Endosome positioning coordinates spatially selective gpcr signaling

Endosome positioning coordinates spatially selective gpcr signaling

Play all audios:

Loading...

ABSTRACT G-protein-coupled receptors (GPCRs) can initiate unique functional responses depending on the subcellular site of activation. Efforts to uncover the mechanistic basis of


compartmentalized GPCR signaling have concentrated on the biochemical aspect of this regulation. Here we assess the biophysical positioning of receptor-containing endosomes as an alternative


salient mechanism. We devise a strategy to rapidly and selectively redistribute receptor-containing endosomes ‘on command’ in intact cells without perturbing their biochemical composition.


Next, we present two complementary optical readouts that enable robust measurements of bulk- and gene-specific GPCR/cyclic AMP (cAMP)-dependent transcriptional signaling with single-cell


resolution. With these, we establish that disruption of native endosome positioning inhibits the initiation of the endosome-dependent transcriptional responses. Finally, we demonstrate a


prominent mechanistic role of PDE-mediated cAMP hydrolysis and local protein kinase A activity in this process. Our study, therefore, illuminates a new mechanism regulating GPCR function by


identifying endosome positioning as the principal mediator of spatially selective receptor signaling. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MOLECULAR MECHANISM OF GPCR SPATIAL ORGANIZATION AT THE PLASMA


MEMBRANE Article 17 July 2023 RAPID WHOLE CELL IMAGING REVEALS A CALCIUM-APPL1-DYNEIN NEXUS THAT REGULATES COHORT TRAFFICKING OF STIMULATED EGF RECEPTORS Article Open access 17 February 2021


SPATIAL DECODING OF ENDOSOMAL CAMP SIGNALS BY A METASTABLE CYTOPLASMIC PKA NETWORK Article 01 March 2021 DATA AVAILABILITY All relevant data supporting the findings are available within the


paper and the Supplementary Data. Source data are provided with the manuscript. Additional information and reagents are available from the corresponding author upon reasonable request.


Source data are provided with this paper. REFERENCES * Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. _Nat. Rev. Mol. Cell Biol._ 10, 609–622


(2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thomsen, A. R. B., Jensen, D. D., Hicks, G. A. & Bunnett, N. W. Therapeutic targeting of endosomal G-protein-coupled


receptors. _Trends Pharmacol. Sci._ 39, 879–891 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsvetanova, N. G., Irannejad, R. & von Zastrow, M. G protein-coupled


receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. _J. Biol. Chem._ 290, 6689–6696 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vilardaga, J. P.,


Jean-Alphonse, F. G. & Gardella, T. J. Endosomal generation of cAMP in GPCR signaling. _Nat. Chem. Biol._ 10, 700–706 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Godbole, A., Lyga, S., Lohse, M. J. & Calebiro, D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. _Nat. Commun._ 8, 443 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. _Nat. Chem. Biol._ 10,


1061–1065 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsvetanova, N. G. et al. Endosomal cAMP production broadly impacts the cellular phosphoproteome. _J. Biol. Chem._


297, 100907 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. _PLoS Biol._ 7,


e1000172 (2009). Article  PubMed  PubMed Central  Google Scholar  * Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. _Nat. Chem. Biol._ 5,


734–742 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. _Nat. Chem. Biol._ 13,


799–806 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nash, C. A., Wei, W., Irannejad, R. & Smrcka, A. V. Golgi localized β1-adrenergic receptors stimulate golgi PI4P


hydrolysis by PLCε to regulate cardiac hypertrophy. _eLife_ 8, e48167 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Purgert, C. A. et al. Intracellular mGluR5 can mediate


synaptic plasticity in the hippocampus. _J. Neurosci._ 34, 4589–4598 (2014). Article  PubMed  PubMed Central  Google Scholar  * Vincent, K. et al. Intracellular mGluR5 plays a critical role


in neuropathic pain. _Nat. Commun._ 7, 10604 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * White, A. D. et al. Spatial bias in cAMP generation determines biological


responses to PTH type 1 receptor activation. _Sci. Signal_ 14, eabc5944 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Okazaki, M. et al. Prolonged signaling at the


parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. _Proc. Natl Acad. Sci. USA_ 105, 16525–16530 (2008). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Feinstein, T. N. et al. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. _J. Biol. Chem._ 288, 27849–27860 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kuna, R. S. et al. Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic


β-cells. _Am. J. Physiol. Endocrinol. Metab._ 305, E161–E170 (2013). Article  CAS  PubMed  Google Scholar  * Tian, X. et al. The α-arrestin ARRDC3 regulates the endosomal residence time and


intracellular signaling of the β2-adrenergic receptor. _J. Biol. Chem._ 291, 14510–14525 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thomsen, A. R. et al. GPCR-G


protein-β-arrestin super-complex mediates sustained G protein signaling. _Cell_ 166, 907–919 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Varandas, K. C., Irannejad, R.


& von Zastrow, M. Retromer endosome exit domains serve multiple trafficking destinations and regulate local G protein activation by GPCRs. _Curr. Biol._ 26, 3129–3142 (2016). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Bowman, S. L., Shiwarski, D. J. & Puthenveedu, M. A. Distinct G protein-coupled receptor recycling pathways allow spatial control of


downstream G protein signaling. _J. Cell Biol._ 214, 797–806 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Madamanchi, A. β-Adrenergic receptor signaling in cardiac


function and heart failure. _McGill J. Med._ 10, 99 (2007). PubMed  PubMed Central  Google Scholar  * Mutlu, G. M. & Factor, P. Alveolar epithelial β2-adrenergic receptors. _Am. J.


Respir. Cell Mol. Biol._ 38, 127–134 (2008). Article  CAS  PubMed  Google Scholar  * Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. _Nature_ 495,


534–538 (2013). Article  CAS  PubMed  Google Scholar  * Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. _Nat. Rev. Mol. Cell Biol._ 2,


599–609 (2001). Article  CAS  PubMed  Google Scholar  * Peng, G. E., Pessino, V., Huang, B. & von Zastrow, M. Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA


network. _Nat. Chem. Biol._ 17, 558–566 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schuster, M., Lipowsky, R., Assmann, M.-A., Lenz, P. & Steinberg, G. Transient


binding of dynein controls bidirectional long-range motility of early endosomes. _Proc. Natl Acad. Sci. USA_ 108, 3618–3623 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. _Nat. Rev. Mol. Cell Biol._ 19, 382–398 (2018). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. _Nat. Cell Biol._ 13, 453–460 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Sainath, R. & Gallo, G. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs


NGF-mediated regulation of growth cones and axon branches. _Dev. Neurobiol._ 75, 757–777 (2015). Article  CAS  PubMed  Google Scholar  * Violin, J. D. et al. β2-Adrenergic receptor signaling


and desensitization elucidated by quantitative modeling of real time cAMP dynamics. _J. Biol. Chem._ 283, 2949–2961 (2008). Article  CAS  PubMed  Google Scholar  * Temkin, P. et al. SNX27


mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. _Nat. Cell Biol._ 13, 715–721 (2011). Article  PubMed  PubMed Central  Google Scholar  *


Odaka, H., Arai, S., Inoue, T. & Kitaguchi, T. Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging. _PLoS ONE_ 9, e100252 (2014).


Article  PubMed  PubMed Central  Google Scholar  * Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. _J. Cell Biol._ 122,


565–578 (1993). Article  CAS  PubMed  Google Scholar  * Bayle, J. H. et al. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. _Chem.


Biol._ 13, 99–107 (2006). Article  CAS  PubMed  Google Scholar  * Nagendran, M., Riordan, D. P., Harbury, P. B. & Desai, T. J. Automated cell-type classification in intact tissues by


single-cell molecular profiling. _eLife_ 7, e30510 (2018). Article  PubMed  PubMed Central  Google Scholar  * Semesta, K. M., Tian, R., Kampmann, M., von Zastrow, M. & Tsvetanova, N. G.


A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling. _PLoS Genet._ 16, e1009103 (2020). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. _EMBO J._ 19, 4577–4588 (2000). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. _Cell_ 182, 1531–1544 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Harootunian, A. T. et al. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. _Mol.


Biol. Cell_ 4, 993–1002 (1993). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smith, F. D. et al. Local protein kinase A action proceeds through intact holoenzymes. _Science_ 356,


1288–1293 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, J.-F. et al. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. _Nat.


Chem. Biol._ 17, 39–46 (2021). Article  CAS  PubMed  Google Scholar  * Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. _Cell_ 182, 1519–1530 e1517 (2020). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Mo, G. C. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. _Nat. Methods_ 14, 427–434


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bers, D. M., Xiang, Y. K. & Zaccolo, M. Whole-cell cAMP and PKA activity are epiphenomena, nanodomain signaling matters.


_Physiology (Bethesda)_ 34, 240–249 (2019). CAS  PubMed  Google Scholar  * Nigg, E., Hilz, H., Eppenberger, H. & Dutly, F. Rapid and reversible translocation of the catalytic subunit of


cAMP‐dependent protein kinase type II from the Golgi complex to the nucleus. _EMBO J._ 4, 2801–2806 (1985). Article  CAS  PubMed  PubMed Central  Google Scholar  * Anton, S. E. et al.


Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. _Cell_ 185, 1130–1142 (2022). Article  CAS  PubMed  Google Scholar  * Koschinski, A.


& Zaccolo, M. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling. _Sci. Rep._ 7, 14090 (2017).


Article  PubMed  PubMed Central  Google Scholar  * English, A. R. & Voeltz, G. K. Endoplasmic reticulum structure and interconnections with other organelles. _Cold Spring Harb. Perspect.


Biol._ 5, a013227 (2013). Article  PubMed  PubMed Central  Google Scholar  * Jia, R. & Bonifacino, J. S. Lysosome positioning influences mTORC2 and AKT signaling. _Mol. Cell_ 75, 26–38


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-TrkA-mediated retrograde signal to transcription


factor CREB in sympathetic neurons. _Science_ 277, 1097–1100 (1997). Article  CAS  PubMed  Google Scholar  * Scerra, G. et al. Lysosomal positioning diseases: beyond substrate storage. _Open


Biol._ 12, 220155 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate


platform for the signaling train. _Proc. Natl Acad. Sci. USA_ 106, 17615–17622 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kwon, Y. et al. Non-canonical β-adrenergic


activation of ERK at endosomes. _Nature_ 611, 173–179 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Inda, C. et al. Different cAMP sources are critically involved in G


protein-coupled receptor CRHR1 signaling. _J. Cell Biol._ 214, 181–195 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kotowski, S. J., Hopf, F. W., Seif, T., Bonci, A. &


von Zastrow, M. Endocytosis promotes rapid dopaminergic signaling. _Neuron_ 71, 278–290 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Legland, D., Arganda-Carreras, I.


& Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. _Bioinformatics_ 32, 3532–3534 (2016). Article  CAS  PubMed  Google Scholar  * Rizk, A.


et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. _Nat. Protoc._ 9, 586–596 (2014). Article  CAS  PubMed  Google Scholar  *


Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. _Bioinformatics_ 27, 1179–1180 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank members of the Tsvetanova Lab and R. Irannejad (UCSF) for valuable discussions of the project and


feedback on the manuscript. Immunofluorescence microscopy imaging was performed using resources from the Duke Light Microscopy Core Facility, with specific training under L. Cameron, Y. Gao


and B. Carlson. PKARegIIB-mCherry and EGFP-SNX27 were gifts from R. Irannejad (UCSF). SSF-β2-AR, RAB11a-GFP, DynK44E-mCherry, pcDNA3.0, eGFP-C1 and Endo-bPAC were gifts from M. von Zastrow


(UCSF). MK1200 and dCas9-BFP-KRAB were gifts from M. Kampmann (UCSF). pBa.Kif1a 1-396.GFP was a gift from G. Banker and M. Bentley (Addgene plasmid, 45058; http://n2t.net/addgene:45058;


RRID:Addgene_45058). pBa-KIF5C 559-tdTomato-FKBP was a gift from G. Banker and M. Bentley (Addgene plasmid, 64211; http://n2t.net/addgene:64211; RRID:Addgene_64211). pEGFP-FRB was a gift


from K. Hahn (Addgene plasmid, 25919; http://n2t.net/addgene:25919; RRID:Addgene_25919). GFP-EEA1 wt was a gift from S. Corvera (Addgene plasmid, 42307; http://n2t.net/addgene:42307;


RRID:Addgene_42307). pmCherry-N1-GalT was a gift from L. Lu (Addgene plasmid, 87327; http://n2t.net/addgene:87327; RRID:Addgene_87327). Flamindo2 and nlsFlamindo2 were gifts from T.


Kitaguchi (Addgene plasmid, 73938; http://n2t.net/addgene:73938; RRID:Addgene_73938 and Addgene plasmid, 73939; http://n2t.net/addgene:73939; RRID:Addgene_73939). Figures 1a and 6f were


created using BioRender. Research reported in this publication was supported by the National Institutes of Health (R01NS127847 and R35GM142640 to N.G.T., R01DK073368 to J.Z. and F31NS120567


to B.K.A.W.) and the American Heart Association (Predoctoral Fellowship 834472 to J.F.Z.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pharmacology and Cancer Biology, Duke


University, Durham, NC, USA Blair K. A. Willette & Nikoleta G. Tsvetanova * Department of Pharmacology, University of California San Diego, La Jolla, CA, USA Jin-Fan Zhang & Jin


Zhang * Department of Bioengineering, University of California San Diego, La Jolla, CA, USA Jin-Fan Zhang & Jin Zhang * Department of Chemistry and Biochemistry, University of California


San Diego, La Jolla, CA, USA Jin Zhang Authors * Blair K. A. Willette View author publications You can also search for this author inPubMed Google Scholar * Jin-Fan Zhang View author


publications You can also search for this author inPubMed Google Scholar * Jin Zhang View author publications You can also search for this author inPubMed Google Scholar * Nikoleta G.


Tsvetanova View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.G.T. supervised the project. N.G.T. and B.K.A.W. conceived the project and


designed experiments. B.K.A.W. and J.F.Z. performed and analyzed all experiments. J.Z. supervised and coordinated experiments involving the generation and characterization of nuclear


ExRai-AKAR2 sensor. N.G.T., B.K.A.W. and J.F.Z. interpreted results. N.G.T. and B.K.A.W. wrote the manuscript. All authors edited the manuscript. CORRESPONDING AUTHOR Correspondence to


Nikoleta G. Tsvetanova. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Chemical Biology_ thanks Davide


Calebiro and the other, anonymous, reviewers for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–14 and uncropped western blot for


Supplementary Fig. 8c. REPORTING SUMMARY SUPPLEMENTARY DATA Supporting data for Supplementary Figs. 1–14. SUPPLEMENTARY VIDEO 1 Live-cell imaging of HEK293 cells expressing CID components.


The video shows endosome distribution after 5 min of AP21967 (rapalog) treatment. SUPPLEMENTARY VIDEO 2 Live-cell imaging of HEK293 cells expressing Flamindo2-FRB-EEA1 and


Kif1a-tdTomato-FKBP. Cells were pretreated with AP21967 (rapalog) for 30 min. SOURCE DATA SOURCE DATA FIG. 1 Numerical source data and image source data for Fig. 1. SOURCE DATA FIG. 2


Numerical source data and image source data for Fig. 2. SOURCE DATA FIG. 3 Numerical source data and image source data for Fig. 3. SOURCE DATA FIG. 4 Numerical source data and image source


data for Fig. 4. SOURCE DATA FIG. 5 Numerical source data and image source data for Fig. 5. SOURCE DATA FIG. 6 Numerical source data for Fig. 6. RIGHTS AND PERMISSIONS Springer Nature or its


licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the


accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Willette, B.K.A., Zhang, JF., Zhang, J. _et al._ Endosome positioning coordinates spatially selective GPCR signaling. _Nat Chem Biol_ 20, 151–161 (2024).


https://doi.org/10.1038/s41589-023-01390-7 Download citation * Received: 25 May 2022 * Accepted: 29 June 2023 * Published: 27 July 2023 * Issue Date: February 2024 * DOI:


https://doi.org/10.1038/s41589-023-01390-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative