Recent advances in neurotechnologies with broad potential for neuroscience research

Recent advances in neurotechnologies with broad potential for neuroscience research

Play all audios:

Loading...

ABSTRACT Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this


goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that


span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses


on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the


relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated


opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies


illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand


challenges in the treatment of neurological disorders motivate continued growth of this area of study. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS TIME FOR NANONEURO Article 18 October 2021 NANOMATERIAL-BASED


MICROELECTRODE ARRAYS FOR IN VITRO BIDIRECTIONAL BRAIN–COMPUTER INTERFACES: A REVIEW Article Open access 30 January 2023 TRANSLATION OF NEUROTECHNOLOGIES Article 31 May 2024 CHANGE HISTORY *


_ 09 FEBRUARY 2021 A Correction to this paper has been published: https://doi.org/10.1038/s41593-021-00813-9 _ REFERENCES * Brenner, S. & Sejnowski, T. J. Understanding the human brain.


_Science_ 334, 567 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond.


_Nat. Rev. Neurol._ 15, 343–352 (2019). Article  PubMed  Google Scholar  * Yang, X. et al. Bioinspired neuron-like electronics. _Nat. Mater._ 18, 510–517 (2019). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. _Science_ 360, 1447–1451 (2018). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Muskovich, M. & Bettinger, C. J. Biomaterials-based electronics: polymers and interfaces for biology and medicine. _Adv. Healthc. Mater._ 1, 248–266 (2012). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: biohybrid neural


interfaces. _Adv. Mater._ 32, e1903182 (2020). Article  PubMed  CAS  Google Scholar  * Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array


for cellular-resolution electrophysiology. _Nat. Commun._ 8, 1802 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wu, X. et al. Sono-optogenetics facilitated by a


circulationdelivered rechargeable light source for minimally invasive optogenetics. _Proc. Natl. Acad. Sci. USA_ 116, 26332–26342 (2019). Article  CAS  PubMed Central  Google Scholar  *


Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. _Science_ 347, 1477–1480 (2015). Article  CAS  PubMed  Google Scholar 


* Zhang, M. et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. _Proc. Natl. Acad. Sci. USA_ 115, 6590–6595 (2018). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Liu, J. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. _Nat. Nanotechnol._ 15, 321–330


(2020). Article  CAS  PubMed  Google Scholar  * Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. _Nat. Biomed. Eng._ 4,


223–231 (2020). Article  CAS  PubMed  Google Scholar  * Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. _Neuron_ 91, 529–539 (2016). Article 


CAS  PubMed  Google Scholar  * Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. _Nat. Rev. Neurosci._ 20, 330–345 (2019). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. _Nat. Rev. Mater._ 1, 16063 (2016). Article  CAS  Google


Scholar  * Jastrzebska‐Perfect, P. et al. Translational neuroelectronics. _Adv. Funct. Mater._ 30, 1909165 (2020). Article  CAS  Google Scholar  * Salatino, J. W., Ludwig, K. A., Kozai, T.


D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. _Nat. Biomed. Eng._ 1, 862–877 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Viswam, V.,


Obien, M. E. J., Franke, F., Frey, U. & Hierlemann, A. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. _Front. Neurosci._ 13, 385


(2019). Article  PubMed  PubMed Central  Google Scholar  * Cogan, S. F. Neural stimulation and recording electrodes. _Annu. Rev. Biomed. Eng._ 10, 275–309 (2008). Article  CAS  PubMed 


Google Scholar  * Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. _Adv. Mater._ 30, e1706520 (2018). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. _Science_ 347, 159–163 (2015). Article  CAS  PubMed  Google Scholar  * Liu, Y.


et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. _Nat. Biomed. Eng._ 3, 58–68 (2019). Article  CAS  PubMed  Google Scholar  * Qi, D. et al.


Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. _Adv. Mater._ 29, 1–10 (2017). Google Scholar  * Guo, L., Ma, M., Zhang, N.,


Langer, R. & Anderson, D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. _Adv. Mater._ 26, 1427–1433 (2014). Article  CAS  PubMed  Google Scholar  *


Aqrawe, Z., Montgomery, J., Travas-Sejdic, J. & Svirskis, D. Conducting polymers for neuronal microelectrode array recording and stimulation. _Sens. Actuators B Chem._ 257, 753–765


(2018). Article  CAS  Google Scholar  * Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. _Science_ 327, 1603–1607 (2010). Article  CAS  PubMed 


Google Scholar  * Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. _Nat. Neurosci._ 18, 310–315 (2015). Article  CAS  PubMed  Google Scholar  *


Escabí, M. A. et al. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. _J. Neurophysiol._ 112, 1566–1583 (2014). Article  PubMed  PubMed Central 


Google Scholar  * Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. _Sci. Transl. Med._ 12, eaay4682 (2020).


Article  PubMed  PubMed Central  Google Scholar  * Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. _Nat.


Neurosci._ 14, 1599–1605 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based,


three-dimensional neural interface: manufacturing processes for an intracortical electrode array. _IEEE Trans. Biomed. Eng._ 38, 758–768 (1991). Article  CAS  PubMed  Google Scholar  *


Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J. & BeMent, S. L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. _IEEE


Trans. Biomed. Eng._ 35, 719–732 (1988). Article  CAS  PubMed  Google Scholar  * Mora Lopez, C. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 µm


SOI CMOS. _IEEE Trans. Biomed. Circuits Syst._ 11, 510–522 (2017). Article  PubMed  Google Scholar  * Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural


activity. _Nature_ 551, 232–236 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scholvin, J. et al. Close-packed silicon microelectrodes for scalable spatially oversampled


neural recording. _IEEE Trans. Biomed. Eng._ 63, 120–130 (2016). Article  PubMed  PubMed Central  Google Scholar  * Kwon, K. Y., Sirowatka, B., Weber, A. & Li, W. Opto- μECoG array: a


hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. _IEEE Trans. Biomed. Circuits Syst._ 7, 593–600 (2013). Article  PubMed  Google Scholar 


* Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. _Nat. Commun._ 5, 5258 (2014). Article  CAS  PubMed  Google


Scholar  * Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical


recording. _Nat. Methods_ 12, 1157–1162 (2015). Article  CAS  PubMed  Google Scholar  * Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous


electrophysiology and two-photon imaging in the brain. _Sci. Adv._ 4, t0626 (2018). Article  CAS  Google Scholar  * Lee, W. et al. Transparent, conformable, active multielectrode array using


organic electrochemical transistors. _Proc. Natl. Acad. Sci. USA_ 114, 10554–10559 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nir, Y. et al. Regional slow waves and


spindles in human sleep. _Neuron_ 70, 153–169 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks.


_Science_ 304, 1926–1929 (2004). Article  PubMed  CAS  Google Scholar  * Lewis, C. M., Bosman, C. A. & Fries, P. Recording of brain activity across spatial scales. _Curr. Opin.


Neurobiol._ 32, 68–77 (2015). Article  CAS  PubMed  Google Scholar  * Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement


across the mouse brain. _Nature_ 576, 266–273 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and


locomotion make distinct contributions to cortical activity patterns and visual encoding. _Neuron_ 86, 740–754 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boyden, E. S.,


Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. _Nat. Neurosci._ 8, 1263–1268 (2005). Article  CAS 


PubMed  Google Scholar  * Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. _Annu. Rev. Neurosci._ 34, 389–412 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. _Neuron_ 71, 9–34 (2011). Article  CAS  PubMed  Google


Scholar  * Miyamoto, D. & Murayama, M. The fiber-optic imaging and manipulation of neural activity during animal behavior. _Neurosci. Res._ 103, 1–9 (2016). Article  PubMed  Google


Scholar  * Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. _Nat. Methods_ 16, 1185–1192 (2019). Article  CAS  PubMed  Google Scholar  *


Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. _Nat. Neurosci._ 20, 1180–1188 (2017). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. _Neuron_ 82, 1245–1254 (2014). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Segev, E. et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. _Neurophotonics_ 4, 011002 (2017). PubMed


  Google Scholar  * Zorzos, A. N., Boyden, E. S. & Fonstad, C. G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. _Opt. Lett._ 35, 4133–4135


(2010). Article  PubMed  PubMed Central  Google Scholar  * Buzsáki, G. et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics. _Neuron_ 86, 92–105


(2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Seymour, J. P., Wu, F., Wise, K. D. & Yoon, E. State-of-the-art MEMS and microsystem tools for brain research. _Microsyst.


Nanoeng._ 3, 16066 (2017). Article  PubMed  PubMed Central  Google Scholar  * Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies


in behaving animals. _Neuron_ 88, 1136–1148 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Won, S. M. et al. Recent advances in materials, devices, and systems for neural


interfaces. _Adv. Mater._ 30, e1800534 (2018). Article  PubMed  CAS  Google Scholar  * Qazi, R., Kim, C. Y., Byun, S. H. & Jeong, J. W. Microscale inorganic LED based wireless neural


systems for chronic in vivo optogenetics. _Front. Neurosci._ 12, 764 (2018). Article  PubMed  PubMed Central  Google Scholar  * Kim, T. I. et al. Injectable, cellular-scale optoelectronics


with applications for wireless optogenetics. _Science_ 340, 211–216 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shin, G. et al. Flexible near-field wireless


optoelectronics as subdermal implants for broad applications in optogenetics. _Neuron_ 93, 509–521.e3 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Montgomery, K. L. et al.


Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. _Nat. Methods_ 12, 969–974 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. _Sci. Rep._ 7, 15865 (2017). Article  PubMed  PubMed Central  CAS 


Google Scholar  * Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. _Nature_ 565, 361–365 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. _Nat. Commun._ 10, 5742 (2019). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. _Pain_ 158, 2108–2116 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. _Proc. Natl. Acad. Sci. USA_ 115,


E1374–E1383 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hibberd, T. J. et al. Optogenetic Induction of Colonic Motility in Mice. _Gastroenterology_ 155, 514–528.e6


(2018). Article  PubMed  Google Scholar  * Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. _Nat. Biotechnol._ 33,


1280–1286 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience


research. _Nat. Electron._ 1, 652–660 (2018). Article  Google Scholar  * Burton, A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural


dynamics. _Proc. Natl. Acad. Sci. USA_ 117, 2835–2845 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H. et al. Wireless, battery-free optoelectronic systems as


subdermal implants for local tissue oximetry. _Sci. Adv._ 5, w0873 (2019). Article  CAS  Google Scholar  * Grienberger, C. & Konnerth, A. Imaging calcium in neurons. _Neuron_ 73, 862–885


(2012). Article  CAS  PubMed  Google Scholar  * Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. _Nat. Methods_ 15, 429–432 (2018). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. _Nat. Methods_ 8, 871–878 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. _Curr. Protoc. Cell Biol._ CHAPTER 4, 1–24


(2013). Google Scholar  * Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. _Nat. Methods_ 15, 789–792 (2018). Article  PubMed  PubMed


Central  CAS  Google Scholar  * Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. _Cell_ 179, 1590–1608.e23 (2019). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. _Nat. Methods_ 14, 713–719 (2017).


Article  CAS  PubMed  Google Scholar  * Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical


circuits in three dimensions. _eLife_ 7, 1–21 (2018). Google Scholar  * Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous all-optical manipulation and


recording of neural circuit activity with cellular resolution in vivo. _Nat. Methods_ 12, 140–146 (2015). Article  CAS  PubMed  Google Scholar  * Acker, L. C., Pino, E. N., Boyden, E. S.


& Desimone, R. Large volume, behaviorally-relevant illumination for optogenetics in nonhuman primates. _J. Vis. Exp._ 2017, 56330 (2017). Google Scholar  * Acker, L., Pino, E. N.,


Boyden, E. S. & Desimone, R. FEF inactivation with improved optogenetic methods. _Proc. Natl. Acad. Sci. USA_ 113, E7297–E7306 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * English, D. F. et al. Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. _Neuron_ 96, 505–520.e7 (2017). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. _Neuron_ 100, 1045–1058.e5 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kondo, T. et al. Calcium transient dynamics of neural ensembles in the primary motor cortex of naturally behaving monkeys. _Cell Rep._ 24, 2191–2195.e4


(2018). Article  CAS  PubMed  Google Scholar  * Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. _Nat. Methods_ 14, 1107–1114 (2017).


Article  CAS  PubMed  Google Scholar  * Lee, H. J. et al. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. _Lab


Chip_ 15, 1590–1597 (2015). Article  CAS  PubMed  Google Scholar  * Shin, H. et al. Neural probes with multi-drug delivery capability. _Lab Chip_ 15, 3730–3737 (2015). Article  CAS  PubMed 


Google Scholar  * Lee, W. H., Slaney, T. R., Hower, R. W. & Kennedy, R. T. Microfabricated sampling probes for in vivo monitoring of neurotransmitters. _Anal. Chem._ 85, 3828–3831


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shin, H. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo.


_Nat. Commun._ 10, 3777 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. _Nat. Neurosci._


20, 612–619 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. _Cell_


162, 662–674 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and


optogenetics. _Proc. Natl. Acad. Sci. USA_ 116, 21427–21437 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Noh, K. N. et al. Miniaturized, battery-free optofluidic systems


with potential for wireless pharmacology and optogenetics. _Small_ 14, 1–8 (2018). Google Scholar  * Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and


photostimulation. _Nat. Biomed. Eng._ 3, 655–669 (2019). Article  PubMed  Google Scholar  * Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic


and pharmacological neuromodulation of peripheral nerves. _Sci. Adv._ 5, w5296 (2019). Article  CAS  Google Scholar  * McCall, J. G. et al. Preparation and implementation of optofluidic


neural probes for in vivo wireless pharmacology and optogenetics. _Nat. Protoc._ 12, 219–237 (2017). Article  CAS  PubMed  Google Scholar  * Leutgeb, S., Leutgeb, J. K., Treves, A., Moser,


M. B. & Moser, E. I. Distinct ensemble codes in hippocampal areas CA3 and CA1. _Science_ 305, 1295–1298 (2004). Article  CAS  PubMed  Google Scholar  * Pereira, A. et al. Processing of


tactile information by the hippocampus. _Proc. Natl. Acad. Sci. USA_ 104, 18286–18291 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Felix-Ortiz, A. C. et al. BLA to vHPC


inputs modulate anxiety-related behaviors. _Neuron_ 79, 658–664 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Devine, D. P. & Wise, R. A. Self-administration of


morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. _J. Neurosci._ 14, 1978–1984 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jennings, J. H., Rizzi, G.,


Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. _Science_ 341, 1517–1521 (2013). Article  CAS  PubMed


  PubMed Central  Google Scholar  * O’Banion, C. P. & Yasuda, R. Fluorescent sensors for neuronal signaling. _Curr. Opin. Neurobiol._ 63, 31–41 (2020). Article  PubMed  CAS  Google


Scholar  * Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects.


_Neurosci. Res._ 152, 3–14 (2020). Article  PubMed  Google Scholar  * Ganesana, M., Lee, S. T., Wang, Y. & Venton, B. J. Analytical techniques in neuroscience: recent advances in


imaging, separation, and electrochemical methods. _Anal. Chem._ 89, 314–341 (2017). Article  CAS  PubMed  Google Scholar  * Tavakolian-Ardakani, Z., Hosu, O., Cristea, C., Mazloum-Ardakani,


M. & Marrazza, G. Latest trends in electrochemical sensors for neurotransmitters: a review. _Sensors (Basel)_ 19, 2037 (2019). Article  CAS  Google Scholar  * Lin, M. Z. & Schnitzer,


M. J. Genetically encoded indicators of neuronal activity. _Nat. Neurosci._ 19, 1142–1153 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Ward, W. W. & Bokman, S. H.


Reversible denaturation of _Aequorea_ green-fluorescent protein: physical separation and characterization of the renatured protein. _Biochemistry_ 21, 4535–4540 (1982). Article  CAS  PubMed


  Google Scholar  * Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and


classification. _Int. J. Mol. Sci._ 20, 4200 (2019). Article  PubMed Central  CAS  Google Scholar  * Truong, K. et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion


molecule. _Nat. Struct. Biol._ 8, 1069–1073 (2001). Article  CAS  PubMed  Google Scholar  * Lee, Y.-T., He, L. & Zhou, Y. Expanding the chemogenetic toolbox by circular permutation. _J.


Mol. Biol._ 432, 3127–3136 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bajar, B. T., Wang, E. S., Zhang, S., Lin, M. Z. & Chu, J. A guide to fluorescent protein FRET


pairs. _Sensors (Basel)_ 16, 1488 (2016). Article  CAS  Google Scholar  * Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. _Nature_ 499, 295–300 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. _Science_ 360,


eaat4422 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. _Nat. Methods_ 16, 763–770


(2019). Article  CAS  PubMed  Google Scholar  * Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. _Proc. Natl. Acad. Sci. USA_


115, 5594–5599 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies.


_Nat. Biotechnol._ 36, 726–737 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo


detection of norepinephrine. _Neuron_ 102, 745–761.e8 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lobas, M. A. et al. A genetically encoded single-wavelength sensor for


imaging cytosolic and cell surface ATP. _Nat. Commun._ 10, 711 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, W. H. et al. Monitoring hippocampal glycine with the


computationally designed optical sensor GlyFS. _Nat. Chem. Biol._ 14, 861–869 (2018). Article  CAS  PubMed  Google Scholar  * Stoeber, M. et al. A genetically encoded biosensor reveals


location bias of opioid drug action. _Neuron_ 98, 963–976.e5 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chernov, K. G., Redchuk, T. A., Omelina, E. S. & Verkhusha,


V. V. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. _Chem. Rev._ 117, 6423–6446 (2017). Article  CAS  PubMed  Google Scholar  * Qian, Y.


et al. A genetically encoded near-infrared fluorescent calcium ion indicator. _Nat. Methods_ 16, 171–174 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gong, X. et al. An


ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. _Neuron_ 107, 38–51.e8 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Ribeiro, J. A., Fernandes, P. M. V., Pereira, C. M. & Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. _Talanta_ 160,


653–679 (2016). Article  CAS  PubMed  Google Scholar  * Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. _Annu. Rev. Anal. Chem. (Palo Alto Calif.)_ 8,


239–261 (2015). Article  CAS  Google Scholar  * Liu, C. et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. _Microsyst. Nanoeng._ 6,


64 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xiao, Y., Piorek, B. D., Plaxco, K. W. & Heeger, A. J. A reagentless signal-on architecture for electronic,


aptamer-based sensors via target-induced strand displacement. _J. Am. Chem. Soc._ 127, 17990–17991 (2005). Article  CAS  PubMed  Google Scholar  * Schoukroun-Barnes, L. R. et al.


Reagentless, structure-switching, electrochemical aptamer-based sensors. _Annu. Rev. Anal. Chem. (Palo Alto Calif.)_ 9, 163–181 (2016). Article  CAS  Google Scholar  * Taylor, I. M. et al.


Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. _J. Mater. Chem. B Mater. Biol. Med._ 5, 2445–2458 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. _Science_ 362, 319–324 (2018). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Musk, E. An integrated brain-machine interface platform with thousands of channels. _J. Med. Internet Res._ 21, e16194 (2019). Article  PubMed 


PubMed Central  Google Scholar  * Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications.


_Front. Cell. Neurosci._ 13, 474 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake,


ambulatory animals. _Proc. Natl. Acad. Sci. USA_ 114, 645–650 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Strumwasser, F. Long-term recording’ from single neurons in


brain of unrestrained mammals. _Science_ 127, 469–470 (1958). Article  CAS  PubMed  Google Scholar  * McNaughton, B. L., O’Keefe, J. & Barnes, C. A. The stereotrode: a new technique for


simultaneous isolation of several single units in the central nervous system from multiple unit records. _J. Neurosci. Methods_ 8, 391–397 (1983). Article  CAS  PubMed  Google Scholar  *


Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. _Nature_ 144, 710–711 (1939). Article  Google Scholar  * Buzsáki, G., Anastassiou, C. A. & Koch,


C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. _Nat. Rev. Neurosci._ 13, 407–420 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Song, E., Li,


J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. _Nat. Mater._ 19, 590–603 (2020). Article  CAS  PubMed  Google Scholar


  * Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert


ligand. _Proc. Natl. Acad. Sci. USA_ 104, 5163–5168 (2007). Article  PubMed  PubMed Central  CAS  Google Scholar  * Alexander, G. M. et al. Remote control of neuronal activity in transgenic


mice expressing evolved G protein-coupled receptors. _Neuron_ 63, 27–39 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Banghart, M. R. & Sabatini, B. L.


Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. _Neuron_ 73, 249–259 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hüll,


K., Morstein, J. & Trauner, D. In vivo photopharmacology. _Chem. Rev._ 118, 10710–10747 (2018). Article  PubMed  CAS  Google Scholar  * Luo, L., Callaway, E. M. & Svoboda, K. Genetic


dissection of neural circuits. _Neuron_ 57, 634–660 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Magnus, C. J. et al. Chemical and genetic engineering of selective ion


channel-ligand interactions. _Science_ 333, 1292–1296 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roth, B. L. DREADDs for neuroscientists. _Neuron_ 89, 683–694 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. _eLife_ 5, 1–24 (2016). Article  CAS  Google


Scholar  * Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. _Nat. Chem. Biol._ 14, 352–360 (2018). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. _Nat. Commun._ 5, 4625 (2014). Article  CAS  PubMed  Google


Scholar  Download references ACKNOWLEDGEMENTS This research was supported by the Querrey Simpson Institute for Bioelectronics at Northwestern University. AUTHOR INFORMATION Author notes *


These authors contributed equally: Abraham Vázquez-Guardado, Yiyuan Yang, Amay J. Bandodkar. AUTHORS AND AFFILIATIONS * Center for Bio-Integrated Electronics, Northwestern University,


Evanston, IL, USA Abraham Vázquez-Guardado, Amay J. Bandodkar & John A. Rogers * Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA Yiyuan Yang & John


A. Rogers * Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA Amay J. Bandodkar & John A. Rogers * Department of Biomedical Engineering,


Northwestern University, Evanston, IL, USA John A. Rogers * Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA John A. Rogers * Querrey


Simpson Institute for Bioelectronics, Northwestern University, Chicago, IL, USA John A. Rogers * Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University,


Chicago, IL, USA John A. Rogers Authors * Abraham Vázquez-Guardado View author publications You can also search for this author inPubMed Google Scholar * Yiyuan Yang View author publications


You can also search for this author inPubMed Google Scholar * Amay J. Bandodkar View author publications You can also search for this author inPubMed Google Scholar * John A. Rogers View


author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.V.-G., Y.Y., A.J.B., and J.A.R. cowrote and co-edited the manuscript. CORRESPONDING AUTHOR


Correspondence to John A. Rogers. ETHICS DECLARATIONS COMPETING INTERESTS J.A.R. is cofounder in a company, Neurolux Inc., that offers related technology products to the neuroscience


community. ADDITIONAL INFORMATION PEER REVIEW INFORMATION Nature Neuroscience thanks Sebastian Haesler and the other, anonymous, reviewer(s) for their contribution to the peer review of this


work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions


ABOUT THIS ARTICLE CITE THIS ARTICLE Vázquez-Guardado, A., Yang, Y., Bandodkar, A.J. _et al._ Recent advances in neurotechnologies with broad potential for neuroscience research. _Nat


Neurosci_ 23, 1522–1536 (2020). https://doi.org/10.1038/s41593-020-00739-8 Download citation * Received: 26 June 2020 * Accepted: 09 October 2020 * Published: 16 November 2020 * Issue Date:


December 2020 * DOI: https://doi.org/10.1038/s41593-020-00739-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative