Play all audios:
ABSTRACT Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this
goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that
span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses
on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the
relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated
opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies
illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand
challenges in the treatment of neurological disorders motivate continued growth of this area of study. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this
article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in
* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS TIME FOR NANONEURO Article 18 October 2021 NANOMATERIAL-BASED
MICROELECTRODE ARRAYS FOR IN VITRO BIDIRECTIONAL BRAIN–COMPUTER INTERFACES: A REVIEW Article Open access 30 January 2023 TRANSLATION OF NEUROTECHNOLOGIES Article 31 May 2024 CHANGE HISTORY *
_ 09 FEBRUARY 2021 A Correction to this paper has been published: https://doi.org/10.1038/s41593-021-00813-9 _ REFERENCES * Brenner, S. & Sejnowski, T. J. Understanding the human brain.
_Science_ 334, 567 (2011). Article CAS PubMed PubMed Central Google Scholar * Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond.
_Nat. Rev. Neurol._ 15, 343–352 (2019). Article PubMed Google Scholar * Yang, X. et al. Bioinspired neuron-like electronics. _Nat. Mater._ 18, 510–517 (2019). Article CAS PubMed PubMed
Central Google Scholar * Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. _Science_ 360, 1447–1451 (2018). Article CAS PubMed PubMed Central
Google Scholar * Muskovich, M. & Bettinger, C. J. Biomaterials-based electronics: polymers and interfaces for biology and medicine. _Adv. Healthc. Mater._ 1, 248–266 (2012). Article
CAS PubMed PubMed Central Google Scholar * Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: biohybrid neural
interfaces. _Adv. Mater._ 32, e1903182 (2020). Article PubMed CAS Google Scholar * Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array
for cellular-resolution electrophysiology. _Nat. Commun._ 8, 1802 (2017). Article PubMed PubMed Central CAS Google Scholar * Wu, X. et al. Sono-optogenetics facilitated by a
circulationdelivered rechargeable light source for minimally invasive optogenetics. _Proc. Natl. Acad. Sci. USA_ 116, 26332–26342 (2019). Article CAS PubMed Central Google Scholar *
Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. _Science_ 347, 1477–1480 (2015). Article CAS PubMed Google Scholar
* Zhang, M. et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. _Proc. Natl. Acad. Sci. USA_ 115, 6590–6595 (2018). Article CAS
PubMed PubMed Central Google Scholar * Liu, J. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. _Nat. Nanotechnol._ 15, 321–330
(2020). Article CAS PubMed Google Scholar * Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. _Nat. Biomed. Eng._ 4,
223–231 (2020). Article CAS PubMed Google Scholar * Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. _Neuron_ 91, 529–539 (2016). Article
CAS PubMed Google Scholar * Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. _Nat. Rev. Neurosci._ 20, 330–345 (2019). Article CAS PubMed PubMed Central
Google Scholar * Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. _Nat. Rev. Mater._ 1, 16063 (2016). Article CAS Google
Scholar * Jastrzebska‐Perfect, P. et al. Translational neuroelectronics. _Adv. Funct. Mater._ 30, 1909165 (2020). Article CAS Google Scholar * Salatino, J. W., Ludwig, K. A., Kozai, T.
D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. _Nat. Biomed. Eng._ 1, 862–877 (2017). Article CAS PubMed PubMed Central Google Scholar * Viswam, V.,
Obien, M. E. J., Franke, F., Frey, U. & Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. _Front. Neurosci._ 13, 385
(2019). Article PubMed PubMed Central Google Scholar * Cogan, S. F. Neural stimulation and recording electrodes. _Annu. Rev. Biomed. Eng._ 10, 275–309 (2008). Article CAS PubMed
Google Scholar * Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. _Adv. Mater._ 30, e1706520 (2018). Article PubMed PubMed Central CAS Google
Scholar * Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. _Science_ 347, 159–163 (2015). Article CAS PubMed Google Scholar * Liu, Y.
et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. _Nat. Biomed. Eng._ 3, 58–68 (2019). Article CAS PubMed Google Scholar * Qi, D. et al.
Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. _Adv. Mater._ 29, 1–10 (2017). Google Scholar * Guo, L., Ma, M., Zhang, N.,
Langer, R. & Anderson, D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. _Adv. Mater._ 26, 1427–1433 (2014). Article CAS PubMed Google Scholar *
Aqrawe, Z., Montgomery, J., Travas-Sejdic, J. & Svirskis, D. Conducting polymers for neuronal microelectrode array recording and stimulation. _Sens. Actuators B Chem._ 257, 753–765
(2018). Article CAS Google Scholar * Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. _Science_ 327, 1603–1607 (2010). Article CAS PubMed
Google Scholar * Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. _Nat. Neurosci._ 18, 310–315 (2015). Article CAS PubMed Google Scholar *
Escabí, M. A. et al. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. _J. Neurophysiol._ 112, 1566–1583 (2014). Article PubMed PubMed Central
Google Scholar * Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. _Sci. Transl. Med._ 12, eaay4682 (2020).
Article PubMed PubMed Central Google Scholar * Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. _Nat.
Neurosci._ 14, 1599–1605 (2011). Article CAS PubMed PubMed Central Google Scholar * Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based,
three-dimensional neural interface: manufacturing processes for an intracortical electrode array. _IEEE Trans. Biomed. Eng._ 38, 758–768 (1991). Article CAS PubMed Google Scholar *
Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J. & BeMent, S. L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. _IEEE
Trans. Biomed. Eng._ 35, 719–732 (1988). Article CAS PubMed Google Scholar * Mora Lopez, C. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 µm
SOI CMOS. _IEEE Trans. Biomed. Circuits Syst._ 11, 510–522 (2017). Article PubMed Google Scholar * Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural
activity. _Nature_ 551, 232–236 (2017). Article CAS PubMed PubMed Central Google Scholar * Scholvin, J. et al. Close-packed silicon microelectrodes for scalable spatially oversampled
neural recording. _IEEE Trans. Biomed. Eng._ 63, 120–130 (2016). Article PubMed PubMed Central Google Scholar * Kwon, K. Y., Sirowatka, B., Weber, A. & Li, W. Opto- μECoG array: a
hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. _IEEE Trans. Biomed. Circuits Syst._ 7, 593–600 (2013). Article PubMed Google Scholar
* Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. _Nat. Commun._ 5, 5258 (2014). Article CAS PubMed Google
Scholar * Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical
recording. _Nat. Methods_ 12, 1157–1162 (2015). Article CAS PubMed Google Scholar * Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous
electrophysiology and two-photon imaging in the brain. _Sci. Adv._ 4, t0626 (2018). Article CAS Google Scholar * Lee, W. et al. Transparent, conformable, active multielectrode array using
organic electrochemical transistors. _Proc. Natl. Acad. Sci. USA_ 114, 10554–10559 (2017). Article CAS PubMed PubMed Central Google Scholar * Nir, Y. et al. Regional slow waves and
spindles in human sleep. _Neuron_ 70, 153–169 (2011). Article CAS PubMed PubMed Central Google Scholar * Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks.
_Science_ 304, 1926–1929 (2004). Article PubMed CAS Google Scholar * Lewis, C. M., Bosman, C. A. & Fries, P. Recording of brain activity across spatial scales. _Curr. Opin.
Neurobiol._ 32, 68–77 (2015). Article CAS PubMed Google Scholar * Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement
across the mouse brain. _Nature_ 576, 266–273 (2019). Article CAS PubMed PubMed Central Google Scholar * Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and
locomotion make distinct contributions to cortical activity patterns and visual encoding. _Neuron_ 86, 740–754 (2015). Article CAS PubMed PubMed Central Google Scholar * Boyden, E. S.,
Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. _Nat. Neurosci._ 8, 1263–1268 (2005). Article CAS
PubMed Google Scholar * Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. _Annu. Rev. Neurosci._ 34, 389–412 (2011). Article CAS PubMed PubMed
Central Google Scholar * Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. _Neuron_ 71, 9–34 (2011). Article CAS PubMed Google
Scholar * Miyamoto, D. & Murayama, M. The fiber-optic imaging and manipulation of neural activity during animal behavior. _Neurosci. Res._ 103, 1–9 (2016). Article PubMed Google
Scholar * Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. _Nat. Methods_ 16, 1185–1192 (2019). Article CAS PubMed Google Scholar *
Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. _Nat. Neurosci._ 20, 1180–1188 (2017). Article CAS PubMed
PubMed Central Google Scholar * Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. _Neuron_ 82, 1245–1254 (2014). Article CAS PubMed
PubMed Central Google Scholar * Segev, E. et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. _Neurophotonics_ 4, 011002 (2017). PubMed
Google Scholar * Zorzos, A. N., Boyden, E. S. & Fonstad, C. G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. _Opt. Lett._ 35, 4133–4135
(2010). Article PubMed PubMed Central Google Scholar * Buzsáki, G. et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics. _Neuron_ 86, 92–105
(2015). Article PubMed PubMed Central CAS Google Scholar * Seymour, J. P., Wu, F., Wise, K. D. & Yoon, E. State-of-the-art MEMS and microsystem tools for brain research. _Microsyst.
Nanoeng._ 3, 16066 (2017). Article PubMed PubMed Central Google Scholar * Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies
in behaving animals. _Neuron_ 88, 1136–1148 (2015). Article CAS PubMed PubMed Central Google Scholar * Won, S. M. et al. Recent advances in materials, devices, and systems for neural
interfaces. _Adv. Mater._ 30, e1800534 (2018). Article PubMed CAS Google Scholar * Qazi, R., Kim, C. Y., Byun, S. H. & Jeong, J. W. Microscale inorganic LED based wireless neural
systems for chronic in vivo optogenetics. _Front. Neurosci._ 12, 764 (2018). Article PubMed PubMed Central Google Scholar * Kim, T. I. et al. Injectable, cellular-scale optoelectronics
with applications for wireless optogenetics. _Science_ 340, 211–216 (2013). Article CAS PubMed PubMed Central Google Scholar * Shin, G. et al. Flexible near-field wireless
optoelectronics as subdermal implants for broad applications in optogenetics. _Neuron_ 93, 509–521.e3 (2017). Article CAS PubMed PubMed Central Google Scholar * Montgomery, K. L. et al.
Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. _Nat. Methods_ 12, 969–974 (2015). Article CAS PubMed PubMed Central Google Scholar *
Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. _Sci. Rep._ 7, 15865 (2017). Article PubMed PubMed Central CAS
Google Scholar * Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. _Nature_ 565, 361–365 (2019). Article CAS PubMed PubMed Central Google
Scholar * Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. _Nat. Commun._ 10, 5742 (2019). Article
CAS PubMed PubMed Central Google Scholar * Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. _Pain_ 158, 2108–2116 (2017).
Article PubMed PubMed Central Google Scholar * Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. _Proc. Natl. Acad. Sci. USA_ 115,
E1374–E1383 (2018). Article CAS PubMed PubMed Central Google Scholar * Hibberd, T. J. et al. Optogenetic Induction of Colonic Motility in Mice. _Gastroenterology_ 155, 514–528.e6
(2018). Article PubMed Google Scholar * Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. _Nat. Biotechnol._ 33,
1280–1286 (2015). Article CAS PubMed PubMed Central Google Scholar * Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience
research. _Nat. Electron._ 1, 652–660 (2018). Article Google Scholar * Burton, A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural
dynamics. _Proc. Natl. Acad. Sci. USA_ 117, 2835–2845 (2020). Article CAS PubMed PubMed Central Google Scholar * Zhang, H. et al. Wireless, battery-free optoelectronic systems as
subdermal implants for local tissue oximetry. _Sci. Adv._ 5, w0873 (2019). Article CAS Google Scholar * Grienberger, C. & Konnerth, A. Imaging calcium in neurons. _Neuron_ 73, 862–885
(2012). Article CAS PubMed Google Scholar * Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. _Nat. Methods_ 15, 429–432 (2018). Article
CAS PubMed PubMed Central Google Scholar * Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. _Nat. Methods_ 8, 871–878 (2011). Article CAS PubMed PubMed
Central Google Scholar * Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. _Curr. Protoc. Cell Biol._ CHAPTER 4, 1–24
(2013). Google Scholar * Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. _Nat. Methods_ 15, 789–792 (2018). Article PubMed PubMed
Central CAS Google Scholar * Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. _Cell_ 179, 1590–1608.e23 (2019). Article CAS
PubMed PubMed Central Google Scholar * Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. _Nat. Methods_ 14, 713–719 (2017).
Article CAS PubMed Google Scholar * Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical
circuits in three dimensions. _eLife_ 7, 1–21 (2018). Google Scholar * Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and
recording of neural circuit activity with cellular resolution in vivo. _Nat. Methods_ 12, 140–146 (2015). Article CAS PubMed Google Scholar * Acker, L. C., Pino, E. N., Boyden, E. S.
& Desimone, R. Large volume, behaviorally-relevant illumination for optogenetics in nonhuman primates. _J. Vis. Exp._ 2017, 56330 (2017). Google Scholar * Acker, L., Pino, E. N.,
Boyden, E. S. & Desimone, R. FEF inactivation with improved optogenetic methods. _Proc. Natl. Acad. Sci. USA_ 113, E7297–E7306 (2016). Article CAS PubMed PubMed Central Google
Scholar * English, D. F. et al. Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. _Neuron_ 96, 505–520.e7 (2017). Article CAS PubMed PubMed Central
Google Scholar * Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. _Neuron_ 100, 1045–1058.e5 (2018). Article CAS PubMed
PubMed Central Google Scholar * Kondo, T. et al. Calcium transient dynamics of neural ensembles in the primary motor cortex of naturally behaving monkeys. _Cell Rep._ 24, 2191–2195.e4
(2018). Article CAS PubMed Google Scholar * Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. _Nat. Methods_ 14, 1107–1114 (2017).
Article CAS PubMed Google Scholar * Lee, H. J. et al. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. _Lab
Chip_ 15, 1590–1597 (2015). Article CAS PubMed Google Scholar * Shin, H. et al. Neural probes with multi-drug delivery capability. _Lab Chip_ 15, 3730–3737 (2015). Article CAS PubMed
Google Scholar * Lee, W. H., Slaney, T. R., Hower, R. W. & Kennedy, R. T. Microfabricated sampling probes for in vivo monitoring of neurotransmitters. _Anal. Chem._ 85, 3828–3831
(2013). Article CAS PubMed PubMed Central Google Scholar * Shin, H. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo.
_Nat. Commun._ 10, 3777 (2019). Article PubMed PubMed Central CAS Google Scholar * Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. _Nat. Neurosci._
20, 612–619 (2017). Article CAS PubMed PubMed Central Google Scholar * Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. _Cell_
162, 662–674 (2015). Article CAS PubMed PubMed Central Google Scholar * Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and
optogenetics. _Proc. Natl. Acad. Sci. USA_ 116, 21427–21437 (2019). Article CAS PubMed PubMed Central Google Scholar * Noh, K. N. et al. Miniaturized, battery-free optofluidic systems
with potential for wireless pharmacology and optogenetics. _Small_ 14, 1–8 (2018). Google Scholar * Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and
photostimulation. _Nat. Biomed. Eng._ 3, 655–669 (2019). Article PubMed Google Scholar * Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic
and pharmacological neuromodulation of peripheral nerves. _Sci. Adv._ 5, w5296 (2019). Article CAS Google Scholar * McCall, J. G. et al. Preparation and implementation of optofluidic
neural probes for in vivo wireless pharmacology and optogenetics. _Nat. Protoc._ 12, 219–237 (2017). Article CAS PubMed Google Scholar * Leutgeb, S., Leutgeb, J. K., Treves, A., Moser,
M. B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. _Science_ 305, 1295–1298 (2004). Article CAS PubMed Google Scholar * Pereira, A. et al. Processing of
tactile information by the hippocampus. _Proc. Natl. Acad. Sci. USA_ 104, 18286–18291 (2007). Article CAS PubMed PubMed Central Google Scholar * Felix-Ortiz, A. C. et al. BLA to vHPC
inputs modulate anxiety-related behaviors. _Neuron_ 79, 658–664 (2013). Article CAS PubMed PubMed Central Google Scholar * Devine, D. P. & Wise, R. A. Self-administration of
morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. _J. Neurosci._ 14, 1978–1984 (1994). Article CAS PubMed PubMed Central Google Scholar * Jennings, J. H., Rizzi, G.,
Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. _Science_ 341, 1517–1521 (2013). Article CAS PubMed
PubMed Central Google Scholar * O’Banion, C. P. & Yasuda, R. Fluorescent sensors for neuronal signaling. _Curr. Opin. Neurobiol._ 63, 31–41 (2020). Article PubMed CAS Google
Scholar * Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects.
_Neurosci. Res._ 152, 3–14 (2020). Article PubMed Google Scholar * Ganesana, M., Lee, S. T., Wang, Y. & Venton, B. J. Analytical techniques in neuroscience: recent advances in
imaging, separation, and electrochemical methods. _Anal. Chem._ 89, 314–341 (2017). Article CAS PubMed Google Scholar * Tavakolian-Ardakani, Z., Hosu, O., Cristea, C., Mazloum-Ardakani,
M. & Marrazza, G. Latest trends in electrochemical sensors for neurotransmitters: a review. _Sensors (Basel)_ 19, 2037 (2019). Article CAS Google Scholar * Lin, M. Z. & Schnitzer,
M. J. Genetically encoded indicators of neuronal activity. _Nat. Neurosci._ 19, 1142–1153 (2016). Article PubMed PubMed Central CAS Google Scholar * Ward, W. W. & Bokman, S. H.
Reversible denaturation of _Aequorea_ green-fluorescent protein: physical separation and characterization of the renatured protein. _Biochemistry_ 21, 4535–4540 (1982). Article CAS PubMed
Google Scholar * Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and
classification. _Int. J. Mol. Sci._ 20, 4200 (2019). Article PubMed Central CAS Google Scholar * Truong, K. et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion
molecule. _Nat. Struct. Biol._ 8, 1069–1073 (2001). Article CAS PubMed Google Scholar * Lee, Y.-T., He, L. & Zhou, Y. Expanding the chemogenetic toolbox by circular permutation. _J.
Mol. Biol._ 432, 3127–3136 (2020). Article CAS PubMed PubMed Central Google Scholar * Bajar, B. T., Wang, E. S., Zhang, S., Lin, M. Z. & Chu, J. A guide to fluorescent protein FRET
pairs. _Sensors (Basel)_ 16, 1488 (2016). Article CAS Google Scholar * Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. _Nature_ 499, 295–300 (2013).
Article CAS PubMed PubMed Central Google Scholar * Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. _Science_ 360,
eaat4422 (2018). Article PubMed PubMed Central CAS Google Scholar * Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. _Nat. Methods_ 16, 763–770
(2019). Article CAS PubMed Google Scholar * Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. _Proc. Natl. Acad. Sci. USA_
115, 5594–5599 (2018). Article CAS PubMed PubMed Central Google Scholar * Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies.
_Nat. Biotechnol._ 36, 726–737 (2018). Article CAS PubMed PubMed Central Google Scholar * Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo
detection of norepinephrine. _Neuron_ 102, 745–761.e8 (2019). Article CAS PubMed PubMed Central Google Scholar * Lobas, M. A. et al. A genetically encoded single-wavelength sensor for
imaging cytosolic and cell surface ATP. _Nat. Commun._ 10, 711 (2019). Article CAS PubMed PubMed Central Google Scholar * Zhang, W. H. et al. Monitoring hippocampal glycine with the
computationally designed optical sensor GlyFS. _Nat. Chem. Biol._ 14, 861–869 (2018). Article CAS PubMed Google Scholar * Stoeber, M. et al. A genetically encoded biosensor reveals
location bias of opioid drug action. _Neuron_ 98, 963–976.e5 (2018). Article CAS PubMed PubMed Central Google Scholar * Chernov, K. G., Redchuk, T. A., Omelina, E. S. & Verkhusha,
V. V. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. _Chem. Rev._ 117, 6423–6446 (2017). Article CAS PubMed Google Scholar * Qian, Y.
et al. A genetically encoded near-infrared fluorescent calcium ion indicator. _Nat. Methods_ 16, 171–174 (2019). Article CAS PubMed PubMed Central Google Scholar * Gong, X. et al. An
ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. _Neuron_ 107, 38–51.e8 (2020). Article CAS PubMed PubMed Central Google Scholar
* Ribeiro, J. A., Fernandes, P. M. V., Pereira, C. M. & Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. _Talanta_ 160,
653–679 (2016). Article CAS PubMed Google Scholar * Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. _Annu. Rev. Anal. Chem. (Palo Alto Calif.)_ 8,
239–261 (2015). Article CAS Google Scholar * Liu, C. et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. _Microsyst. Nanoeng._ 6,
64 (2020). Article CAS PubMed PubMed Central Google Scholar * Xiao, Y., Piorek, B. D., Plaxco, K. W. & Heeger, A. J. A reagentless signal-on architecture for electronic,
aptamer-based sensors via target-induced strand displacement. _J. Am. Chem. Soc._ 127, 17990–17991 (2005). Article CAS PubMed Google Scholar * Schoukroun-Barnes, L. R. et al.
Reagentless, structure-switching, electrochemical aptamer-based sensors. _Annu. Rev. Anal. Chem. (Palo Alto Calif.)_ 9, 163–181 (2016). Article CAS Google Scholar * Taylor, I. M. et al.
Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. _J. Mater. Chem. B Mater. Biol. Med._ 5, 2445–2458 (2017). Article CAS PubMed PubMed
Central Google Scholar * Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. _Science_ 362, 319–324 (2018). Article CAS
PubMed PubMed Central Google Scholar * Musk, E. An integrated brain-machine interface platform with thousands of channels. _J. Med. Internet Res._ 21, e16194 (2019). Article PubMed
PubMed Central Google Scholar * Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications.
_Front. Cell. Neurosci._ 13, 474 (2019). Article CAS PubMed PubMed Central Google Scholar * Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake,
ambulatory animals. _Proc. Natl. Acad. Sci. USA_ 114, 645–650 (2017). Article PubMed PubMed Central CAS Google Scholar * Strumwasser, F. Long-term recording’ from single neurons in
brain of unrestrained mammals. _Science_ 127, 469–470 (1958). Article CAS PubMed Google Scholar * McNaughton, B. L., O’Keefe, J. & Barnes, C. A. The stereotrode: a new technique for
simultaneous isolation of several single units in the central nervous system from multiple unit records. _J. Neurosci. Methods_ 8, 391–397 (1983). Article CAS PubMed Google Scholar *
Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. _Nature_ 144, 710–711 (1939). Article Google Scholar * Buzsáki, G., Anastassiou, C. A. & Koch,
C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. _Nat. Rev. Neurosci._ 13, 407–420 (2012). Article PubMed PubMed Central CAS Google Scholar * Song, E., Li,
J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. _Nat. Mater._ 19, 590–603 (2020). Article CAS PubMed Google Scholar
* Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert
ligand. _Proc. Natl. Acad. Sci. USA_ 104, 5163–5168 (2007). Article PubMed PubMed Central CAS Google Scholar * Alexander, G. M. et al. Remote control of neuronal activity in transgenic
mice expressing evolved G protein-coupled receptors. _Neuron_ 63, 27–39 (2009). Article CAS PubMed PubMed Central Google Scholar * Banghart, M. R. & Sabatini, B. L.
Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. _Neuron_ 73, 249–259 (2012). Article CAS PubMed PubMed Central Google Scholar * Hüll,
K., Morstein, J. & Trauner, D. In vivo photopharmacology. _Chem. Rev._ 118, 10710–10747 (2018). Article PubMed CAS Google Scholar * Luo, L., Callaway, E. M. & Svoboda, K. Genetic
dissection of neural circuits. _Neuron_ 57, 634–660 (2008). Article CAS PubMed PubMed Central Google Scholar * Magnus, C. J. et al. Chemical and genetic engineering of selective ion
channel-ligand interactions. _Science_ 333, 1292–1296 (2011). Article CAS PubMed PubMed Central Google Scholar * Roth, B. L. DREADDs for neuroscientists. _Neuron_ 89, 683–694 (2016).
Article CAS PubMed PubMed Central Google Scholar * Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. _eLife_ 5, 1–24 (2016). Article CAS Google
Scholar * Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. _Nat. Chem. Biol._ 14, 352–360 (2018). Article CAS
PubMed PubMed Central Google Scholar * Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. _Nat. Commun._ 5, 4625 (2014). Article CAS PubMed Google
Scholar Download references ACKNOWLEDGEMENTS This research was supported by the Querrey Simpson Institute for Bioelectronics at Northwestern University. AUTHOR INFORMATION Author notes *
These authors contributed equally: Abraham Vázquez-Guardado, Yiyuan Yang, Amay J. Bandodkar. AUTHORS AND AFFILIATIONS * Center for Bio-Integrated Electronics, Northwestern University,
Evanston, IL, USA Abraham Vázquez-Guardado, Amay J. Bandodkar & John A. Rogers * Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA Yiyuan Yang & John
A. Rogers * Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA Amay J. Bandodkar & John A. Rogers * Department of Biomedical Engineering,
Northwestern University, Evanston, IL, USA John A. Rogers * Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA John A. Rogers * Querrey
Simpson Institute for Bioelectronics, Northwestern University, Chicago, IL, USA John A. Rogers * Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University,
Chicago, IL, USA John A. Rogers Authors * Abraham Vázquez-Guardado View author publications You can also search for this author inPubMed Google Scholar * Yiyuan Yang View author publications
You can also search for this author inPubMed Google Scholar * Amay J. Bandodkar View author publications You can also search for this author inPubMed Google Scholar * John A. Rogers View
author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.V.-G., Y.Y., A.J.B., and J.A.R. cowrote and co-edited the manuscript. CORRESPONDING AUTHOR
Correspondence to John A. Rogers. ETHICS DECLARATIONS COMPETING INTERESTS J.A.R. is cofounder in a company, Neurolux Inc., that offers related technology products to the neuroscience
community. ADDITIONAL INFORMATION PEER REVIEW INFORMATION Nature Neuroscience thanks Sebastian Haesler and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions
ABOUT THIS ARTICLE CITE THIS ARTICLE Vázquez-Guardado, A., Yang, Y., Bandodkar, A.J. _et al._ Recent advances in neurotechnologies with broad potential for neuroscience research. _Nat
Neurosci_ 23, 1522–1536 (2020). https://doi.org/10.1038/s41593-020-00739-8 Download citation * Received: 26 June 2020 * Accepted: 09 October 2020 * Published: 16 November 2020 * Issue Date:
December 2020 * DOI: https://doi.org/10.1038/s41593-020-00739-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative