Crispr–cas9 genome editing induces a p53-mediated dna damage response

Crispr–cas9 genome editing induces a p53-mediated dna damage response

Play all audios:

Loading...

ABSTRACT Here, we report that genome editing by CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading


to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These


results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies


utilizing CRISPR–Cas9. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12


print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS THE APPLICATION AND PROGRESSION OF CRISPR/CAS9 TECHNOLOGY IN OPHTHALMOLOGICAL DISEASES Article 01 August 2022 RESTORATION OF RPGR EXPRESSION IN VIVO USING


CRISPR/CAS9 GENE EDITING Article Open access 14 July 2021 COMPARISON OF CRISPR-CAS13B RNA BASE EDITING APPROACHES FOR USH2A-ASSOCIATED INHERITED RETINAL DEGENERATION Article Open access 08


February 2025 REFERENCES * Hustedt, N. & Durocher, D. _Nat. Cell Biol._ 19, 1–9 (2016). Article  PubMed  CAS  Google Scholar  * Hohmann, S. & Gozalbo, D. _Mol. Gen. Genet._ 211,


446–454 (1988). Article  PubMed  CAS  Google Scholar  * Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. _Nat. Biotechnol._ 34, 339–344 (2016). Article  PubMed 


CAS  Google Scholar  * DeWitt, M. A. et al. _Sci. Transl. Med._ 8, 360ra134 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Yin, H. et al. _Nat. Biotechnol._ 32, 551–553


(2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Dever, D. P. et al. _Nature_ 539, 384–389 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Lee, K. et al.


_eLife_ 6, e25312 (2017). * Maruyama, T. et al. _Nat. Biotechnol._ 33, 538–542 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Schmierer, B. et al. _Mol. Syst. Biol._ 13, 945


(2017). Article  PubMed  PubMed Central  Google Scholar  * Luo, M. & Chen, Y. _Int. J. Ophthalmol._ 11, 150–159 (2018). PubMed  PubMed Central  Google Scholar  * Otto, T. &


Sicinski, P. _Nat. Rev. Cancer_ 17, 93–115 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Sokolova, M. et al. _Cell Cycle_ 16, 189–199 (2017). Article  PubMed  CAS  Google


Scholar  * Doench, J. G. et al. _Nat. Biotechnol._ 34, 184–191 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B.


_Nucleic Acids Res._ 45, W130–W137 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Canny, M. D. et al. _Nat. Biotechnol._ 36, 95–102 (2018). Article  PubMed  CAS  Google


Scholar  * Cuella-Martin, R. et al. _Mol. Cell_ 64, 51–64 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Muerdter, F. et al. _Nat. Methods_ 15, 141–149 (2018). Article 


PubMed  CAS  Google Scholar  * Li, W. et al. _Genome Biol._ 15, 554 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wang, T. et al. _Science_ 350, 1096–1101 (2015). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Tsai, S. Q. et al. _Nat. Biotechnol._ 33, 187–197 (2015). Article  PubMed  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS Part of


this work was carried out at the High Throughput Genome Engineering Facility and the Swedish National Genomics Infrastructure funded by Science for Life Laboratory (Scilifelab). The Knut and


Alice Wallenberg Foundation, Cancerfonden, Barncancerfonden and the Academy of Finland supported this work. We thank H. Han and Y. Bryceson for providing equipment, the Protein Science


Facility at Karolinska Institutet, as well as I. Sur and T. Kivioja for their comments on the manuscript. AUTHOR INFORMATION Author notes * These authors contributed equally: Emma


Haapaniemi, Sandeep Botla. * These authors jointly supervised this work: Bernhard Schmierer, Jussi Taipale. AUTHORS AND AFFILIATIONS * Department of Medical Biochemistry and Biophysics,


Karolinska Institute, Stockholm, Sweden Emma Haapaniemi, Sandeep Botla, Jenna Persson, Bernhard Schmierer & Jussi Taipale * Genome-Scale Biology Program, University of Helsinki,


Helsinki, Finland Emma Haapaniemi & Jussi Taipale * Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom Jussi Taipale Authors * Emma Haapaniemi View author


publications You can also search for this author inPubMed Google Scholar * Sandeep Botla View author publications You can also search for this author inPubMed Google Scholar * Jenna Persson


View author publications You can also search for this author inPubMed Google Scholar * Bernhard Schmierer View author publications You can also search for this author inPubMed Google Scholar


* Jussi Taipale View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS E.H., B.S. and J.T. wrote the manuscript. S.B., B.S. and J.P. conducted


the genome-wide knockout screens. E.H., B.S. and S.B. prepared the cell lines and performed the flow cytometry experiments. J.T. and B.S. supervised the study. All authors read and approved


the final manuscript. CORRESPONDING AUTHORS Correspondence to Bernhard Schmierer or Jussi Taipale. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–5 and Supplementary Tables 1–3 REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Haapaniemi, E., Botla, S., Persson, J. _et al._ CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. _Nat Med_ 24, 927–930 (2018). https://doi.org/10.1038/s41591-018-0049-z


Download citation * Received: 11 September 2017 * Accepted: 23 April 2018 * Published: 11 June 2018 * Issue Date: July 2018 * DOI: https://doi.org/10.1038/s41591-018-0049-z SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative