Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using spidermass

Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using spidermass

Play all audios:

Loading...

ABSTRACT Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms.


SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to


excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a


matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is


transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser


system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of


cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire


procedure takes 1–2 d for complex samples. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to


this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy


now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS RAPID EX VIVO MOLECULAR FINGERPRINTING OF BIOFLUIDS USING LASER-ASSISTED RAPID EVAPORATIVE IONIZATION MASS SPECTROMETRY Article 02 August 2021


SHORTWAVE-INFRARED MESO-PATTERNED IMAGING ENABLES LABEL-FREE MAPPING OF TISSUE WATER AND LIPID CONTENT Article Open access 23 October 2020 PROTEIN IDENTIFICATION BY 3D ORBISIMS TO


FACILITATE IN SITU IMAGING AND DEPTH PROFILING Article Open access 17 November 2020 DATA AVAILABILITY All published data presented here are publicly available and can be found in the PRIDE


Archive (https://www.ebi.ac.uk/pride/archive/). The dog sarcoma data are available from the ProteomeXchange Consortium (PXD010990), Real-time molecular diagnosis of tumors using


water-assisted laser desorption/ionization mass spectrometry technology. REFERENCES * Takats, Z., Strittmatter, N. & McKenzie, J. S. Ambient mass spectrometry in cancer research. _Adv.


Cancer Res._ 134, 231–256 (2017). Article  CAS  PubMed  Google Scholar  * Zhang, J. et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass


spectrometry system. _Sci. Transl. Med._ 9, eaan3968 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Fatou, B. et al. In vivo real-time mass spectrometry for guided surgery


application. _Sci. Rep._ 6, 25919 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Balog, J. et al. Intraoperative tissue identification using rapid evaporative ionization


mass spectrometry. _Sci. Transl. Med._ 5, 194ra93 (2013). Article  PubMed  CAS  Google Scholar  * Huang, M.-Z., Cheng, S.-C., Cho, Y.-T. & Shiea, J. Ambient ionization mass spectrometry:


a tutorial. _Anal. Chim. Acta_ 702, 1–15 (2011). Article  CAS  PubMed  Google Scholar  * Alberici, R. M. et al. Ambient mass spectrometry: bringing MS into the “real world”. _Anal. Bioanal.


Chem._ 398, 265–294 (2010). Article  CAS  PubMed  Google Scholar  * Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with


desorption electrospray ionization. _Science_ 306, 471–473 (2004). Article  PubMed  CAS  Google Scholar  * Laiko, V. V., Baldwin, M. A. & Burlingame, A. L. Atmospheric pressure


matrix-assisted laser desorption/ionization mass spectrometry. _Anal. Chem._ 72, 652–657 (2000). Article  CAS  PubMed  Google Scholar  * Laiko, V. V. et al. Desorption/ionization of


biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 μm. _J. Am. Soc. Mass Spectrom._ 13, 354–361 (2002). Article  CAS  PubMed  Google Scholar  * Nemes,


P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry. _Methods Mol. Biol._ 656, 159–171 (2010). Article  CAS  PubMed 


Google Scholar  * Nemes, P., Woods, A. S. & Vertes, A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray


ionization mass spectrometry. _Anal. Chem._ 82, 982–988 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sampson, J. S., Hawkridge, A. M. & Muddiman, D. C. Generation and


detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. _J. Am.


Soc. Mass Spectrom._ 17, 1712–1716 (2006). Article  CAS  PubMed  Google Scholar  * Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient


conditions. _Mass Spectrom. Rev._ 32, 218–243 (2013). Article  CAS  PubMed  Google Scholar  * Chen, H., Talaty, N. N., Takáts, Z. & Cooks, R. G. Desorption electrospray ionization mass


spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. _Anal. Chem._ 77, 6915–6927 (2005). Article  CAS  PubMed  Google Scholar  * Talaty, N.,


Takáts, Z. & Cooks, R. G. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. _Analyst_ 130, 1624–1633 (2005). Article


  CAS  PubMed  Google Scholar  * Takáts, Z., Wiseman, J. M. & Cooks, R. G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and


applications in forensics, chemistry, and biology. _J. Mass Spectrom._ 40, 1261–1275 (2005). Article  PubMed  CAS  Google Scholar  * Katona, M., Dénes, J., Skoumal, R., Tóth, M. &


Takáts, Z. Intact skin analysis by desorption electrospray ionization mass spectrometry. _Analyst_ 136, 835–840 (2011). Article  CAS  PubMed  Google Scholar  * Hayashi, Y. et al. Intact


metabolite profiling of mouse brain by probe electrospray ionization/triple quadrupole tandem mass spectrometry (PESI/MS/MS) and its potential use for local distribution analysis of the


brain. _Anal. Chim. Acta_ 983, 160–165 (2017). Article  CAS  PubMed  Google Scholar  * Zaitsu, K. et al. Intact endogenous metabolite analysis of mice liver by probe electrospray


ionization/triple quadrupole tandem mass spectrometry and its preliminary application to in vivo real-time analysis. _Anal. Chem._ 88, 3556–3561 (2016). Article  CAS  PubMed  Google Scholar


  * Zaitsu, K. et al. In vivo real-time monitoring system using probe electrospray ionization/tandem mass spectrometry for metabolites in mouse brain. _Anal. Chem._ 90, 4695–4701 (2018).


Article  CAS  PubMed  Google Scholar  * Liu, J., Cooks, R. G. & Ouyang, Z. Biological tissue diagnostics using needle biopsy and spray ionization mass spectrometry. _Anal. Chem._ 83,


9221–9225 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Song, Y., Liao, J., Zha, C., Wang, B. & Liu, C. C. A novel approach to determine the tyrosine concentration in


human plasma by DART-MS/MS. _Anal. Methods_ 7, 1600–1605 (2015). Article  CAS  Google Scholar  * Zhou, M., McDonald, J. F. & Fernández, F. M. Optimization of a direct analysis in real


time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting. _J. Am. Soc. Mass Spectrom_ 21, 68–75 (2010). Article  PubMed  CAS  Google Scholar  * Schäfer, K.-C.


et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. _Angew. Chem. Int. Edn_ 48, 8240–8242 (2009). Article  CAS  Google Scholar  * Phelps, D. L. et


al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). _Br. J. Cancer_ 118,


1349–1358 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * St John, E. R. et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the


identification of breast pathology: towards an intelligent knife for breast cancer surgery. _Breast Cancer Res._ 19, 59 (2017). Article  CAS  Google Scholar  * Balog, J. et al. In vivo


endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). _Angew. Chem. Int. Edn_ 54, 11059–11062 (2015). Article  CAS  Google Scholar  * Sans, M. et al.


Performance of the MasSpec Pen for rapid diagnosis of ovarian cancer. _Clin. Chem._ 65, 674–683 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fournier, I. et al. Device for


real-time in vivo molecular analysis. WO2016046748 (A1) (2014). * Schäfer, K.-C. et al. In situ, real-time identification of biological tissues by ultraviolet and infrared laser desorption


ionization mass spectrometry. _Anal. Chem._ 83, 1632–1640 (2011). Article  CAS  Google Scholar  * Berkenkamp, S., Karas, M. & Hillenkamp, F. Ice as a matrix for IR-matrix-assisted laser


desorption/ionization: mass spectra from a protein single crystal. _Proc. Natl Acad. Sci. USA_ 93, 7003–7007 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pirkl, A.,


Soltwisch, J., Draude, F. & Dreisewerd, K. Infrared matrix-assisted laser desorption/ionization orthogonal-time-of-flight mass spectrometry employing a cooling stage and water ice as a


matrix. _Anal. Chem._ 84, 5669–5676 (2012). Article  CAS  PubMed  Google Scholar  * Fatou, B. et al. Remote atmospheric pressure infrared matrix-assisted laser desorption-ionization mass


spectrometry (remote IR-MALDI MS) of proteins. _Mol. Cell. Proteomics_ 17, 1637–1649 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Saudemont, P. et al. Real-time molecular


diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology. _Cancer Cell_ 34, 840–851 (2018). Article  PubMed  CAS  Google Scholar  * Fatou, B. et al.


Real time and in vivo pharmaceutical and environmental studies with SpiderMass instrument. _J. Biotechnol._ 281, 61–66 (2018). Article  CAS  PubMed  Google Scholar  * Fatou, B., Salzet, M.


& Fournier, I. Real time human micro-organisms biotyping based on water-assisted laser desorption/ionization. _EuroBiotech J._ 3, 97–104 (2019). Article  Google Scholar  * Woolman, M. et


al. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption. _Chem. Sci._ 8, 6508–6519 (2017). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Zou, J. et al. Ambient mass spectrometry imaging with picosecond infrared laser ablation electrospray ionization (PIR-LAESI). _Anal. Chem._ 87,


12071–12079 (2015). Article  CAS  PubMed  Google Scholar  * Woolman, M. et al. Optimized mass spectrometry analysis workflow with polarimetric guidance for ex vivo and in situ sampling of


biological tissues. _Sci. Rep._ 7, 468 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Strohalm, M., Hassman, M., Košata, B. & Kodíček, M. mMass data miner: an open


source alternative for mass spectrometric data analysis. _Rapid Commun. Mass Spectrom._ 22, 905–908 (2008). Article  PubMed  CAS  Google Scholar  * Strohalm, M., Kavan, D., Novák, P., Volný,


M. & Havlíček, V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. _Anal. Chem._ 82, 4648–4651 (2010). Article  CAS  PubMed  Google


Scholar  * Gagnon, H. et al. Proprotein convertase 1/3 (PC1/3) in the rat alveolar macrophage cell line NR8383: localization, trafficking and effects on cytokine secretion. _PLoS ONE_ 8,


e61557 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duhamel, M. et al. Molecular consequences of proprotein convertase 1/3 (PC1/3) inhibition in macrophages for


application to cancer immunotherapy: a proteomic study. _Mol. Cell. Proteomics_ 14, 2857–2877 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duhamel, M. et al. Paclitaxel


treatment and proprotein convertase 1/3 (PC1/3) knockdown in macrophages is a promising antiglioma strategy as revealed by proteomics and cytotoxicity studies. _Mol. Cell. Proteomics_ 17,


1126–1143 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank all members of SATT-Nord involved in SpiderMass and, in particular, E.


Rollet and F.-X. Denimal for their support of the project. This work was funded by the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Université de Lille and


Inserm. The project was also funded by ANR-14-CE17-0021 REALITY’MS (I.F.), Inserm Programme PhysiCancer SPIDERMASS (M.S.), Région Hauts de France-EU FEDER O’DREAMS (D.T., I.F. and M.S.) and


SIRIC ONCOLille grant INCa-DGOS-Inserm 6041aa (D.T., I.F. and M.S.). SpiderMass was awarded Best Breakthrough Innovation Prize by the MATWIN 2015 international board. AUTHOR INFORMATION


Author notes * These authors contributed equally: Nina Ogrinc, Philippe Saudemont. AUTHORS AND AFFILIATIONS * Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse


Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France Nina Ogrinc, Philippe Saudemont, Yves-Marie Robin, Jean-Pascal Gimeno, Quentin Pascal, Dominique Tierny, Michel


Salzet & Isabelle Fournier * SATT-Nord, Immeuble Central Gare, Lille, France Philippe Saudemont * Department of Surgery and Cancer, St Mary’s Hospital, Imperial College London, London,


UK Julia Balog & Zoltan Takats * Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, Lille, France Yves-Marie Robin * OCR (Oncovet Clinical Research), Eurasanté,


Loos, France Quentin Pascal & Dominique Tierny Authors * Nina Ogrinc View author publications You can also search for this author inPubMed Google Scholar * Philippe Saudemont View author


publications You can also search for this author inPubMed Google Scholar * Julia Balog View author publications You can also search for this author inPubMed Google Scholar * Yves-Marie


Robin View author publications You can also search for this author inPubMed Google Scholar * Jean-Pascal Gimeno View author publications You can also search for this author inPubMed Google


Scholar * Quentin Pascal View author publications You can also search for this author inPubMed Google Scholar * Dominique Tierny View author publications You can also search for this author


inPubMed Google Scholar * Zoltan Takats View author publications You can also search for this author inPubMed Google Scholar * Michel Salzet View author publications You can also search for


this author inPubMed Google Scholar * Isabelle Fournier View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.O., P.S. and J.B. wrote the


original draft of the manuscript. P.S., N.O. and J.-P.G. carried out the experiments. P.S. and I.F. developed the technique. Q.P. collected the samples and performed the histology. Y.-M.R.


did histology and validated diagnostics. P.S., J.B. and I.F. analyzed the data. I.F., M.S. and D.T. designed the study. I.F., M.S. and Z.T. corrected the manuscript. I.F. and M.S. supervised


the project and provided the funding. CORRESPONDING AUTHORS Correspondence to Michel Salzet or Isabelle Fournier. ETHICS DECLARATIONS COMPETING INTERESTS J.B. is an employee of Waters


Research Center. M.S. and I.F. are inventors on a patent (priority no. WO2015IB57301 20150922) related to part of the described protocol. Q.P. is an employee of OCR. D.T. is founder and CEO


of OCR. Z.T. is a consultant for Waters Corporation. The system is under protection by patent CA2961491 A1 (29). The remaining authors declare no competing interests. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY REFERENCES USING THIS PROTOCOL


Fatou, B. et al. _Sci. Rep_. 6, 25919 (2016): https://www.nature.com/articles/srep25919 Fatou, B. et al. _J. Biotechnol_. 281, 61–66 (2018):


https://www.sciencedirect.com/science/article/pii/S0168165618305169 Saudemont, P. et al. _Cancer Cell_ 34, 840–851.E4 (2018): https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30423-9


SUPPLEMENTARY INFORMATION REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ogrinc, N., Saudemont, P., Balog, J. _et al._ Water-assisted


laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. _Nat Protoc_ 14, 3162–3182 (2019).


https://doi.org/10.1038/s41596-019-0217-8 Download citation * Received: 26 December 2018 * Accepted: 14 June 2019 * Published: 09 October 2019 * Issue Date: November 2019 * DOI:


https://doi.org/10.1038/s41596-019-0217-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative