Nongenetic optical neuromodulation with silicon-based materials

Nongenetic optical neuromodulation with silicon-based materials

Play all audios:

Loading...

ABSTRACT Optically controlled nongenetic neuromodulation represents a promising approach for the fundamental study of neural circuits and the clinical treatment of neurological disorders.


Among the existing material candidates that can transduce light energy into biologically relevant cues, silicon (Si) is particularly advantageous due to its highly tunable electrical and


optical properties, ease of fabrication into multiple forms, ability to absorb a broad spectrum of light, and biocompatibility. This protocol describes a rational design principle for


Si-based structures, general procedures for material synthesis and device fabrication, a universal method for evaluating material photoresponses, detailed illustrations of all


instrumentation used, and demonstrations of optically controlled nongenetic modulation of cellular calcium dynamics, neuronal excitability, neurotransmitter release from mouse brain slices,


and brain activity in the mouse brain in vivo using the aforementioned Si materials. The entire procedure takes ~4–8 d in the hands of an experienced graduate student, depending on the


specific biological targets. We anticipate that our approach can also be adapted in the future to study other systems, such as cardiovascular tissues and microbial communities. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other


Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online


access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


BIORESORBABLE THIN-FILM SILICON DIODES FOR THE OPTOELECTRONIC EXCITATION AND INHIBITION OF NEURAL ACTIVITIES Article 05 September 2022 NEURAL MODULATION WITH PHOTOTHERMALLY ACTIVE


NANOMATERIALS Article 31 January 2023 IMPLANTABLE NANOPHOTONIC NEURAL PROBES FOR INTEGRATED PATTERNED PHOTOSTIMULATION AND ELECTROPHYSIOLOGICAL RECORDING Article Open access 05 April 2025


DATA AVAILABILITY The authors declare that all data supporting the findings of this study are available within the original papers. Other supporting data are available upon reasonable


request to the corresponding authors. REFERENCES * Ashkan, K., Rogers, P., Bergman, H. & Ughratdar, I. Insights into the mechanisms of deep brain stimulation. _Nat. Rev. Neurol._ 13,


548–554 (2017). Article  Google Scholar  * Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. _Nature_ 496, 159–161 (2013).


Article  CAS  Google Scholar  * Wichmann, T. & Delong, M. R. Deep brain stimulation for neurologic and neuropsychiatric disorders. _Neuron_ 52, 197–204 (2006). Article  CAS  Google


Scholar  * Fisher, R. S. & Velasco, A. L. Electrical brain stimulation for epilepsy. _Nat. Rev. Neurol._ 10, 261–270 (2014). Article  Google Scholar  * Jefferys, J. G. Nonsynaptic


modulation of neuronal activity in the brain: electric currents and extracellular ions. _Physiol. Rev._ 75, 689–723 (1995). Article  CAS  Google Scholar  * Fregni, F. & Pascual-Leone, A.


Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. _Nat. Clin. Pract. Neurol._ 3, 383–393 (2007). Article  Google


Scholar  * Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. _Annu. Rev. Neurosci._ 29, 229–257 (2006). Article  CAS  Google Scholar  * Kringelbach, M. L., Jenkinson, N., Owen, S.


L. & Aziz, T. Z. Translational principles of deep brain stimulation. _Nat. Rev. Neurosci._ 8, 623–635 (2007). Article  CAS  Google Scholar  * Chen, R., Canales, A. & Anikeeva, P.


Neural recording and modulation technologies. _Nat. Rev. Mater._ 2, 16093 (2017). Article  CAS  Google Scholar  * Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for


soft implantable neuroprostheses. _Nat. Rev. Mater._ 1, 16063 (2016). Article  CAS  Google Scholar  * Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to


implanted electrodes in the brain. _Nat. Biomed. Eng._ 1, 862–877 (2017). Article  Google Scholar  * Jeong, J. W. et al. Soft materials in neuroengineering for hard problems in neuroscience.


_Neuron_ 86, 175–186 (2015). Article  CAS  Google Scholar  * Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. _Science_ 347, 159–163 (2015). Article 


CAS  Google Scholar  * Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. _Nat. Neurosci._


8, 1263–1268 (2005). Article  CAS  Google Scholar  * Zhang, F. et al. The microbial opsin family of optogenetic tools. _Cell_ 147, 1446–1457 (2011). Article  CAS  Google Scholar  * Zhang, F.


et al. Multimodal fast optical interrogation of neural circuitry. _Nature_ 446, 633–639 (2007). Article  CAS  Google Scholar  * Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. &


Deisseroth, K. Optogenetics in neural systems. _Neuron_ 71, 9–34 (2011). Article  CAS  Google Scholar  * Bareket, L. et al. Semiconductor nanorod-carbon nanotube biomimetic films for


wire-free photostimulation of blind retinas. _Nano Lett._ 14, 6685–6692 (2014). Article  CAS  Google Scholar  * Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by


cell-targeted gold nanoparticles. _Neuron_ 86, 207–217 (2015). Article  CAS  Google Scholar  * Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat


retinas. _Nat. Photonics_ 7, 400–406 (2013). Article  CAS  Google Scholar  * Maya-Vetencourt, J. F. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative


blindness. _Nat. Mater._ 16, 681–689 (2017). Article  CAS  Google Scholar  * Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. _Science_ 320, 507–511 (2008). Article 


CAS  Google Scholar  * Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. _Science_ 313, 1100–1104 (2006). Article 


CAS  Google Scholar  * Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. _Science_ 329, 830–834 (2010). Article  CAS  Google Scholar  *


Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. _Nat. Mater._ 11, 986–994 (2012). Article  CAS  Google Scholar  * Jiang, Y. & Tian, B. Inorganic


semiconductor biointerfaces. _Nat. Rev. Mater._ 3, 473–490 (2018). Article  Google Scholar  * Wang, W., Wu, S., Reinhardt, K., Lu, Y. & Chen, S. Broadband light absorption enhancement in


thin-film silicon solar cells. _Nano Lett._ 10, 2012–2018 (2010). Article  CAS  Google Scholar  * Wang, K. X., Yu, Z., Liu, V., Cui, Y. & Fan, S. Absorption enhancement in ultrathin


crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. _Nano Lett._ 12, 1616–1619 (2012). Article  CAS  Google Scholar  * Hong, G., Antaris, A. L. &


Dai, H. Near-infrared fluorophores for biomedical imaging. _Nat. Biomed. Eng._ 1, 0010 (2017). Article  Google Scholar  * Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and


surgery. _Nat. Biomed. Eng._ 1, 0008 (2017). Article  Google Scholar  * Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. _Nature_ 449, 885–889


(2007). Article  CAS  Google Scholar  * Walter, M. G. et al. Solar water splitting cells. _Chem. Rev._ 110, 6446–6473 (2010). Article  CAS  Google Scholar  * Hochbaum, A. I. et al. Enhanced


thermoelectric performance of rough silicon nanowires. _Nature_ 451, 163–167 (2008). Article  CAS  Google Scholar  * Roder, P. B., Smith, B. E., Davis, E. J. & Pauzauskie, P. J.


Photothermal heating of nanowires. _J. Phys. Chem. C_ 118, 1407–1416 (2014). Article  CAS  Google Scholar  * Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported


bioelectric interfaces. _Nat. Mater._ 15, 1023–1030 (2016). Article  CAS  Google Scholar  * Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing


coaxial silicon nanowires. _Nat. Nanotechnol._ 13, 260–266 (2018). Article  CAS  Google Scholar  * Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale


biointerfaces. _Nat. Biomed. Eng._ 2, 508–521 (2018). Article  Google Scholar  * Verkhratsky, A., Krishtal, O. A. & Petersen, O. H. From Galvani to patch clamp: the development of


electrophysiology. _Pflügers Arch._ 453, 233–247 (2006). Article  CAS  Google Scholar  * Sakmann, B. & Neher, E. _Single-Channel Recording_ 2nd edn (Springer, New York, 1995). * Hai, A.,


Shappir, J. & Spira, M. E. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. _J. Neurophysiol._ 104, 559–568 (2010).


Article  CAS  Google Scholar  * Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. _Nat. Nanotechnol._ 8, 83–94 (2013). Article  CAS  Google


Scholar  * Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. _Nat. Nanotechnol._ 7, 180–184 (2012). Article


  CAS  Google Scholar  * Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation. _Nat. Commun._ 2, 166 (2011). Article  Google Scholar  * Chen, R., Romero, G.,


Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. _Science_ 347, 1477–1480 (2015). Article  CAS  Google Scholar  * Dobson, J. Remote control of


cellular behaviour with magnetic nanoparticles. _Nat. Nanotechnol._ 3, 139–143 (2008). Article  CAS  Google Scholar  * Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A.


Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. _Nat. Nanotechnol._ 5, 602–606 (2010). Article  CAS  Google Scholar  * Legon, W. et al.


Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. _Nat. Neurosci._ 17, 322–329 (2014). Article  CAS  Google Scholar  * Marino, A. et al.


Piezoelectric nanoparticle-assisted wireless neuronal stimulation. _ACS Nano_ 9, 7678–7689 (2015). Article  CAS  Google Scholar  * Tufail, Y. et al. Transcranial pulsed ultrasound stimulates


intact brain circuits. _Neuron_ 66, 681–694 (2010). Article  CAS  Google Scholar  * Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M. & Tyler, W. J. Ultrasonic neuromodulation by brain


stimulation with transcranial ultrasound. _Nat. Protoc._ 6, 1453–1470 (2011). Article  CAS  Google Scholar  * Tyler, W. J., Lani, S. W. & Hwang, G. M. Ultrasonic modulation of neural


circuit activity. _Curr. Opin. Neurobiol._ 50, 222–231 (2018). Article  CAS  Google Scholar  * Tyler, W. J. et al. Remote excitation of neuronal circuits using low-intensity, low-frequency


ultrasound. _PLoS ONE_ 3, e3511 (2008). Article  Google Scholar  * Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control


in the spinal cord and peripheral nervous system. _Sci. Transl. Med._ 8, 337rv5 (2016). Article  Google Scholar  * Maimon, B. E., Sparks, K., Srinivasan, S., Zorzos, A. N. & Herr, H. M.


Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation. _Nat. Biomed. Eng._ 2, 485–496 (2018). Article  Google Scholar  * Klapoetke, N. C. et al.


Independent optical excitation of distinct neural populations. _Nat. Methods_ 11, 338–346 (2014). Article  CAS  Google Scholar  * Lorach, H. et al. Photovoltaic restoration of sight with


high visual acuity. _Nat. Med._ 21, 476–482 (2015). Article  CAS  Google Scholar  * Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities


to visually evoked potentials. _Nat. Commun._ 4, 1980 (2013). Article  Google Scholar  * Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. _Nat. Photonics_ 6,


391–397 (2012). Article  CAS  Google Scholar  * Lugo, K., Miao, X., Rieke, F. & Lin, L. Y. Remote switching of cellular activity and cell signaling using light in conjunction with


quantum dots. _Biomed. Opt. Express_ 3, 447–454 (2012). Article  CAS  Google Scholar  * Pappas, T. C. et al. Nanoscale engineering of a cellular interface with semiconductor nanoparticle


films for photoelectric stimulation of neurons. _Nano Lett._ 7, 513–519 (2007). Article  CAS  Google Scholar  * Rand, D. et al. Direct electrical neurostimulation with organic pigment


photocapacitors. _Adv. Mater._ 30, e1707292 (2018). Article  Google Scholar  * Sytnyk, M. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals.


_Nat. Commun._ 8, 91 (2017). Article  Google Scholar  * Sato, T., Shapiro, M. G. & Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory


mechanism. _Neuron_ 98, 1031–1041 (2018). Article  CAS  Google Scholar  * Guo, H. et al. Ultrasound produces extensive brain activation via a cochlear pathway. _Neuron_ 98, 1020–1030 (2018).


Article  CAS  Google Scholar  * Yoo, S., Hong, S., Choi, Y., Park, J. H. & Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. _ACS Nano_ 8,


8040–8049 (2014). Article  CAS  Google Scholar  * Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. _Nature_ 477, 45–53


(2011). Article  CAS  Google Scholar  * Patolsky, F., Zheng, G. & Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological


and chemical species. _Nat. Protoc._ 1, 1711–1724 (2006). Article  CAS  Google Scholar  * Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom


pores. _Science_ 279, 548–552 (1998). Article  CAS  Google Scholar  * Kleitz, F., Choi, S. H. & Ryoo, R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum


nanowires, carbon nanorods and carbon nanotubes. _Chem. Commun_. 2003, 2136-2137 (2003). * Fang, Y. et al. Texturing silicon nanowires for highly localized optical modulation of cellular


dynamics. _Nano Lett._ 18, 4487–4492 (2018). Article  CAS  Google Scholar  * Merrill, D. R., Bikson, M. & Jefferys, J. G. Electrical stimulation of excitable tissue: design of


efficacious and safe protocols. _J. Neurosci. Methods_ 141, 171–198 (2005). Article  Google Scholar  * Luo, Z. et al. Atomic gold-enabled three-dimensional lithography for silicon


mesostructures. _Science_ 348, 1451–1455 (2015). Article  CAS  Google Scholar  * Melli, G. & Hoke, A. Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for


peripheral neuropathies. _Expert Opin. Drug. Discov._ 4, 1035–1045 (2009). Article  CAS  Google Scholar  * Oesterle, A. with Sutter Instrument Company. Pipette cookbook 2018: P-97 &


P-1000 micropipette pullers. https://www.sutter.com/PDFs/pipette_cookbook.pdf (2018). * Molecular Devices. The Axon™ guide: a guide to electrophysiology and biophysics laboratory techniques.


https://mdc.custhelp.com/euf/assets/content/Axon%20Guide%203rd%20edition.pdf (2012). * Molleman, A. _Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology_ (John Wiley


& Sons, Chichester, UK, 2003). * Rueda, A. G. Whole cell patch clamp recordings for characterizing neuronal electrical properties of iPSC-derive neurons.


https://docs.axolbio.com/wp-content/uploads/patch-clamp-protocol-final.pdf (2018). * Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques


for high-resolution current recording from cells and cell-free membrane patches. _Pflügers Arch._ 391, 85–100 (1981). Article  CAS  Google Scholar  * Edwards, F. A., Konnerth, A., Sakmann,


B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. _Pflügers Arch._ 414, 600–612 (1989). Article  CAS  Google


Scholar  * Stuart, G. J., Dodt, H. U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. _Pflügers Arch._ 423,


511–518 (1993). Article  CAS  Google Scholar  * Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. _Front. Neural Circuits_ 4, 100 (2010).


Article  Google Scholar  * Mostany, R. & Portera-Cailliau, C. A craniotomy surgery procedure for chronic brain imaging. _J. Vis. Exp_. 2008, e680 (2008). * Tang, J. et al. Nanowire


arrays restore vision in blind mice. _Nat. Commun._ 9, 786 (2018). Article  Google Scholar  * Savchenko, A. et al. Graphene biointerfaces for optical stimulation of cells. _Sci. Adv._ 4,


eaat0351 (2018). Article  Google Scholar  * Yao, J., Liu, B. & Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. _Biophys. J._ 96, 3611–3619


(2009). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the Air Force Office of Scientific Research (AFOSR FA9550-18-1-0503), the US Army


Research Office (W911NF-18-1-0042), the US Office of Naval Research (N000141612530, N000141612958), the National Science Foundation (NSF MRSEC, DMR 1420709), the Searle Scholars Foundation,


the National Institutes of Health (NIH NS101488, NS061963, GM030376, R21-EY023430, R21-EY027101), an MSTP Training Grant (T32GM007281), and the Paul and Daisy Soros Foundation. Atom-probe


tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), whose atom-probe tomography equipment was purchased and upgraded with funding from NSF-MRI


(DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. NUCAPT is a Research Facility at the Materials Research Center of Northwestern University, supported by


the National Science Foundation’s MRSEC program (grant DMR-1121262). Instrumentation at NUCAPT was further upgraded by the Initiative for Sustainability and Energy at Northwestern (ISEN).


This work made use of the Japan Electron Optics Laboratory (JEOL) JEM-ARM200CF and JEOL JEM-3010 TEM in the Electron Microscopy Service of the Research Resources Center at the University of


Illinois at Chicago (UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by an MRI-R2 grant from the National Science Foundation (DMR-0959470). AUTHOR INFORMATION Author notes *


These authors contributed equally: Yuanwen Jiang, Ramya Parameswaran, Xiaojian Li, João L. Carvalho-de-Souza. AUTHORS AND AFFILIATIONS * Department of Chemistry, The University of Chicago,


Chicago, IL, USA Yuanwen Jiang & Bozhi Tian * The James Franck Institute, The University of Chicago, Chicago, IL, USA Yuanwen Jiang, Xiang Gao & Bozhi Tian * The Graduate Program in


Biophysical Sciences, The University of Chicago, Chicago, IL, USA Ramya Parameswaran * Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA


Xiaojian Li & Gordon M. G. Shepherd * Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA João L. Carvalho-de-Souza & Francisco Bezanilla *


Insitute for Molecular Engineering, The University of Chicago, Chicago, IL, USA Lingyuan Meng * Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA Francisco


Bezanilla & Bozhi Tian * Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile Francisco Bezanilla Authors * Yuanwen


Jiang View author publications You can also search for this author inPubMed Google Scholar * Ramya Parameswaran View author publications You can also search for this author inPubMed Google


Scholar * Xiaojian Li View author publications You can also search for this author inPubMed Google Scholar * João L. Carvalho-de-Souza View author publications You can also search for this


author inPubMed Google Scholar * Xiang Gao View author publications You can also search for this author inPubMed Google Scholar * Lingyuan Meng View author publications You can also search


for this author inPubMed Google Scholar * Francisco Bezanilla View author publications You can also search for this author inPubMed Google Scholar * Gordon M. G. Shepherd View author


publications You can also search for this author inPubMed Google Scholar * Bozhi Tian View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Y.J.,


R.P., X.L., J.L.C.-d.-S., F.B., G.M.G.S., and B.T. developed the protocol. Y.J., R.P., X.L., and J.L.C.-d.-S. performed the experiments. Y.J., R.P., X.L., and B.T. wrote the manuscript with


input from J.L.C.-d.-S., X.G., L.M., F.B., and G.M.G.S. CORRESPONDING AUTHORS Correspondence to Yuanwen Jiang or Bozhi Tian. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing interests. ADDITIONAL INFORMATION JOURNAL PEER REVIEW INFORMATION: _Nature Protocols_ thanks Tal Dvir and other anonymous reviewer(s) for their contribution to the peer review of


this work. PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY REFERENCES USING THIS


PROTOCOL Jiang, Y. et al. _Nat. Mater_. 15, 1023–1030 (2016): https://doi.org/10.1038/nmat4673 Parameswaran, R. et al. _Nat. Nanotechnol_. 13, 260–266 (2018):


https://doi.org/10.1038/s41565-017-0041-7 Jiang, Y. et al. _Nat. Biomed. Eng_. 2, 508–521 (2018): https://doi.org/10.1038/s41551-018-0230-1 SUPPLEMENTARY INFORMATION REPORTING SUMMARY


SUPPLEMENTARY DATA 1 Mask design for the Si mesh structure SUPPLEMENTARY DATA 2 Mask design for the SU-8 pillar structure RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Jiang, Y., Parameswaran, R., Li, X. _et al._ Nongenetic optical neuromodulation with silicon-based materials. _Nat Protoc_ 14, 1339–1376 (2019).


https://doi.org/10.1038/s41596-019-0135-9 Download citation * Received: 10 September 2018 * Accepted: 10 January 2019 * Published: 12 April 2019 * Issue Date: May 2019 * DOI:


https://doi.org/10.1038/s41596-019-0135-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative