Aromatization of natural products by a specialized detoxification enzyme

Aromatization of natural products by a specialized detoxification enzyme

Play all audios:

Loading...

ABSTRACT In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification


systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the


methylglyoxal–glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In


cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize


defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification


enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel


aromatics. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS INCORPORATION OF NITROGEN IN ANTINUTRITIONAL _SOLANUM_ ALKALOID BIOSYNTHESIS Article Open access 13 September 2024 THE BIOSYNTHETIC PATHWAY OF POTATO SOLANIDANES


DIVERGED FROM THAT OF SPIROSOLANES DUE TO EVOLUTION OF A DIOXYGENASE Article Open access 26 February 2021 DISCOVERY, CHARACTERIZATION AND ENGINEERING OF LIGASES FOR AMIDE SYNTHESIS Article


19 May 2021 DATA AVAILABILITY The authors declare that all relevant data supporting the findings of this study are available within the paper and its Supplementary Information. The FLNC


reads and HiSeq transcriptomic reads generated in this study have been deposited in the NCBI SRA database under accession number PRJNA493958. Moreover, datasets generated and/or analyzed


during the current study are available from the corresponding author upon reasonable request. CODE AVAILABILITY All code used in this study is available from the corresponding author upon


reasonable request. REFERENCES * Maeda, H. & Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. _Annu. Rev. Plant Biol._ 63, 73–105 (2012). Article  CAS 


PubMed  Google Scholar  * Dixon, R. A. Natural products and plant disease resistance. _Nature_ 411, 843–847 (2001). Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Multi-level


engineering facilitates the production of phenylpropanoid compounds in tomato. _Nat. Commun._ 6, 8635 (2015). Article  CAS  PubMed  Google Scholar  * Caputi, L. et al. Missing enzymes in the


biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. _Science_ 360, 1235–1239 (2018). Article  CAS  PubMed  Google Scholar  * Weng, J. K., Philippe, R. N. & Noel,


J. P. The rise of chemodiversity in plants. _Science_ 336, 1667–1670 (2012). Article  CAS  PubMed  Google Scholar  * Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability.


_Science_ 324, 203–207 (2009). Article  CAS  PubMed  Google Scholar  * Hovatta, I. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. _Nature_ 438, 662–666 (2005).


Article  CAS  PubMed  Google Scholar  * Rabbani, N. & Thornalley, P. J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. _Diabetes_ 63, 50–52 (2014). Article


  CAS  PubMed  Google Scholar  * Morcos, M. et al. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in _Caenorhabditis elegans_. _Aging Cell_ 7, 260–269 (2008).


Article  CAS  PubMed  Google Scholar  * Sankaranarayanan, S. et al. Glyoxalase goes green: the expanding roles of glyoxalase in plants. _Int. J. Mol. Sci._ 18, 898 (2017). Article  PubMed


Central  CAS  Google Scholar  * Sankaranarayanan, S., Jamshed, M. & Samuel, M. A. Degradation of glyoxalase I in _Brassica napus_ stigma leads to self-incompatibility response. _Nat.


Plants_ 1, 15185 (2015). Article  CAS  PubMed  Google Scholar  * Thornalley, P. J. Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. _Biochem.


Soc. Trans._ 31, 1343–1348 (2003). Article  CAS  PubMed  Google Scholar  * Gadelha, I. C., Fonseca, N. B., Oloris, S. C., Melo, M. M. & Soto-Blanco, B. Gossypol toxicity from cottonseed


products. _ScientificWorldJournal_ 2014, 231635 (2014). PubMed  PubMed Central  Google Scholar  * Keshmiri-Neghab, H. & Goliaei, B. Therapeutic potential of gossypol: an overview.


_Pharm. Biol._ 52, 124–128 (2014). Article  CAS  PubMed  Google Scholar  * Tian, X. et al. A gossypol biosynthetic intermediate disturbs plant defence response. _Philos. Trans. R. Soc. Lond.


B_ 374, 20180319 (2019). Article  CAS  Google Scholar  * Tian, X. et al. Characterization of gossypol biosynthetic pathway. _Proc. Natl Acad. Sci. USA_ 115, E5410–E5418 (2018). CAS  PubMed


  PubMed Central  Google Scholar  * Knutsen, H. K. et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed.


_EFSA J._ 15, e04718 (2017). PubMed  PubMed Central  Google Scholar  * Pestka, J. J. Deoxynivalenol: toxicity, mechanisms and animal health risks. _Anim. Feed Sci. Technol._ 137, 283–298


(2007). Article  CAS  Google Scholar  * Ma, D. et al. Genetic basis for glandular trichome formation in cotton. _Nat. Commun._ 7, 10456 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, J. Y. et al. VdNEP, an elicitor from _Verticillium dahliae_, induces cotton plant wilting. _Appl. Environ. Microbiol._ 70, 4989–4995 (2004). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lusas, E. W. & Jividen, G. M. Glandless cottonseed: a review of the first 25 years of processing and utilization research. _J. Am. Oil Chem. Soc._ 64, 839–854


(1987). Article  CAS  Google Scholar  * Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. _Annu. Rev. Biochem._ 79, 471–505 (2010). Article 


CAS  PubMed  Google Scholar  * Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. _Biochim.


Biophys. Acta_ 1854, 1019–1037 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cameron, A. D., Olin, B., Ridderstrom, M., Mannervik, B. & Jones, T. A. Crystal structure


of human glyoxalase I–evidence for gene duplication and 3D domain swapping. _EMBO J._ 16, 3386–3395 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cameron, A. D. et al.


Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. _Biochemistry_ 38, 13480–13490 (1999).


Article  CAS  PubMed  Google Scholar  * Ridderstrom, M., Cameron, A. D., Jones, T. A. & Mannervik, B. Mutagenesis of residue 157 in the active site of human glyoxalase I. _Biochem. J._


328, 231–235 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paterson, A. H. et al. Repeated polyploidization of _Gossypium_ genomes and the evolution of spinnable cotton


fibres. _Nature_ 492, 423–427 (2012). Article  CAS  PubMed  Google Scholar  * Li, F. et al. Genome sequence of cultivated upland cotton (_Gossypium hirsutum_ TM-1) provides insights into


genome evolution. _Nat. Biotechnol._ 33, 524–530 (2015). Article  PubMed  CAS  Google Scholar  * Zhang, T. et al. Sequencing of allotetraploid cotton (_Gossypium hirsutum_ L. acc. TM-1)


provides a resource for fiber improvement. _Nat. Biotechnol._ 33, 531–537 (2015). Article  CAS  PubMed  Google Scholar  * Schmitz, J. et al. Defense against reactive carbonyl species


involves at least three subcellular compartments where individual components of the system respond to cellular sugar status. _Plant Cell_ 29, 3234–3254 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. _Nat. Biotechnol._ 24, 1441–1447 (2006). Article 


CAS  PubMed  Google Scholar  * Means, G. D. et al. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. _J. Biol.


Chem._ 264, 19385–19391 (1989). Article  CAS  PubMed  Google Scholar  * Wu, X. et al. Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase


with broad spectrum activities. _FEBS J._ 274, 1172–1182 (2007). Article  CAS  PubMed  Google Scholar  * Sonawane, P. D. et al. Short-chain dehydrogenase/reductase governs steroidal


specialized metabolites structural diversity and toxicity in the genus _Solanum_. _Proc. Natl Acad. Sci. USA_ 115, E5419–E5428 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ji, C., Fan, Y. & Zhao, L. Review on biological degradation of mycotoxins. _Anim. Nutr._ 2, 127–133 (2016). Article  PubMed  PubMed Central  Google Scholar  * Ibrahim, S. R. M. &


Mohamed, G. A. Naturally occurring naphthalenes: chemistry, biosynthesis, structural elucidation, and biological activities. _Phytochem. Rev._ 15, 279–295 (2016). Article  CAS  Google


Scholar  * Taura, F. et al. A novel class of plant type III polyketide synthase involved in orsellinic acid biosynthesis from _Rhododendron dauricum_. _Front. Plant Sci._ 7, 1452 (2016).


Article  PubMed  PubMed Central  Google Scholar  * Tzin, V. & Galili, G. The biosynthetic pathways for shikimate and aromatic amino acids in _Arabidopsis thaliana_. _Arabidopsis Book_ 8,


e0132 (2010). Article  PubMed  PubMed Central  Google Scholar  * Sharifi, N. Minireview: androgen metabolism in castration-resistant prostate cancer. _Mol. Endocrinol._ 27, 708–714 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Brown, G. D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of _Artemisia annua_ L. (Qinghao). _Molecules_ 15,


7603–7698 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Czechowski, T. et al. _Artemisia annua_ mutant impaired in artemisinin synthesis demonstrates importance of


nonenzymatic conversion in terpenoid metabolism. _Proc. Natl Acad. Sci. USA_ 113, 15150–15155 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rabbani, N., Xue, M. &


Thornalley, P. J. Activity, regulation, copy number and function in the glyoxalase system. _Biochem. Soc. Trans._ 42, 419–424 (2014). Article  CAS  PubMed  Google Scholar  * Kumar, S.,


Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. _Mol. Biol. Evol._ 35, 1547–1549 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Hackl, T., Hedrich, R., Schultz, J. & Forster, F. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus.


_Bioinformatics_ 30, 3004–3011 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST


sequences. _Bioinformatics_ 21, 1859–1875 (2005). Article  CAS  PubMed  Google Scholar  * Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without


a reference genome. _BMC Bioinformatics_ 12, 323 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor


package for differential expression analysis of digital gene expression data. _Bioinformatics_ 26, 139–140 (2010). Article  CAS  PubMed  Google Scholar  * Shan, C. M. et al. Control of


cotton fibre elongation by a homeodomain transcription factor GhHOX3. _Nat. Commun._ 5, 5519 (2014). Article  CAS  PubMed  Google Scholar  * Luo, P., Wang, Y. H., Wang, G. D., Essenberg, M.


& Chen, X. Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis.


_Plant J._ 28, 95–104 (2001). Article  CAS  PubMed  Google Scholar  * Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox


environments. _Methods Enzymol._ 272, 51–64 (1996). Article  CAS  PubMed  Google Scholar  * Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes.


_Nucleic Acids Res._ 46, W296–W303 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular


interaction networks. _Genome Res._ 13, 2498–2504 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank W. Hu, S. Bu and Y. Liu for help


with GC–MS, NMR and Q-TOF analyses and X. Hao, B. Xu, B. Yang, C. Shi, Y. Hu, Y. Li, L. Chen and K. Zhai for their kind and generous help. We also thank D. Nelson for naming the CYP


protein. The research was supported by grants from the National Natural Science Foundation of China (Nos. 31788103, 31690092 to X.-Y.C. and No. 31700263 to J.X.L.), the Ministry of


Agriculture of China (grant No. 2016ZX08010002-005 to L.J.W.), the Ministry of Science and Technology of China (grant No. 2016YFD0100500 to L.J.W.) and the Chinese Academy of Sciences (grant


Nos. XDB11030000, QYZDY-SSW-SMC026 and 153D31KYSB20160074 to X.-Y.C.). AUTHOR INFORMATION Author notes * These authors contributed equally: Jin-Quan Huang, Xin Fang. AUTHORS AND


AFFILIATIONS * State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS,


Chinese Academy of Sciences, Shanghai, China Jin-Quan Huang, Xiu Tian, Ping Chen, Jia-Ling Lin, Xiao-Xiang Guo, Jian-Xu Li, Zhen Fan, Wei-Meng Song, Fang-Yan Chen, Ruzha Ahati, Ling-Jian


Wang & Xiao-Ya Chen * State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China Xin Fang * School


of Life Science and Technology, ShanghaiTech University, Shanghai, China Jia-Ling Lin & Xiao-Ya Chen * Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai


Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China Qing Zhao, Cathie Martin & Xiao-Ya Chen * John Innes Centre,


Norwich, UK Cathie Martin Authors * Jin-Quan Huang View author publications You can also search for this author inPubMed Google Scholar * Xin Fang View author publications You can also


search for this author inPubMed Google Scholar * Xiu Tian View author publications You can also search for this author inPubMed Google Scholar * Ping Chen View author publications You can


also search for this author inPubMed Google Scholar * Jia-Ling Lin View author publications You can also search for this author inPubMed Google Scholar * Xiao-Xiang Guo View author


publications You can also search for this author inPubMed Google Scholar * Jian-Xu Li View author publications You can also search for this author inPubMed Google Scholar * Zhen Fan View


author publications You can also search for this author inPubMed Google Scholar * Wei-Meng Song View author publications You can also search for this author inPubMed Google Scholar *


Fang-Yan Chen View author publications You can also search for this author inPubMed Google Scholar * Ruzha Ahati View author publications You can also search for this author inPubMed Google


Scholar * Ling-Jian Wang View author publications You can also search for this author inPubMed Google Scholar * Qing Zhao View author publications You can also search for this author


inPubMed Google Scholar * Cathie Martin View author publications You can also search for this author inPubMed Google Scholar * Xiao-Ya Chen View author publications You can also search for


this author inPubMed Google Scholar CONTRIBUTIONS J.-Q.H., X.F., X.T. and X.-Y.C. designed and managed the study. C.M., X.F., X.T., W.-M.S., Q.Z. and L.-J.W. discussed results and provided


advice. J.-Q.H. isolated genes and characterized enzymes. J.-Q.H., X.T., J.-L.L., X.-X.G., R.A. and F.-Y.C. isolated compounds and performed LC–MS and GC–MS analyses. X.F. and Z.F. analyzed


the NMR data. J.-Q.H., P.C. and Q.Z. performed bioinformatic analysis. J.-X.L. modeled the enzymes. X.-Y.C., J.-Q.H., X.F. and C.M. wrote the manuscript with input from all authors.


CORRESPONDING AUTHOR Correspondence to Xiao-Ya Chen. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer


Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Tables 1 and


2, Figs. 1–9 and Note. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Huang, JQ., Fang, X., Tian, X. _et al._ Aromatization of natural


products by a specialized detoxification enzyme. _Nat Chem Biol_ 16, 250–256 (2020). https://doi.org/10.1038/s41589-019-0446-8 Download citation * Received: 30 July 2019 * Accepted: 26


November 2019 * Published: 13 January 2020 * Issue Date: March 2020 * DOI: https://doi.org/10.1038/s41589-019-0446-8 SHARE THIS ARTICLE Anyone you share the following link with will be able


to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative