Play all audios:
ABSTRACT Overuse of nitrogen (N) fertilizer has led to low N use efficiency (NUE) and high N loss in single rice cropping systems in southeast China. Application of controlled-release urea
(CRU) is considered as an effective N fertilizer practice for improving crop yields and NUE. Here, field experiments were conducted during 2015–2017 to assess the effects of two CRUs
(resin-coated urea (RCU) and polyurethane-coated urea (PCU)) on rice yields, NUE and soil fertility at two sites (Lincheng town (LC) and Xintang town (XT)). Four treatments were established
at each site: (1) control with no N application (CK), (2) split application of conventional urea (U, 270 kg N ha−1), (3) single basal application of RCU (RCU, 216 kg N ha−1), and (4) single
basal application of PCU (PCU, 216 kg N ha−1). The N application rate in the CRU treatment compared to the U treatment was reduced by 20%. However, the results showed that, compared to split
application of urea, single basal application of CRU led to similar rice grain yields and aboveground biomass at both sites. No significant difference in the N uptake by rice plant was
observed between the U and CRU treatments at either site. There were no significant differences in the N apparent recovery efficiency (NARE) among the U, RCU and PCU treatments, with the
exception of that in XT in 2015. Compared to application of U, application of CRU increased the N agronomic efficiency (NAE) and N partial factor productivity (NPFP) by 17.4–52.6% and
23.4–29.8% at the LC site, and 15.0–84.1% and 23.2–33.4% at the XT site, respectively, during 2015–2017. Yield component analysis revealed that greater rice grain yield in response to N
fertilizer was attributed mainly to the number of panicles per m2, which increased in the fertilized treatments compared to the CK treatment. The application of CRU did not affect the soil
fertility after rice harvest in 2016. Overall, these results suggest that single basal application of CRU constitutes a promising alternative N management practice for reducing N application
rates, time- and labor-consuming in rice production in southeast China. SIMILAR CONTENT BEING VIEWED BY OTHERS NITROGEN AND PHOSPHORUS LOSSES FROM PADDY FIELDS AND THE YIELD OF RICE WITH
DIFFERENT WATER AND NITROGEN MANAGEMENT PRACTICES Article Open access 16 June 2020 EFFECT OF STRAW AND INHIBITORS ON THE FATE OF NITROGEN APPLIED TO PADDY SOIL Article Open access 09
December 2020 COMBINING CONTROLLED-RELEASE UREA WITH POTASSIUM CHLORIDE TO REDUCE SOIL N/K LEACHING AND PROMOTE GROWTH OF ITALIAN RYEGRASS Article Open access 06 January 2023 INTRODUCTION
Rice (_Oryza sativa_ L.) is one of the most important food crops in China and plays a vital role in guaranteeing national food security1,2,3. China is the largest rice producer worldwide and
produces nearly 30% of the rice produced globally4,5. In 2016, 207 million tons of rice were produced in China, accounting for more than 30% of total food production6. Nitrogen (N)
fertilizer plays an indispensable role in improving rice yield and quality7. More than 4 Tg per year of N fertilizer was applied for rice production in China from 2001 to 20108. However,
increases in crop yields are not linearly correlated with increases in the application rate of N fertilizer, which inevitably results in deceased the N use efficiency (NUE) and increased N
losses9,10. Excessive use of N fertilizer has resulted in a series of environmental issues, such as surface water eutrophication, groundwater pollution, greenhouse gas emission and soil
acidification11,12,13,14. Therefore, efficient N management is a crucial approach for increasing the NUE while minimizing environmental pollution in rice agro-ecosystems. Various approaches
to N management, such as multiple split application and deep placement, can improve both rice yields and NUE and reduce N losses10,15,16,17. However, these practices require more labor and
knowledge of N management than do conventional practices or are limited by technology lag. Application of controlled-release urea (CRU) constitutes an effective practice for increasing crop
yields and NUE while reducing N loss via ammonia volatilization (AV), nitrous oxide (N2O) production, surface runoff and leaching12,18,19,20. Numerous studies have shown that the application
of CRU significantly increased rice grain yield and NUE compared to the application of traditional N fertilizer7,21,22,23. The results of a field experiment conducted by Li _et al_.20
showed that CRU significantly increased the grain yield of late rice and the apparent N recovery by 6–18% and 3–17%, respectively, compared to urea application at the same N rate. A review
by Chalk _et al_.18 showed that the recovery of fertilizer N was higher, and the unaccounted N loss lower in response to a 15N-labeled CRU treatment than in response to a 15N-labeled urea
treatment. In addition, several studies have reported that CRU could significantly reduce N2O, nitric oxide (NO) and methane (CH4) emissions from paddy soils compared to conventional
urea20,24,25. Resin-coated urea (RCU) and polyurethane-coated urea (PCU) are two kinds of CRU that can increase both crop yields and NUE and reduce N loss7,20,23,26,27. With respect to rice
production, split application of N fertilizer is usually recommended for improving NUE and crop yields28. Compared to single application of urea, split application can significantly increase
rice grain yields and NUE, but other studies have reported no significant difference in rice grain yield between a one-time application of urea and a split application of urea in central
China20. Split application of N is more time consuming and labor intensive than is a single basal application28,29. In China, many rice farmers have part-time jobs in cities, which leads to
limited time and labor for agriculture30,31. Furthermore, it is difficult for farmers to master the proper time of application and amount of topdressing of N fertilizer32. CRU is helpful for
decreasing the use of N fertilizer and saving time and labor inputs20,29. Many studies have shown that CRU can be applied once as basal fertilizer with no effect on rice grain yields7. NUE
can be sub-classified in terms of N apparent recovery efficiency (NARE), N agronomic efficiency (NAE) and N partial factor productivity (NPFP)33. The NARE is used to describe the uptake
efficiency of N fertilizer. The grain yield increase per unit N fertilizer applied is expressed by the NAE, and the NPFP represents the use efficiency of soil N and fertilizer N. Dobermann34
proposed that the recommended NARE, NAE and NPFP for good management are 50–80%, 25–30 kg kg−1 and 60–80 kg kg−1, respectively. The average values of NARE, NAE and NPFP of rice in China are
39.3%, 12.6 kg kg−1 and 48.6 kg kg−1, respectively1. Many studies have shown that NUE is much lower in China than in developed countries35,36,37. The middle and lower Yangtze River (MLYR)
basin is one of the most important agricultural regions in China38. Rice–wheat rotation, rice–rapeseed rotation and early rice–late rice rotation compose the main cropping systems in the
middle and lower reaches of the Yangtze River38. In this region, the application rate of N fertilizer ranges from 200 to 300 kg ha−1, whereas the rice grain yield is only 6.7–7.6 t ha−1 39.
A review by Che _et al_.1 demonstrated that the NARE, NAE and NPFP of rice were 35–44%, 10–15 kg kg−1 and 29–68 kg kg−1 in the MLYR basin, respectively. Thus, the objective of the present
study was to compare the effects of CRU and U on rice yield, NUE and soil fertility from 2015 to 2017 in the MLYR basin, China. We hypothesized that application of CRU would increase the
grain yield and NUE of rice and would not affect soil fertility. RESULTS WEATHER CONDITIONS The monthly temperature and rainfall were recorded from rice transplantation to harvest during the
2015 to 2017 rice growing seasons at the two sites (Fig. 1). The average temperatures were 24.2 (19.2–26.3 °C), 25.5 °C (20.7–28.9 °C) and 25.3 °C (17.6–31.4 °C) in LC and 24.1 (18.9–27.4
°C), 25.4 °C (20.5–29.6 °C) and 25.4 °C (18.1–31.6 °C) in XT during the 2015 to 2017 rice growing seasons, respectively. The total rainfall during the rice growing season was 820, 1207 and
570 mm at the LC site, and 871, 1237 and 595 mm at the XT site, in 2015, 2016 and 2017, respectively (Fig. 1). The rainfall data during the rice growing season was 710 mm in long-term
averages at both sites, accounting for 55% of total rainfall of whole year, respectively. The rainfall distributions were different among the three years at both sites. The total rainfall
during the rice growing season was greater in 2016 than in 2015 and 2017 at both sites. GRAIN YIELD AND ABOVEGROUND BIOMASS The rice grain yield was significantly affected by treatment (T)
but was not influenced by year (Y) or their interaction at both sites (Table S1). The rice grain yield in the CK treatment was 6.7–7.2 t ha−1 in LC and ranged from 5.6 to 6.5 t ha−1 in XT
from 2015 to 2017 (Fig. 2a,c). The grain yield of rice in the N fertilizer treatments (U, RCU and PCU) significantly increased by 21.1–23.1%, 21.2–25.8% and 19.6–23.3% at the LC site and by
16.5–24.3%, 28.4–35.6% and 24.2–30.3% at the XT site compared to those in CK in 2015, 2016 and 2017, respectively. The N rate in the CRU treatments was reduced by 20% relative to that in the
U treatment from the 2015 to 2017 rice season (Table 1). However, no significant differences in rice grain yield was observed between the U and CRU treatments at either site (Fig. 2a,c).
Similarly, applications of RCU and PCU led to similar grain yields at both sites. Moreover, single CRU application reduced the N fertilization time and reduced the work force needed for rice
production relative to the spilt application of urea in the paddy fields. Treatment significantly affected the aboveground biomass of rice in LC, and year and treatment significantly
influenced the aboveground biomass in XT (Table S1). However, the interactions of Y × T had no impacts on the aboveground rice biomass at both sites. The aboveground biomass of rice in the
CK treatment was 12.7–12.8 t ha−1 in LC and 9.1–13.4 t ha−1 in XT (Fig. 2b,d). The combined results for the three years and two sites showed that N fertilizer treatments (U, RCU and PCU)
resulted in significantly increased aboveground biomass of rice compared to the CK treatment. When the different N fertilizers were compared, the results concerning the aboveground biomass
were very similar to those concerning the grain yield, and no significant difference was found between the U and CRU treatments (Fig. 2b,d), except for that at the LC site in 2017. In
addition, there was no significant difference between the RCU and PCU at either site. N CONCENTRATION AND N UPTAKE The N concentration in grain was not influenced by year, treatment and
their interaction in LC, but in XT, year significantly affected the N concentration in the grain (Table S1). Year and treatment had significant effect on the N concentration in straw in LC,
and only treatment had significant effect on the N concentration in straw in XT. In 2015, no significant differences in the rice grain N concentration were observed among the treatments, but
compared to that in the CK treatment, the straw N concentration in the N fertilizer treatments significantly increased at the LC site (Table 3). The N concentration in the grain was higher
in the CRU treatments than in the CK treatment, but there was no significant difference between the CRU and U treatments at the XT site in 2015. The N fertilizer treatments presented greater
straw N concentrations than did the CK treatment. The N concentrations in the grain and straw were significantly higher in the N treatments than in the CK treatment in both LC and XT in
2016, with the exception of the PCU treatment in XT. There were no differences in the N concentrations in rice among the U, RCU and PCU treatments at the LC or XT site (Table 3). In 2017
rice season, the N concentration in grain was significantly higher in the N fertilizer treatments than in the CK treatment in LC. The highest N concentration in straw was observed in the U
treatment, and there was no significant difference among the CK, RCU and PCU treatments in LC. The N concentration in grain ranged from 11.9 to 13.3 mg kg−1 in XT, and there was similar
among the treatments. The U treatment had a higher N concentration in straw than the CK and PCU treatments. N uptake by the rice grain was significantly affected by treatment but was not
influenced by treatment and the Y × T interaction in LC (Table S1). While N uptake by the grain was both significantly affected by year and treatment. Both year and treatment significantly
influenced N uptake by the rice straw and N uptake by the whole rice plant. In 2015, the N fertilizer treatments significantly increased N uptake by the grain, straw and whole plant compared
to CK in both LC and XT (Table 3). There were no differences in N uptake by rice plants between the U and CRU treatments in both LC and XT. The N uptake by the grain, straw and rice plants
were significantly increased by the application of N fertilizer at both sites in 2016 (Table 3). The RCU and PCU treatments presented similar levels of N uptake by the grain, straw and whole
plant as the U treatment at the LC and XT site in 2016. In 2017, the N uptake by the grain, straw and whole plant were significantly increased by the N fertilizer treatments, compared to CK
in both LC and XT. No significant differences were observed in the N uptake by grain and whole rice plant among the U, RCU and PCU treatments in both sites. The highest N uptake by straw
was recorded in the U treatment in both sites, and the lowest value was found in the CK treatment. N USE EFFICIENCY Year, treatment and the interaction of Y × T had no significant effect on
the NARE at both sites (Table S1). Only the treatment significantly affected the rice NAE at either site. The NPFP was only significantly affected by the treatment at both sites. However,
year and the Y × T interaction were both no significant. In the 2015 rice growing season, the NARE, NAE and NPFP ranged from 21.6 to 24.5%, 5.3 to 7.2 kg kg−1 and 30.1 to 38.3 kg kg−1 at the
LC site, respectively (Table 4). All the NUE indices (NARE, NAE and NPFP) were significantly higher in the CRU treatments (RCU and PCU) than in the U treatment at the XT site in 2015. In LC
in 2016, the NARE in the CRU treatments was similar to that in the U treatment (Table 4). The NARE was 22.6%, 27.1% and 21.3% in the U, RCU and PCU treatments in XT in 2016, respectively.
The CRU treatment increased the NAE and NPFP by 39.4–56.8% and 28.2–32.0%, respectively, compared to the U treatment. In 2017, there were no significant differences in NARE among the
treatments at both sites. PCU application significantly increased the NAE compared to the U treatment in XT, while no significant difference was found among the three treatments in LC. The
NPFP was significantly higher in the CRU treatments (RCU and PCU) than in the U treatment in both sites. COMPONENTS OF GRAIN YIELD Year and treatment significantly affected the panicles per
m2 in LC, while treatment and Y × T interaction had significant in XT (Table S1). In LC, only year significantly influenced the grains per panicle, grain filling percentage and 1000-grain
weight but the treatment and the Y × T interaction had no effects. The effects of year on the grains per panicle and grain filling percentage were significant in XT. 1000-grain weight was
not significantly affected by treatment in XT. CK consistently showed the lowest panicle numbers (Table 5). The applications of U, RCU and PCU significantly increased the number of panicles
per m2 by 5.6–45.5%, 14.0–41.1% and 14.0–24.7%, respectively (Table 5). In 2015, the number of grains per panicle was significantly lower in the CK treatment than in the N fertilizer
treatments at the LC site. However, the lowest number of grains per panicle was recorded in the RCU treatment at the XT site. In 2016, no significant differences were observed in the number
of grains per panicle among the treatments at either site. In 2017, the RCU treatment had the highest number of grains per panicle in LC. In XT, the grains per panicle was 116–126 in the N
treatments, and was significant higher than in the CK treatment. Moreover, there were no differences in the grain filling percentage among the four treatments in LC from 2015–2016. But in
2017, the grain filling percentage was significantly lower in the U treatment than in other treatments. In XT, the grain filling percentage was lower in the U treatment than in the PCU
treatment in 2015 but was not significantly different among the treatments in 2016. The highest grain filling was found in the U treatment in 2017. With the exception of that in LC in 2015,
the 1000-grain weight did not significantly differ among the treatments. SOIL CHEMICAL PROPERTIES After the rice harvest in 2016, there were no significant differences in soil pH among the
treatments in LC; however, the CRU treatments significantly reduced the pH levels by 8.0–8.2% compared to the CK treatment in XT (Table 6). The pH was similar between the CRU treatments and
the U treatment. No significant differences in SOM were found among the treatments at either site. The soil TN was significantly lower in the CRU treatments (RCU and PCU) than in the CK
treatment. However, with respect to soil TN, there were no significant differences among the U, RCU and PCU treatments. The Soil AHN ranged from 202 to 218 mg kg−1 in LC and 196 to 239 mg
kg−1 in XT. Soil available P was 6.22–7.75 mg kg−1 and 14.24–17.64 mg kg−1 in LC and XT, respectively (Table 6). No significant differences were observed in soil available K among the four
treatments at the three sites in 2016. DISCUSSION The average rice grain yield was 8.0 t ha−1 at the LC site and 7.3 t ha−1 at the XT site. These are within the range of results (5.9–9.0 t
ha−1) from the middle and lower reaches of the Yangtze River1,39. The average grain yield in response to the CK was 6.5 t ha−1 in this study (Fig. 1a, c), indicating a large supply of soil
indigenous N. The N rate in the CRU treatment was reduced by 20% relative to that in the U treatment from the 2015 to 2017 rice growing season (Table 1). However, the results from the
present study showed no significant differences in rice grain yield between the U treatment and CRU treatments at either site from 2015 to 2017 (Fig. 2). These results reveal that a single
basal application of CRU can maintain rice grain yields even if the N application rate is reduced by 20% compared to that in the split application of urea. Furthermore, a single basal
application of CRU can reduce the amount of topdressing applied and save labor and time. Similarly, Li _et al_.20 reported that a single basal application of CRU did not significantly affect
the grain yield of late rice compared to a split application of urea in Central China. Furthermore, a 2-year field experiment conducted by Ke _et al_.32 revealed that the rice grain yield
was significantly lower in a sulfur-coated urea and polymer-coated urea treatment than in a U treatment in the Taihu region of China. However, other studies have showed that CRU produced a
higher rice grain yield than did U at the same rate22,26,40. These differences in results may be caused by different environmental conditions, soil types and rice varieties in these studies.
Grant _et al_.29 reported that the benefits of CRU were markedly influenced by the environmental conditions of the region, such as temperature and soil moisture. The NARE is an important
index that is used to express to fertilizer N uptake efficiency41. A single basal application of CRU was shown to increase the NARE by 23–48% compared to a split application of traditional
urea during rice production7,22,41,42. N is slowly released from CRU and is available for plant uptake, which results in a reduction in N loss and thereby increases the NUE of rice20. Many
studies have suggested that CRU treatments can strongly reduce ammonia volatilization from paddy field compared to the U treatment19,20,40. In the present study, the NARE increased with
decreasing N application rates as follows: 22.0% and 24.9% in the U and CRU treatments in LC and 18.7% and 21.4% in the U and CRU treatments in XT, respectively (Table 4). Similarly, Xu _et
al_.17 reported that the NARE of rice increased from 29.6% to 42.6% when the N rate decreased from 300 kg ha−1 to 180 kg ha−1 in southeastern China. The NAE is another index and measures the
response of yield to increases in the N rate41. The recommended NAE for good management is 25–30 kg kg−1137. In our study, the NAE was 5.2–8.0 kg kg−1 at the LC site and 3.7–9.4 kg kg−1 at
the XT site (Table 4), both of which were much lower than the recommended values. The main explanation is that the grain yield was lower and the N application rate was higher in our study
than in other studies37. Some researchers recommend 180 kg N ha−1 for rice production in the middle and lower reaches of the Yangtze River37. In the current study, the NPFP ranged from 29.9
to 41.1 kg kg−1 at the LC site and from 26.0 to 39.4 kg kg−1 at the XT site (Table 4). A two-year field experiment conducted by Liu _et al_.37 showed that the NPFP of rice was 38.2–67.8 kg
kg−1 in the middle and lower reaches of Yangtze River, which was higher than the result of our study. The main reason for this difference is that the rice grain yield was lower in our study
than in the previous study. Our results showed that the CRU treatment had a higher NPFP than did the U treatment. Reducing the N application rate will improve the NPFP37. However, Miao _et
al_.41 found that single applications of CRU reduced the NPFP compared to the split application of urea in bowl-seedling machine-transplanted rice. Moreover, the N release rate of CRU is
greatly affected by the temperature and soil moisture29,41. Many studies have shown that application of N fertilizer can improve soil chemical properties in agricultural ecosystems43,44. Xue
_et al_.45 found that N fertilized treatments increased the SOM and TN after 3-years experiment in a paddy soil. However, the results of our study showed that compared to the CK, the
application of N fertilizer did not affect the SOM and TN concentrations (Table 6). The reason maybe that the initial soil chemical properties, such as the SOM, TN and AHN, were relatively
high in our study (Table 2). Therefore, short-term N application does not affect the soil fertility in the paddy soils in this region. Previous studies in China have indicated that the soil
acidification could be caused after three-year application of N fertilizer in a paddy soil in southeast China46. Similarly, the soil pH decreased over the two-year N fertilizer treatments in
XT. In the present study, there were no significant differences in AHN concentration between the CRU treatments and U treatment (Table 6). In contrast to our results, Zheng _et al_.44
reported that two-year application of CRU could increase the available N concentration within the 0–20 cm soil layer compared to conventional N fertilizer. A possible reason is that the rice
yields in the CRU treatments and in the U treatment were similar in our study (Fig. 2). However, Zheng _et al_.44 reported that short-term CRU treatments led to greater crop yields, and
thus increased the incorporation of residues into the soil compared to the U treatment. Mi _et al_.46 found that 3-year application of CRU had similar soil AP and AK concentrations with
split application of urea. In our study, no significant differences were observed in soil AP and AK between the U and CRU treatments. CONCLUSION The results of present study showed that
reductions in the current application rates of N fertilizer by 20% and the use of single basal applications of CRU (RCU and PCU) could maintain rice grain yields at levels that is similar to
those resulting from split applications of urea in the middle and lower Yangtze River basin. In addition, in most cases, there were no significant differences in the N concentration in the
grain among the RCU, PCU and U treatments. The yield component analysis revealed that, compared to those in the CK treatment, the higher rice grain yields from the N fertilizer treatments
were attributed mainly to an increased number of panicles per m2 in response to the fertilizer treatments. The NARE, NAE and NPFP mostly increased in the CRU treatments compared to that in
the U treatment at both sites. Future work should focus on studying the application rates of CRU and their effect on rice grain yields and N loss in the paddy field. MATERIALS AND METHODS
STUDY SITE Field experiments were conducted in Lincheng town (LC) and Xintang town (XT) of Changxing City, Zhejiang Province, southeast China, from 2015 to 2017. These regions have a
subtropical humid monsoon climate. The information on the climate and soil properties (0–20 cm) of the two sites is detailed in Table 2. The dominant cropping system was a rice–oilseed rape
rotation at both sites. The mean temperature and rainfall data during the rice growing season are shown in Fig. 1. EXPERIMENTAL DESIGN The field experiments were established as a completely
randomized block design, with three replicates. The plots were 30 m2 (5 × 6 m) in size, and the ridges (0.3 m wide and 0.2 m high) were covered with plastic film at all sites. In each plot,
an individual inlet and outlet were set up for irrigation and drainage. The four treatments were as follows: (1) CK (no N fertilizer application), (2) U (conventional urea), (3) RCU
(resin-coated urea), and (4) PCU (polyurethane-coated urea). The application rate and timing of the various fertilizers are shown in Table 1. For the U treatment, 50% of the N fertilizer was
broadcast by hand at one day before transplanting and then was incorporated into the soil (0–15 cm depth); another 20% was broadcast at the tillering stage; and the remaining 30% was
broadcast at the booting stage. For the CRU treatments (RCU and PCU), the N fertilizer was applied once as basal fertilizer by hand at one day before rice transplantation and then
incorporated into the soil (0–15 cm depth). Superphosphate (containing 12% P2O5, 7% S and 12% Ca) and potassium chloride (containing 60% K2O) were used in this study as the P and K
fertilizers, respectively. All the P and K fertilizers in all treatments were applied as basal fertilizers at one day before transplanting at both sites. The RCU (resin-coated urea
containing 45% N) and PCU (polyurethane-coated urea containing 44% N) were provided by Shandong Kingenta Ecological Engineering Co. Ltd. and China Agricultural University, respectively. The
theoretical release longevity of RCU and PCU was 90 and 60 days at 25 °C in water, respectively. The rice (_Oryza sativa_ L.) varieties used in this study were No. _Xiushui_ 33# in LC and
No. _Jia_ 67# in XT, both of which exhibited good adaptability and productivity in the region. Rice seedlings (30 days of age) were transplanted at a spacing of 30 cm × 20 cm at both sites.
The water was irrigated in each plot 7 days prior to rice transplantation and was maintained at 5–7 cm until midseason aeration. After the end of aeration, flooding water was continually
maintained at 5–7 cm and drained at 7 days before rice harvest. Pesticides and herbicides were applied according the practices of local farmers if necessary. SAMPLING AND MEASUREMENTS At
maturity, all the rice was harvested by hand in each plot and divided into grain and straw by a threshing machine (Rongchang Machinery Manufacture Co., Ltd, Zhengzhou, China). The grain and
straw samples were dried at 75 °C to a constant weight for the determination of the dry weights of the rice grain and straw. Twelve rice plants were collected randomly to assess the panicles
and grains numbers per panicle. The grain filling percentage and 1000-grain weight were also determined. The dry plant samples were ground into powder using a grinder (Taisite Instrument
Inc., Tianjin, China) and then passed through a 0.15-mm screen to determine the N concentration in the plant. For the N concentration analysis, grain and straw samples were digested with
H2SO4-H2O2 at 270 °C and then were measured using the Kjeldahl method47. After the rice harvest in 2016, five soil cores (0–20 cm depth) were randomly collected in each plot and mixed into a
composite sample. The fresh soil samples were sieved to pass through a 2-mm screen and then air-dried to determine the soil chemical properties. The soil pH was measured using a pH meter
(soil: water = 1: 2.5), and the SOM was measured by oxidation with both potassium dichromate and concentrated sulfuric acid and titration with ferrous ammonium sulfate47. The total N content
(TN) was determined according to the Kjeldahl digestion method47. The AHN content was determined according to Roberts _et al_.48. The soil available P (AP) was measured using the Olsen-P
method, which is based on the extraction of soil with 0.5 M sodium bicarbonate49 and the available K (AK) was extracted by 1 M ammonium acetate and measured by a flame photometer. N USE
EFFICIENCIES The parameters of NUE used in this study included the following: N apparent recovery efficiency (NARE, %), N agronomic efficiency (NAE, kg kg−1) and N partial factor
productivity (NPFP, kg kg−1)37,41,50. $$\begin{array}{ccc}{\rm{NARE}}\,( \% ) & = & \frac{{\rm{UN}}-{\rm{UCK}}}{{\rm{FN}}}\times 100 \% \\ {\rm{NAE}}\,({\rm{kg}}\,{{\rm{kg}}}^{-1})
& = & \frac{{\rm{YN}}-{\rm{YCK}}}{{\rm{FN}}}\\ {\rm{NPFP}}\,({\rm{kg}}\,{{\rm{kg}}}^{-1}) & = & \frac{{\rm{YN}}}{{\rm{FN}}}\end{array}$$ where UN and UCK are the total N
uptake in the fertilized treatments and no N application treatment, respectively. FN is the N fertilizer application rate. YN and YCk are the rice grain yield in the fertilizer treatments
and no N application treatment, respectively. STATISTICAL ANALYSIS Statistical analysis was performed using SPSS 16.0 (SPSS Inc., Chicago, USA) for analysis of variance (ANOVA). A two-way
ANOVA was used to evaluate the effects of site, year, treatment and their interaction on the yield, N concentration, N uptake and NUE of rice. The data were compared among the four
treatments by one-way ANOVA in conjunction with the least significant difference (LSD) test at _p_ < 0.05. REFERENCES * Che, S. G. _et al_. Review grain yield and nitrogen use efficiency
in rice production regions in China. _J. Integr. Agric._ 14, 2456–2466 (2015). Google Scholar * Wang, S. _et al_. Improving grain yield and reducing N loss using polymer-coated urea in
southeast China. _Agron. Sustain. Dev._ 35, 1103–1115 (2015). CAS Google Scholar * Ding, W. _et al_. Improving yield and nitrogen use efficiency through alternative fertilization options
for rice in China: A meta-analysis. _Field Crop. Res._ 227, 11–18 (2018). Google Scholar * Peng, S. _et al_. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated
rice systems in China. _Field Crop. Res._ 96, 37–47 (2006). ADS Google Scholar * Li, G. _et al_. Fate of basal-N under split fertilization in rice with 15N isotope tracer. _Pedosphere_ 28,
135–143 (2018). Google Scholar * National Bureau of Statistics of China (NBSC). China Statistical Yearbook. China Statistics Press, Beijing. (In Chinese) (2017). * Yang, Y., Zhang, M., Li,
Y. C., Fan, X. & Geng, Y. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield. _Soil. Sci. Soc. Am. J._ 76, 2307–2317 (2012). ADS CAS
Google Scholar * Zhang, M. _et al_. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. _Agric. Ecosyst.
Env._ 247, 236–245 (2017). CAS Google Scholar * Zhang, F. S. _et al_. Integrated nutrient management for food security and environmental quality in China. _Adv. Agron._ 116, 1–40 (2012).
CAS Google Scholar * Yao, Y. _et al_. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. _Field Crop. Res._ 218, 254–266 (2018). Google Scholar * Zhu, Z. L.
& Chen, D. L. Nitrogen fertilizer use in China - Contributions to food production, impacts on the environment and best management strategies. _Nutr. Cycl. Agroecosys_ 63, 117–127
(2002). CAS Google Scholar * Ji, Y. _et al_. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. _Plant.
Soil._ 371, 473–486 (2013). CAS Google Scholar * Gaihre, Y. K. _et al_. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh.
_Geoderma_ 259-260, 370–379 (2015). ADS CAS Google Scholar * Zhang, D. _et al_. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. _Agric. Ecosyst.
Env._ 265, 8–14 (2018). CAS Google Scholar * Bandaogo, A. _et al_. Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley
(Burkina Faso). _Nutr. Cycl. Agroecosys_ 102, 79–89 (2015). CAS Google Scholar * Chen, Y. _et al_. Crop management based on multi-split topdressing enhances grain yield and nitrogen use
efficiency in irrigated rice in China. _Field Crop. Res._ 184, 50–57 (2015). Google Scholar * Xu, H. _et al_. Effect of nitrogen management during the panicle stage in rice on the nitrogen
utilization of rice and succeeding wheat crops. _Eur. J. Agron._ 70, 41–47 (2015). CAS Google Scholar * Chalk, P. M., Craswell, E. T., Polidoro, J. C. & Chen, D. Fate and efficiency of
15N-labelled slow- and controlled-release fertilizers. _Nutr. Cycl. Agroecosys_ 102, 167–178 (2015). CAS Google Scholar * Ke, J. _et al_. Effects of different controlled-release nitrogen
fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. _Field Crop. Res._ 205, 147–156 (2017). Google Scholar * Li, P. _et
al_. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. _Env.
Sci. Pollut. Res._ 24, 11722–11733 (2017). CAS Google Scholar * Kiran, J. K., Khanif, Y. M., Amminuddin, H. & Anua, R. A. R. Effects of controlled release urea on the yield and
nitrogennutrition of flooded rice. _Commun. Soil. Sci. Plan._ 41, 811–819 (2010). CAS Google Scholar * Geng, J. _et al_. Long-term effects of controlled release urea application on crop
yields and soil fertility under rice-oilseed rape rotation system. _Field Crop. Res._ 184, 65–73 (2015). Google Scholar * Li, P. _et al_. Nitrogen losses, use efficiency, and productivity
of early rice under controlled-release urea. _Agric. Ecosyst. Env._ 251, 78–87 (2018). CAS Google Scholar * Ji, Y., Liu, G., Ma, J., Zhang, G. B. & Xu, H. Effects of urea and
controlled release urea fertilizers on methane emission from paddy fields: A multi-year field study. _Pedosphere_ 24, 662–673 (2014). Google Scholar * Gao., X., Deng, O., Ling, J., Zeng, M.
& Lan, T. Effects of controlled-release fertilizer on nitrous oxide and nitric oxide emissions during wheat-growing season: field and pot experiments. _Paddy Water Env._ 16, 99–108
(2018). Google Scholar * Guo, C. _et al_. Application of controlled-release urea in rice: Reducing environmental risk while increasing grain yield and improving nitrogen use efficiency.
_Commun. Soil. Sci. Plan._ 47, 1176–1183 (2016). CAS Google Scholar * Dubey, A. & Mailapalli, D. R. Development of control release urea fertilizer model for water and nitrogen movement
in flooded rice. _Paddy Water Env._ 16, 1–13 (2017). Google Scholar * Chen, Z. _et al_. Spatial and temporal nitrogen applications for winter wheat in a loamy soil in south-eastern China.
_Nutr. Cycl. Agroecosys_ 109, 43–55 (2017). CAS Google Scholar * Grant, C. A. _et al_. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen
as compared to non-coated urea applied at seeding. _Field Crop. Res._ 127, 170–180 (2012). ADS Google Scholar * Huang, M., Jiang, L., Zou, Y., Xu, S. & Deng, G. Changes in soil
microbial properties with no-tillage in Chinese cropping systems. _Biol. Fert. Soils_ 49, 373–377 (2013). Google Scholar * Zhang, W. _et al_. Closing yield gaps in China by empowering
smallholder farmers. _Nature_ 537, 671–674 (2016). ADS CAS PubMed Google Scholar * Ke, J. _et al_. Combined controlled-released nitrogen fertilizers and deep placement effects of N
leaching, rice yield and N recovery in machine-transplanted rice. _Agric. Ecosyst. Env._ 265, 402–412 (2018). CAS Google Scholar * Xu, G., Fan, X. & Miller, A. J. Plant nitrogen
assimilation and use efficiency. _Annu. Rev. Plant. Biol._ 63, 153–182 (2012). CAS PubMed Google Scholar * Dobermann, A. Nutrient use efficiency–measurement and management. _Fertilizer
best management practices_ 1 (2007). * Azeem, B., KuShaari, K., Man, Z. B., Basit, A. & Thanh, T. H. Review on materials & methods to produce controlled release coated urea
fertilizer. _J. Control. Rel._ 181, 11–21 (2014). CAS Google Scholar * Xue, Y. _et al_. An improved crop management increases grain yield and nitrogen and water use efficiency in rice.
_Crop. Sci._ 53, 271–284 (2013). Google Scholar * Liu, X. _et al_. Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River
region (2013–2015). _Field Crop. Res._ 196, 348–356 (2016). ADS Google Scholar * Chen, S. _et al_. Seasonal differences in the rice grain yield and nitrogen use efficiency response to
seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China. _Field Crop. Res._ 205, 157–169 (2017). Google Scholar * Wu, L., Chen, X., Cui, Z., Wang, G.
& Zhang, W. Improving nitrogen management via a regional management plan for Chinese rice production. _Env. Res. Lett._ 10, 095011 (2015). Google Scholar * Yang, Y., Zhang, M., Li, Y.,
Fan, X. & Geng, Y. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil. _J. Env. Qual._ 42, 1661–1673 (2013). CAS Google
Scholar * Miao, X. _et al_. Yield and nitrogen uptake of bowl-seedling machine-transplanted rice with slow-release nitrogen fertilizer. _Agron. J._ 108, 313–320 (2016). CAS Google Scholar
* Zhang, S. _et al_. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. _J. Env. Manage_ 220, 191–197 (2018). CAS
Google Scholar * Chu, H. Y., Hosen, Y., Yagi, K., Okada, K. & Ito, O. Soil microbial biomass and activities in a Japanese Andisol as affected by controlled release and application depth
of urea. _Biol. Fert. Soils_ 42, 89–96 (2005). Google Scholar * Zheng, W. _et al_. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under
wheat-maize double cropping system. _Field Crop. Res._ 197, 52–62 (2016). Google Scholar * Xue, L., Yu, Y. & Yang, L. Maintaining yields and reducing nitrogen loss in rice–wheat
rotation system in Taihu Lake region with proper fertilizer management. _Env. Res. Lett._ 9(11), 115010 (2014). Google Scholar * Mi, W. _et al_. Medium-term effects of different types of N
fertilizer on yield, apparent N recovery, and soil chemical properties of a double rice cropping system. _Field Crop. Res._ 234, 87–94 (2019). Google Scholar * Lu, L.K. Analytical Methods
of Soil and Agricutural Chemistry. Chinese Agricultural Science and Technology Press, Beijing (in Chinese) (1999). * Roberts, T. L., Ross, W. J., Norman, R. J., Slaton, N. A. & Wilson,
C. E. Predicting nitrogen fertilizer needs for rice in arkansas using alkaline hydrolyzable-nitrogen. _Soil. Sci. Soc. Am. J._ 75, 1161–1171 (2011). ADS CAS Google Scholar * Olsen, S.
& Sommers, L. Phosphorus. In: Page, A.L., Miller, R. H. & Keeney, D. R. (Eds.),Methods of soil analysis. Part 2. Chemical and microbiological properties, Second ed.SSSA, Madison
(1982). * Pan, S. _et al_. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. _Field Crop. Res._ 203, 139–149 (2017). Google Scholar Download
references ACKNOWLEDGEMENTS This work was supported by the National Key Research and Development Program of China (2016YFD0200804, 2016YFD0200102), the Natural Science Foundation for Youths
of Zhejiang Province (LQ19C150005) and the Key Research and Development Program of Zhejiang Province of China (2015C02013, 2019C02017). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *
Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China Zhaoming Chen, Qiang Wang, Junwei Ma, Ping Zou & Lina Jiang
Authors * Zhaoming Chen View author publications You can also search for this author inPubMed Google Scholar * Qiang Wang View author publications You can also search for this author
inPubMed Google Scholar * Junwei Ma View author publications You can also search for this author inPubMed Google Scholar * Ping Zou View author publications You can also search for this
author inPubMed Google Scholar * Lina Jiang View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Z.C. and Q.W. conceived and designed the study;
Z.C. and P.Z. performed the experiments; J.M. and L.J. analyzed the data; Q.W. and J.M. contributed reagents/materials; Z.C. and Q.W. wrote the paper; J.M. and L.J. reviewed the paper.
CORRESPONDING AUTHOR Correspondence to Qiang Wang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature
remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY MATERIAL. RIGHTS AND PERMISSIONS OPEN ACCESS
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chen, Z., Wang, Q., Ma, J. _et al._
Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system. _Sci Rep_ 10, 10432 (2020).
https://doi.org/10.1038/s41598-020-67110-6 Download citation * Received: 14 June 2019 * Accepted: 05 May 2020 * Published: 26 June 2020 * DOI: https://doi.org/10.1038/s41598-020-67110-6
SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to
clipboard Provided by the Springer Nature SharedIt content-sharing initiative