Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules

Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules

Play all audios:

Loading...

ABSTRACT Bacteria use surface-exposed, proteinaceous fibers called pili for diverse behaviors, including horizontal gene transfer, surface sensing, motility, and pathogenicity. Visualization


of these filamentous nanomachines and their activity in live cells has proven challenging, largely due to their small size. Here, we describe a broadly applicable method for labeling and


imaging pili and other surface-exposed nanomachines in live cells. This technique uses a combination of genetics and maleimide-based click chemistry in which a cysteine substitution is made


in the major pilin subunit for subsequent labeling with thiol-reactive maleimide dyes. Large maleimide-conjugated molecules can also be used to physically interfere with the dynamic activity


of filamentous nanomachines. We describe parameters for selecting cysteine substitution positions, optimized labeling conditions for epifluorescence imaging of pilus fibers, and methods for


impeding pilus activity. After cysteine knock-in strains have been generated, this protocol can be completed within 30 min to a few hours, depending on the species and the experiment of


choice. Visualization of extracellular nanomachines such as pili using this approach can provide a more comprehensive understanding of the role played by these structures in distinct


bacterial behaviors. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12


print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS ADHESION PILUS RETRACTION POWERS TWITCHING MOTILITY IN THE THERMOACIDOPHILIC CRENARCHAEON _SULFOLOBUS ACIDOCALDARIUS_ Article Open access 14 June 2024


_ACINETOBACTER BAYLYI_ REGULATES TYPE IV PILUS SYNTHESIS BY EMPLOYING TWO EXTENSION MOTORS AND A MOTOR PROTEIN INHIBITOR Article Open access 18 June 2021 LIVE-PAINT ALLOWS SUPER-RESOLUTION


MICROSCOPY INSIDE LIVING CELLS USING REVERSIBLE PEPTIDE-PROTEIN INTERACTIONS Article Open access 20 August 2020 DATA AVAILABILITY The data that support this study are available from the


corresponding author upon reasonable request. REFERENCES * Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. in _Virulence Mechanisms of Bacterial Pathogens_ 5th edn


(eds Kudva, I. T. et al.) 215–239 (2016). * Kearns, D. B. A field guide to bacterial swarming motility. _Nat. Rev. Microbiol._ 8, 634–644 (2010). Article  CAS  Google Scholar  * Pelicic, V.


et al. Type IV pili: e pluribus unum? _Microbiology_ 68, 827–837 (2003). Google Scholar  * Berry, J.-L. & Pelicic, V. Exceptionally widespread nanomachines composed of type IV pilins:


the prokaryotic Swiss Army knives. _FEMS Microbiol. Rev._ 39, 134–154 (2015). Article  CAS  Google Scholar  * Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A


molecular clutch disables flagella in the _Bacillus subtilis_ biofilm. _Science_ 320, 1636–1638 (2008). Article  CAS  Google Scholar  * Ellison, C. K. et al. Obstruction of pilus retraction


stimulates bacterial surface sensing. _Science_ 358, 535–538 (2017). Article  CAS  Google Scholar  * Paradis, G. et al. Variability in bacterial flagella re-growth patterns after breakage.


_Sci. Rep._ 7, 1282 (2017). Article  Google Scholar  * Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in _Vibrio


cholerae_. _Nat. Microbiol._ 3, 773–780 (2018). Article  CAS  Google Scholar  * Berne, C. et al. Feedback regulation of _Caulobacter crescentus_ holdfast synthesis by flagellum assembly via


the holdfast inhibitor HfiA. _Mol. Microbiol._ 110, 219–238 (2018). Article  CAS  Google Scholar  * Cairns, L. S. et al. FlgN is required for flagellum-based motility by _Bacillus subtilis_.


_J. Bacteriol._ 196, 2216–2226 (2014). Article  Google Scholar  * Turner, L., Stern, A. S. & Berg, H. C. Growth of flagellar filaments of _Escherichia coli_ is independent of filament


length. _J. Bacteriol._ 194, 2437–2442 (2012). Article  CAS  Google Scholar  * Dietrich, M., Mollenkopf, H., So, M. & Friedrich, A. Pilin regulation in the _pilT_ mutant of _Neisseria


gonorrhoeae_ strain MS11. _FEMS Microbiol. Lett._ 296, 248–256 (2009). Article  CAS  Google Scholar  * Blocker, A., Komoriya, K. & Aizawa, S.-I. Type III secretion systems and bacterial


flagella: insights into their function from structural similarities. _Proc. Natl. Acad. Sci. USA_ 100, 3027–3030 (2003). Article  CAS  Google Scholar  * Craig, L. et al. Type IV pilus


structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. _Mol. Cell_ 23, 651–662 (2006). Article  CAS  Google Scholar  * Chang, Y.-W. et al.


Architecture of the type IVa pilus machine. _Science_ 351, aad2001 (2016). Article  Google Scholar  * Wang, F. et al. Cryoelectron microscopy reconstructions of the _Pseudomonas aeruginosa_


and _Neisseria gonorrhoeae_ type IV pili at sub-nanometer resolution. _Structure_ 25, 1423–1435.e4 (2017). Article  CAS  Google Scholar  * Mahmoud, K. K. & Koval, S. F. Characterization


of type IV pili in the life cycle of the predator bacterium _Bdellovibrio_. _Microbiology_ 156, 1040–1051 (2010). Article  CAS  Google Scholar  * Seitz, P. & Blokesch, M. DNA-uptake


machinery of naturally competent _Vibrio cholerae_. _Proc. Natl. Acad. Sci. USA_ 110, 17987–17992 (2013). Article  CAS  Google Scholar  * Imhaus, A.-F. & Duménil, G. The number of


_Neisseria meningitidis_ type IV pili determines host cell interaction. _EMBO J._ 33, 1767–1783 (2014). Article  CAS  Google Scholar  * Skerker, J. M. & Berg, H. C. Direct observation of


extension and retraction of type IV pili. _Proc. Natl. Acad. Sci. USA_ 98, 6901–6904 (2001). Article  CAS  Google Scholar  * Skerker, J. M. & Shapiro, L. Identification and cell cycle


control of a novel pilus system in _Caulobacter crescentus_. _EMBO J._ 19, 3223–3234 (2000). Article  CAS  Google Scholar  * Bernard, C. S., Bordi, C., Termine, E., Filloux, A. & de


Bentzmann, S. Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology. _J. Bacteriol._ 191, 1961–1973 (2009). Article  CAS  Google


Scholar  * Turner, L. & Berg, H. C. Labeling bacterial flagella with fluorescent dyes. _Methods Mol. Biol._ 1729, 71–76 (2018). Article  CAS  Google Scholar  * Giltner, C. L., Nguyen, Y.


& Burrows, L. L. Type IV pilin proteins: versatile molecular modules. _Microbiol. Mol. Biol. Rev._ 76, 740–772 (2012). Article  CAS  Google Scholar  * Craig, L., Pique, M. E. &


Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. _Nat. Rev. Microbiol._ 2, 363–378 (2004). Article  CAS  Google Scholar  * Petersen, B. et al. A generic method for


assignment of reliability scores applied to solvent accessibility predictions. _BMC Struct. Biol._ 9, 51 (2009). Article  Google Scholar  * Ng, D. et al. The _Vibrio cholerae_ minor pilin


TcpB initiates assembly and retraction of the toxin-coregulated pilus. _PLOS Pathog._ 12, e1006109 (2016). Article  Google Scholar  * Jones, C. J. et al. C-di-GMP regulates motile to sessile


transition by modulating MshA pili biogenesis and near-surface motility behavior in _Vibrio cholerae_. _PLoS Pathog._ 11, e1005068 (2015). Article  Google Scholar  * Burrows, L. L.


Twitching motility: type IV pili in action. _Annu. Rev. Microbiol._ 66, 493–520 (2012). Article  CAS  Google Scholar  * Marks, M. E. et al. The genetic basis of laboratory adaptation in


_Caulobacter crescentus_. _J. Bacteriol._ 192, 3678–3688 (2010). Article  CAS  Google Scholar  * Miller, V. L., DiRita, V. J. & Mekalanos, J. J. Identification of toxS, a regulatory gene


whose product enhances toxR-mediated activation of the cholera toxin promoter. _J. Bacteriol._ 171, 1288–1293 (1989). Article  CAS  Google Scholar  * Ried, J. L. & Collmer, A. An


nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. _Gene_ 57, 239–246 (1987). Article  CAS  Google


Scholar  * Dalia, A. B., McDonough, E. & Camilli, A. Multiplex genome editing by natural transformation. _Proc. Natl. Acad. Sci. USA_ 111, 8937–8942 (2014). Article  CAS  Google Scholar


  * Dalia, T. N. et al. Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA exonucleases. _Nucleic Acids Res._ 45, 7527–7537 (2017). Article  CAS


  Google Scholar  * Dalia, A. B. Natural cotransformation and multiplex genome editing by natural transformation (MuGENT) of _Vibrio cholerae_. _Methods Mol. Biol._ 1839, 53–64 (2018).


Article  Google Scholar  * POINDEXTER, J. S. Biological properties and classification of the _Caulobacter_ group. _Bacteriol. Rev._ 28, 231–295 (1964). CAS  PubMed  PubMed Central  Google


Scholar  * Hepp, C. & Maier, B. Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. _Proc. Natl. Acad. Sci. USA_ 113, 12467–12472 (2016).


Article  CAS  Google Scholar  * Pönisch, W. et al. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. _Sci. Rep._ 8,


16567 (2018). Article  Google Scholar  * Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis.


_Nat. Protoc._ 10, 845–858 (2015). Article  CAS  Google Scholar  * Craig, L. et al. Type IV pilin structure and assembly. _Mol. Cell_ 11, 1139–1150 (2003). Article  CAS  Google Scholar  *


Pettersen, E. F. et al. UCSF Chimera? A visualization system for exploratory research and analysis. _J. Comput. Chem._ 25, 1605–1612 (2004). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank M. D. Koch, A. M. Randich, and M. Jacq for critical feedback on the manuscript. This work was supported by grant R35GM122556 from the National Institutes of Health


and by a Canada 150 Research Chair in Bacterial Cell Biology to Y.V.B., by grants R35GM12867 and AI118863 from the National Institutes of Health to A.B.D., and by National Science


Foundation Fellowship 1342962 to C.K.E. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biology, Indiana University, Bloomington, IN, USA Courtney K. Ellison, Triana N. Dalia, 


Ankur B. Dalia & Yves V. Brun * Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada Yves V. Brun Authors * Courtney K. Ellison


View author publications You can also search for this author inPubMed Google Scholar * Triana N. Dalia View author publications You can also search for this author inPubMed Google Scholar *


Ankur B. Dalia View author publications You can also search for this author inPubMed Google Scholar * Yves V. Brun View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS C.K.E. and Y.V.B conceived the study. C.K.E. and T.N.D. performed the experiments. C.K.E., A.B.D., and Y.V.B. analyzed the data. C.K.E. wrote the manuscript with


help from A.B.D. and Y.V.B. CORRESPONDING AUTHOR Correspondence to Yves V. Brun. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION


PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY REFERENCES USING THIS PROTOCOL


Ellison, C. K. et al. _Science_ 358, 535–538 (2017): http://science.sciencemag.org/content/358/6362/535 Ellison, C. K. et al. _Nat. Microbiol_. 3, 773–780 (2018):


https://www.nature.com/articles/s41564-018-0174-y SUPPLEMENTARY INFORMATION REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ellison,


C.K., Dalia, T.N., Dalia, A.B. _et al._ Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. _Nat Protoc_ 14, 1803–1819 (2019).


https://doi.org/10.1038/s41596-019-0162-6 Download citation * Received: 30 November 2018 * Accepted: 05 March 2019 * Published: 26 April 2019 * Issue Date: June 2019 * DOI:


https://doi.org/10.1038/s41596-019-0162-6 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative