biocatalytic processes for practical pharmaceutical synthesis. _Curr. Opin. Chem. Biol._ 17, 284–292 (2013). Article  CAS  PubMed  Google Scholar  * Zhang, W. et al. Total


synthesis and reassignment of stereochemistry of obyanamide. _Tetrahedron_ 62, 9966–9972 (2006). Article  CAS  Google Scholar  * Zhao, R. et al. Inhibition of the Bcl-xL deamination pathway


in myeloproliferative disorders. _N. Engl. J. Med._ 359, 2778–2789 (2008). Article  CAS  PubMed  Google Scholar  * Fortin, P. D., Walsh, C. T. & Magarvey, N. A. A transglutaminase


homologue as a condensation catalyst in antibiotic assembly lines. _Nature_ 448, 824–827 (2007). Article  CAS  PubMed  Google Scholar  * Grayson, J. I., Roos, J. & Osswald, S.


Development of a commercial process for (_S_)-β-phenylalanine. _Org. Process Res. Dev._ 15, 1201–1206 (2011). Article  CAS  Google Scholar  * Owen, R. T. Dapoxetine: a novel treatment for


premature ejaculation. _Drugs Today (Barc.)_ 45, 669–678 (2009). Article  CAS  Google Scholar  * Wu, B. et al. Mechanism-inspired engineering of phenylalanine aminomutase for enhanced


β-regioselective asymmetric amination of cinnamates. _Angew. Chem. Int. Ed. Engl._ 51, 482–486 (2012). Article  CAS  PubMed  Google Scholar  * Eisenthal, R., Danson, M. J. & Hough, D. W.


Catalytic efficiency and _k_ cat _/K_ M: a useful comparator? _Trends Biotechnol._ 25, 247–249 (2007). Article  CAS  PubMed  Google Scholar  * Fox, R. J. & Clay, M. D. Catalytic


effectiveness, a measure of enzyme proficiency for industrial applications. _Trends Biotechnol._ 27, 137–140 (2009). Article  CAS  PubMed  Google Scholar  * Rajagopalan, S. et al. Design of


activated serine-containing catalytic triads with atomic-level accuracy. _Nat. Chem. Biol._ 10, 386–391 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Studier, F. W. Protein


production by auto-induction in high density shaking cultures. _Protein Expr. Purif._ 41, 207–234 (2005). Article  CAS  PubMed  Google Scholar  * Ericsson, U. B., Hallberg, B. M., Detitta,


G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. _Anal. Biochem._ 357, 289–298 (2006). Article  CAS  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS We thank W. Szymanski for discussions. We thank for the 100 Talent Program grant (B.W.) and Biological Resources Service Network


Initiative (ZSYS-012; B.W.) and a grant (SKT1604; C.Y.L.) from the Chinese Academy of Sciences, Natural Science Foundation of China grants (31601412 (B.W.), 21603013 (C.Y.L.)), and a


BE-Basic grant (H.J.W. and D.B.J.) from the Dutch Ministry of Economic Affairs for the financial support. AUTHOR INFORMATION Author notes * These authors contributed equally: Ruifeng Li,


Hein J., Lu Song. AUTHORS AND AFFILIATIONS * CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology,


Chinese Academy of Sciences, Beijing, China Ruifeng Li, Lu Song, Yinglu Cui, Yu’e Tian, Jiawei Du, Tao Li, Dingding Niu, Yanchun Chen, Jing Feng, Jian Han, Hao Chen, Yong Tao & Bian Wu *


State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China Ruifeng Li & Yinglu Cui * University of Chinese Academy of Sciences, Beijing, China Ruifeng


Li, Jiawei Du, Tao Li, Yanchun Chen & Jing Feng * Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The


Netherlands Hein J. Wijma, Marleen Otzen & Dick B. Janssen Authors * Ruifeng Li View author publications You can also search for this author inPubMed Google Scholar * Hein J. Wijma View


author publications You can also search for this author inPubMed Google Scholar * Lu Song View author publications You can also search for this author inPubMed Google Scholar * Yinglu Cui


View author publications You can also search for this author inPubMed Google Scholar * Marleen Otzen View author publications You can also search for this author inPubMed Google Scholar *


Yu’e Tian View author publications You can also search for this author inPubMed Google Scholar * Jiawei Du View author publications You can also search for this author inPubMed Google


Scholar * Tao Li View author publications You can also search for this author inPubMed Google Scholar * Dingding Niu View author publications You can also search for this author inPubMed 


Google Scholar * Yanchun Chen View author publications You can also search for this author inPubMed Google Scholar * Jing Feng View author publications You can also search for this author


inPubMed Google Scholar * Jian Han View author publications You can also search for this author inPubMed Google Scholar * Hao Chen View author publications You can also search for this


author inPubMed Google Scholar * Yong Tao View author publications You can also search for this author inPubMed Google Scholar * Dick B. Janssen View author publications You can also search


for this author inPubMed Google Scholar * Bian Wu View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.B.J. and B.W. initiated the project.


B.W., H.J.W. and Y. Cui performed the computational work. L.S., R.L., M.O., Y. Tian, J.D., T.L., D.N., Y. Chen and J.F. performed biocatalytic experiments. J.H., H.C. and Y. Tao developed


high-density fermentation methods. R.L. performed preparative-scale synthesis of the amino acids. D.B.J. and B.W. provided supervision and input on experimental design and wrote the


manuscript, which was revised and approved by all authors. R.L., H.J.W. and L.S. contributed equally to this work. CORRESPONDING AUTHORS Correspondence to Dick B. Janssen or Bian Wu. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–17, Supplementary Tables 1–14 REPORTING SUMMARY


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Li, R., Wijma, H.J., Song, L. _et al._ Computational redesign of enzymes for regio- and enantioselective


hydroamination. _Nat Chem Biol_ 14, 664–670 (2018). https://doi.org/10.1038/s41589-018-0053-0 Download citation * Received: 14 October 2017 * Accepted: 09 March 2018 * Published: 21 May 2018


* Issue Date: July 2018 * DOI: https://doi.org/10.1038/s41589-018-0053-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative