Play all audios:
ABSTRACT Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical
oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed “on-the-fly”. Adults with CP and
neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the
adults with CP had a weaker beta (18–24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16–20 Hz) and theta (4–6 Hz) event-related synchronization (ERS) in the
sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66–84 Hz) ERS during proactive compared to reactive
trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the
Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and
uncharacteristic adaptive sensorimotor control noted in adults with CP. SIMILAR CONTENT BEING VIEWED BY OTHERS SPINAL CORD MICROSTRUCTURAL CHANGES ARE CONNECTED WITH THE ABERRANT
SENSORIMOTOR CORTICAL OSCILLATORY ACTIVITY IN ADULTS WITH CEREBRAL PALSY Article Open access 21 March 2022 EXPLORING CORTICAL EXCITABILITY IN CHILDREN WITH CEREBRAL PALSY THROUGH LOWER LIMB
ROBOT TRAINING BASED ON MI-BCI Article Open access 10 April 2025 A PILOT STUDY COMBINING NONINVASIVE SPINAL NEUROMODULATION AND ACTIVITY-BASED NEUROREHABILITATION THERAPY IN CHILDREN WITH
CEREBRAL PALSY Article Open access 05 October 2022 INTRODUCTION Cerebral palsy (CP) is an umbrella term for a group of posture and movement disorders that result from an initial disturbance
to the developing brain1. Although the initial disturbance is seen as being non-progressive, there are often cascading neurophysiological changes that affect the overall fidelity of the
upper extremity motor actions. The majority of the research evaluating these neurophysiological changes have centered on youth with CP, with far less attention paid towards the adult
population2. This leaves a substantial knowledge gap in our understanding of the life course of individuals with CP, which is problematic as most individuals with CP have a life expectancy
well beyond 58 years3. Hence, there is a need for foundational knowledge on the long-term effects of the initial perinatal brain injuries on the adult sensorimotor system. Such insights have
the potential to redirect or alter the course of the current neurologically-based treatment approaches that are being used to improve upper extremity motor function in adults with CP. It is
well established that the production of motor actions involve time–frequency dependent changes in the oscillatory activity of the sensorimotor cortical neurons4,5. Specifically, the
sensorimotor cortices exhibit a robust beta (15–30 Hz) event-related desynchronization (ERD) several hundred milliseconds prior to onset of the motor action that is sustained throughout the
course of the motor action6,7,8,9,10,11,12,13,14. This beta ERD is accompanied by a transient theta (4–7 Hz) and gamma (70–90 Hz) event-related synchronization (ERS) that is tightly yoked
with the onset of the motor action15,16,17,18. Upon the completion of the motor action, there is a resynchronization of beta oscillations or a post-movement beta rebound (PMBR)7,10,11,19,20.
The consensus is that the beta ERD is associated with planning of the motor action, while the gamma and theta ERS are associated with the execution and timing of the motor command. The PMBR
is presumed to be associated with motor inhibition and/or assessment of the sensory feedback that is returned to the cortex after the motor action is complete21,22,23. Several
investigations have shown that the beta ERD, gamma ERS and PMBR tend to be weaker when individuals with CP plan and execute their hand motor actions24,25,26. Furthermore, the extent of the
deviations seen in the beta and gamma sensorimotor cortical oscillations appear to be connected with slower reaction times, deviations in muscular performance, and the extent of motor
execution errors in those with CP12,24,25,26,27,28. The altered cortical oscillations have been suggested to reflect inaccuracies in the neural calculations of the feedforward motor command.
However, there are cases where the motor command needs to be adjusted to account for last second changes in the timing of the motor action to meet the task demands. It is currently unknown
if the seminal deviations in the sensorimotor cortical oscillations have subsequent effects on the ability of persons with CP to adjust the motor command in real-time. When it comes to
adaptive motor control, most studies have focused on proactive or reactive inhibitory control29. Proactive control is when adjustments in the motor command are foreseen ahead of time, while
reactive control is when the motor command must be adjusted in the moment30. The stop-no go task is often used to tease out the effects of proactive versus reactive31,32,33,34,35. However,
these studies have focused on the proactive and reactive mechanisms that contribute to motor inhibition. What has been studied in less detail is the simple on-the-fly adjustment of movement
parameters. Having to adjust the timing of the onset of a motor action, as opposed to suppressing the initiation of a motor action, is much more common in real-life motor behavior. For
example, when picking up an object, real-time adjustments need to be made depending on size, weight, etc. Numerous behavioral studies have shown that persons with CP have difficulty
anticipating the necessary grip forces to pick up objects36, and require a longer time to plan sequential movements during an object manipulation task37. Furthermore, persons with CP tend to
employ a stereotypical grip pattern when reaching for an object and lack the ability to alter their grip in order to adapt to the changing task demands38,39,40,41,42,43. Altogether these
behavioral results imply that persons with CP lack the ability to reactively alter their initially planned motor actions. There is mounting evidence that the sensorimotor cortical
oscillations are uncharacteristic in persons with CP13,24,25,27,28,44. However, whether these cortical abnormalities have an impact on their reactive motor control has yet to be established.
Therefore, the objective of this investigation was to evaluate the sensorimotor cortical oscillations of adults with CP when the timing of the motor action needs to be changed “on-the-fly.”
To that end, we used MEG to image the cortical dynamics as neurotypical (NT) controls and adults with CP performed a hand motor task that required either proactive or reactive sensorimotor
control. Based on the prior literature in youth with CP, we hypothesized that the sensorimotor cortical dynamics associated with the production of a hand motor action would be weaker in
adults with CP when compared with NT controls. We also hypothesized that the sensorimotor cortical oscillations would be further deviant for the reactive condition when compared with the
proactive condition. Lastly, we hypothesized that the extent of the cortical aberrations would be connected with the reaction time and the clinical assessments of the hand’s dexterity.
Testing of these hypotheses will provide new insights on the nature of the uncharacteristic motor actions seen in adults with CP. Subsequently, these new insights will provide a new platform
for the development of neuroscience informed treatment strategies that are lacking in the physical and occupational literature for persons with CP45,46,47. METHODS ETHICAL APPROVAL The
study protocol conformed with the standards set by the _Declaration of Helsinki_. The protocol was approved by the Institutional Review Board at Boys Town National Research Hospital.
Informed consent was acquired from all the participants. PARTICIPANTS Nineteen adults with CP who had a spastic presentation (Age = 32.05 ± 11.24 years; Gross Motor Function Classification
Score (GMFCS) I–IV)48; Manual Ability Classification System (MACS) I–IV)49 and nineteen neurotypical (NT) controls (Age = 30.21 ± 9.93 years) with no neurological or musculoskeletal
impairments participated in this investigation. Further details on the participants with CP is provided in Table S1 of the Supplement. The GMFCS and MACS were used for the enrollment
criteria because they are the most widely utilized clinical assessments for quantifying the extent of the impairments seen in persons with CP for databases, clinical research, and program
evaluation49,50. A participant with a GMFCS level II has difficulty walking on uneven surfaces and has decreased walking speed. While a participant with a GMFCS IV has severely limited
mobility and primarily relies on a wheelchair for walking long distances. The MACS levels are similar in that a person with a level II handles objects with reduced quality and speed, while a
person at level IV handles objects with limited success. There were no differences in age, sex, race or handedness between groups (Ps > 0.05). The participants with CP had not undergone
upper extremity surgeries, had no botulinum toxin injections in the past year, and were not on anti-spastic medications. MEG ACQUISITION AND EXPERIMENTAL PARADIGM All recordings were
conducted using a whole head MEG system (MEGIN/Elekta, Helsinki, Finland) that was in a one-layer magnetically shielded room with active shielding engaged for advanced environmental noise
compensation. The neuromagnetic responses during the experiment were sampled continuously at 1 kHz with an acquisition bandwidth of 0.1–330 Hz. The experiment consisted of a clock-based
proactive–reactive finger-tapping task to analyze dynamic neural mechanisms serving the adaptive control of voluntary movement, while keeping movement kinematics, motor selection and
planning processes constant30. For this task, individuals responded the same for both the proactive and reactive conditions, which allowed for more straightforward interpretations of
adaptive cueing mechanisms. The participant maintained fixation on a centrally located crosshair while a red dot traversed a circle in a clockwise direction every five seconds (Fig. 1) under
two conditions: (1) Proactive and (2) Reactive. The diameter of the circle was 0.21 m and was displayed on a back projection screen that was ~ 1 m from the participant. The red dot
traversed the circle at a rate of 0.13 m/s. Both conditions had a blue target interval where the participant was instructed to perform a button press with the right index finger as quickly
and accurately as possible as soon as the red dot entered the target interval. In the proactive condition, the blue target interval was fixed near the 12 o’clock position (Fig. 1). For the
reactive conditions, at approximately 150 ms before the red dot entered the blue interval the target would shrink and shift within the original interval to one of four fixed locations (Fig.
1). Every participant completed 100 proactive and 100 reactive trials, and target interval locations were presented in a pseudorandom order. Furthermore, the presentation of either the
proactive or reactive conditions were randomized. The total time to complete the experiment was ~ 15 min. Prior to the start of the experiment the participants practiced exemplary proactive
and reactive conditions to ensure that they understood the task requirements. MEG PRE-PROCESSING AND SOURCE IMAGING Prior to the experiment, four coils were affixed to the participant’s head
and the location of the coils, three fiducial points, and the scalp surface were digitized (Fastrak, Polhemus Navigator Sciences, Colchester, VT, USA). During the MEG recording, an electric
current with a unique frequency label (e.g., 322 Hz) was fed to each of the coils and was used to localize the head in reference to the MEG sensors. The participant’s MEG data were
subsequently co-registered with the MRI and transformed into standardized space. Each participant’s MEG data were individually corrected for head motion that occurred during the task
performance using the MaxFilter software (MEGIN/Elekta). In addition, the signal space separation method with a temporal extension was used for noise reduction51. All the MEG data
pre-processing, co-registration and source imaging was performed with Brain Electrical Source Analysis (BESA) software (BESA v7.1; Grafelfing, Germany). Artifact rejection was based on an
individualized fixed threshold method supplemented with visual inspection. The continuous magnetic time series were divided into epochs of 4500 ms duration, with 0 ms defined as movement
onset and the baseline being − 2000 to − 1500 ms window. Epochs containing artifacts were rejected based on an individualized fixed threshold method, supplemented with visual inspection. The
artifact-free epochs for each sensor were transformed into the time–frequency domain using complex demodulation and averaged over the respective trials. These sensor-level data were
normalized to the mean power during the baseline, and the specific time–frequency windows selected for source imaging were determined by statistical analysis of the sensor-level spectrograms
across the entire array of gradiometers from all participants52,53,54. Based on these time–frequency windows, a minimum variance vector beamformer based on the cross-spectral densities was
used to calculate the source power across the entire brain volume per participant at a 4.0 mm3 resolution55, and the source power in these images were normalized per subject using a
separately averaged pre-stimulus noise period of equal duration and bandwidth56,57. The peak voxels identified in the grand-averaged beamformer images were used for extracting virtual sensor
neural time courses by applying the sensor weighting matrix derived through the forward computation to the preprocessed signal vector7,54. The neural time courses were subsequently
transformed into the time–frequency domain and the source orientation with the strongest response was selected for further analyses. The average across the window of interest was the primary
outcome measure and this was used to assess for condition and group differences. UPPER EXTREMITY MOTOR BEHAVIORAL PERFORMANCE ASSESSMENTS Along with the MEG data, the output of the button
pad was simultaneously collected at 1 kHz. The reaction time was calculated as the difference between the press onset relative to when the red dot entered the target window. The mean of the
motor performance and the coefficient of variation of the motor performance were the primary outcome variables. The participants also completed the Box and Blocks and Purdue Pegboard
assessments of hand dexterity. The Purdue Pegboard Test is a standardized test that assesses the total number of pegs picked up and placed into the holes of a board within a 30-s period. The
Box and Blocks Test is also a standardized test that involves the participant moving as many blocks as possible from one compartment across to another within a 60-s period using the tested
limb58,59,60. Lastly, the participants completed the wrist position test, which quantifies the ability of the participant to correctly identify the joint’s position following a movement
performed by the examiner61,62. The test consists of 20 predetermined wrist flexion and extension angles, where the examiner passively moved the wrist to the endpoint angular position as the
participant’s vision of the wrist position was occluded. The participants subsequently indicated the perceived wrist angle by aligning an arrow pointer towards the imposed wrist joint
position. The perceived angle indicated by subjects was compared to the imposed angle to determine position sense error (in degrees). The mean absolute error over the 20 positions was used
as an index of proprioceptive discrimination ability61. STATISTICAL ANALYSIS To evaluate differences in the strength of cortical oscillations and motor behavior, we performed separate 2 × 2
mixed model ANOVAs with condition (proactive or reactive) as a within subjects’ factor and group (NT and CP) as a between subjects’ factor. Pearson correlations were also used to determine
the relationship between the motor performance behavioral variables and the strength of cortical oscillatory responses. Correlations were done separately for each group (CP and NT), as well
as condition (proactive or reactive). All statistical analyses were performed in JASP with a 0.05 alpha level. RESULTS MOTOR BEHAVIORAL RESULTS In regard to behavioral performance during the
proactive–reactive sensorimotor task (i.e., button press in ms from target onset), we observed a significant main effect of condition (Proactive = 163.21 (66.63) ms, Reactive = 132.99
(36.68) ms, F = 6.674, p = 0.014), but not a main effect of group (CP = 150.43 (60.12) ms, NT = 145.87 (51.30) ms, F = 0.149, p = 0.702). There was also a significant condition by group
interaction for reaction time (F = 9.207, p = 0.004). The post-hoc analyses indicated that the adults with CP were less precise during the reactive trials (CP = 153.08 (40.08) ms, NT =
112.91 (17.55) ms, F = 16.015, p = 0.0003), but that their reaction time was similar to controls during the proactive trials (CP = 147.79 (76.22) ms, NT = 178.84 (52.99) ms, F = 0.154, p =
0.154; see Fig. 2A). For the coefficient of variation, there was a significant main effect of condition (Proactive = 58.76 (29.70) %, Reactive = 69.81 (10.98) %, F = 8.292, p = 0.007) and
there also was a main effect of group (CP = 71.51 (24.61) %, NT = 57.06 (18.76) %, F = 6.665, p = 0.014). Lastly, there was a significant interaction between condition and group (F = 5.783,
p = 0.021). Post-hoc analysis indicated that the adults with CP had greater variability in their motor performance for the proactive trials (C = 70.60 (33.67) %, NT = 46.92 (19.57) %, F =
7.024, p = 0.012), but not for the reactive trials (CP = 72.42 (10.48) %, NT = 67.20 (11.11) %, F = 2.220, p = 0.150; see Fig. 2B). CORTICAL OSCILLATIONS AT THE SENSOR AND SOURCE LEVEL There
was not a significant effect of group (CP = 177.84 ± 11.87, NT = 181.84 ± 11.93) (F = 0.919, p = 0.344) as well as condition (Proactive = 90.79 ± 6.37, Reactive = 89.24 ± 6.37) (F = 3.42, p
= 0.073) on number of MEG trials accepted. Visual inspection of the grand averaged oscillatory responses showed that there were notable changes in the gradiometers that spanned the
contralateral fronto-parietal cortical region. Statistical analysis of the sensor level time–frequency spectrograms revealed significant theta ERS (4–6 Hz), beta ERD (18–24 Hz), PMBR (16–20
Hz) and gamma ERS (66–84 Hz) responses (_Ps_ < 0.001, corrected; Fig. 3). Specifically, there was a prominent beta ERD that began 300 ms prior to the button press (i.e., 0 ms) and was
sustained for approximately 200 ms (Fig. 3). Furthermore, there were gamma (0–100 ms) and theta (− 100 to 200 ms) ERS responses that coincided with the onset of the button press. There also
was a PMBR in the 550–850 ms time window following the completion of the motor action. We subsequently used a beamformer to image the respective cortical oscillations identified at the
sensor level. All the oscillatory responses localized to the motor hand knob region of the contralateral hemisphere (Fig. 3). As detailed in the methods, we next extracted the neural time
course from the peak voxel of the grand-averaged beamformer images and determined the average activity across the time windows of interest. Regarding the theta response, we detected a
significant main effect of condition for the theta ERS (4–6 Hz) across the − 100 to 200 ms time window (Proactive = 136.58 (97.50) % (n = 37), Reactive = 169.89 (110.75) % (n = 37), F =
18.397, p = 0.0001; Fig. 4). Hence, indicating that the theta ERS was stronger for the reactive condition. There also was a main effect of group showing that the theta ERS was weaker overall
for the adults with CP (CP = 111.26 (81.32) % (n = 36), NT = 194.54 (110.12) % (n = 38), F = 8.290, p = 0.007; Fig. 4B). The interaction of the group and condition was not significant (F =
3.75e − 5, p = 0.995). Our statistical analyses indicated there was a main effect of group for the beta ERD (18–24 Hz) during the − 300 to 200 ms time window (Fig. 5), which indicated that
the beta ERD was weaker overall in the adults with CP (CP = − 33.19 (22.13) % (n = 38), NT = − 46.85 (28.17) % (n = 38), F = 5.846, p = 0.021; Fig. 5B). There was not a significant main
effect of condition (Proactive = − 40.19 (18.31) % (n = 38), Reactive = − 39.85 (19.62) % (n = 38), F = 0.061, p = 0.807) or an interaction of condition and group (F = 0.160, p = 0.692). As
per the PMBR response, there was a significant main effect of condition (Proactive = 52.99 (60.90) % (n = 35), Reactive = 67.68 (80.42) % (n = 35), F = 5.266, p = 0.028), indicating that the
reactive condition had a stronger PMBR compared with the proactive condition (Fig. 6). There also was a main effect of group (CP = 28.05 (54.51) % (n = 36), NT = 92.63 (71.91) % (n = 34), F
= 8.383, p = 0.007), showing that the PMBR was weaker overall for the adults with CP (Fig. 6B). The interaction term was not significant (F = 0.679, p = 0.416). For the gamma ERS (66–84 Hz)
seen within the 0–100 ms time window, there was not a significant main effect of condition (Proactive = 11.67 (9.10) % (n = 36), Reactive = 15.81 (16.16) % (n = 36), F = 2.832, p = 0.102)
or group (CP = 13.59 (15.08) % (n = 36), NT = 13.94 (11.24) % (n = 36), F = 0.182, p = 0.672). However, there was a significant interaction of condition and group (F = 4.257, p = 0.047; Fig.
7). Post-hoc analysis revealed that the reactive condition had a stronger gamma ERS for the NT controls when compared with the proactive condition (Proactive = 10.62 (9.45) % (n = 18),
Reactive = 17.26 (12.14) % (n = 18), F = 6.471, p = 0.021, Fig. 7B). The reactive and proactive conditions were not significantly different in individuals with CP (Proactive = 12.71 (8.88) %
(n = 18), Reactive = 14.44 (19.47) % (n = 18), F = 0.079, p = 0.782). NEURO-BEHAVIORAL CORRELATIONS Regarding the neuropsychological assessments, participants with CP moved significantly
less blocks for the Box and Blocks Test (CP = 43.19 (14.89) (n = 18), NT = 71.15 (18.55) (n = 19), p < 0.0001) and placed less pegs for the Purdue Pegboard Test (CP = 8.75 (4.77) (n =
18), NT = 15.37 (4.79) (n = 19), p < 0.0001) than NT. In addition, individuals with CP had significantly greater errors in the wrist position sense test (CP = 12.26 (3.61) (n = 18), NT =
8.01 (3.67) (n = 19), p < 0.0001). For the adults with CP, there was a significant positive correlation between the strength of the theta ERS during the proactive (r = 0.568 (n = 17), p =
0.017, Fig. 8A) and reactive conditions (r = 0.552 (n = 18), p = 0.018, Fig. 8B) and scores on the Box and Blocks Test. There was also a significant positive correlation between the
strength of the theta ERS in the reactive condition and the Purdue Pegboard scores in individuals with CP (r = 0.523 (n = 18), p = 0.026, Fig. 8C). These relationships imply that adults with
CP who have a stronger theta ERS in either condition perform better on standardized tests of motor function. All other correlations for the adults with CP and NT controls were not
significant (ps > 0.05). DISCUSSION The objective of this investigation was to use MEG brain imaging to evaluate potential differences in the sensorimotor cortical oscillations of adults
with CP during an adaptive sensorimotor control task. Behaviorally, our results showed that the motor actions were slower in those with CP during the reactive trials. The behavioral
differences seen in the adults with CP were accompanied by a weaker beta ERD, PMBR, and theta ERS. In addition, the strength of the gamma ERS was notably different during the reactive trials
for the NT controls, but did not appreciably change between conditions for the adults with CP. Lastly, we found that the altered strength of the theta cortical oscillations seen in the
adaptive sensorimotor task were partially connected to the altered hand dexterity seen in the adults with CP. Further discussion of the implications of these novel findings and their
connection with the adaptive sensorimotor control of adults with CP are discussed in the following sections. Overall, our results extend our understanding of the sensorimotor cortical
oscillations that underlie the production of motor actions. For one, our results show that the strength of the gamma and theta ERS were stronger when the participant had to dynamically react
to a change in the location and size of the target window. These results align with the outcomes from a prior study that used a similar experimental design30, which further implies that
changes in the strength of the gamma and theta cortical oscillations are involved in reactively altering the initially planned motor action. Broadly, these sensorimotor gamma and theta
oscillations are primarily assumed to reflect the execution of the motor command15,16,17,63. However, there is mounting evidence that the strength of the gamma ERS is influenced by
interfering visual stimuli and selective attention64,65,66,67,68, suggesting that the strength of the gamma ERS has cognitive dependencies. Based on these studies, we contend that the
stronger gamma ERS seen during the reactive condition reflects the heightened cognitive load or attention towards the changes that must be made to the motor command to meet the last second
changes in the task demands. We infer that changes in the strength of the theta ERS for the reactive condition reflects changes in the timing of motor execution, as prior research has shown
that the sensorimotor theta ERS is connected with the temporal structure of the motor execution63. Independent of group, our results also identified that the PMBR was stronger during the
reactive condition. Given that the PMBR occurs after the cessation of the movement, we suggest that the changes in the strength of the cortical oscillations are linked with the assessment of
the movement fidelity following the performance. This premise is aligned with prior research showing that the strength of the PMBR is associated with assessment of the sensory feedback that
is returned to the cortex after the motor action is complete21,23,24. As such, the altered PMBR seen during the reactive condition might reflect the amount of certainty in the adjustments
that were made in the timing of the motor action when the expected motor task constraints were abruptly changed. Nevertheless, we should recognize that the PMBR results shown here are
different from a prior study that found no difference between proactive and reaction task in terms of PMBR response30. However, this investigation only involved NT controls; therefore, the
addition of individuals with CP may be the reason for the differences noted here. The adults with CP also had a weaker PMBR compared to NT controls for both conditions. This result is
aligned with prior studies that have also identified that the PMBR is weaker in persons with CP 24,25. As highlighted previously, the PMBR has been associated with updating of the internal
model after the sensory feedback is returned. Altogether, these combined results suggest that the altered PMBR seen for the persons with CP might indicate greater uncertainty about the
sensory feedback after the completion of the motor task23,24. We speculate that this uncertainty is likely related to the altered sensory processing noted across the behavioral1,69,70,71,72
and neurophysiology literature for persons with CP13,62,73,74,75,76,77,78. As such, the altered sensory processing at both the cortical and spinal cord level likely has cascading effects on
the sensorimotor system and affects the fidelity assessment of adjusted motor outcomes. The sensorimotor beta ERD for the adults with CP was weaker when compared to the NT controls. These
results are well aligned with prior research, which has shown that youth with CP have deviant sensorimotor beta cortical oscillations, and that these altered cortical oscillations are
connected with their uncharacteristic motor actions and motor production errors25. Given that there was a lack of condition-wise differences seen for both the adults with CP and NT controls,
it is possible that the noted difference in the strength of the beta ERD is not impacted by the need to abruptly change in the timing of the motor command. Rather, the strength of the beta
ERD reflects the overall certainty of the motor plan, as there should be certainty in the basic tenants since the task design involved visually attending to a dot as it approached the target
zone where the known motor action should be executed. As such, the participants knew far in advance when they would likely press the button. We contend that the altered strength of the beta
ERD seen in the adults with CP more likely reflects the uncertainty in sufficiently exciting the sensorimotor cortical neurons to rapidly press the button rather than the certainty of the
task dynamics to be completed, per se. Given that the time window of interest spanned the motor planning and execution states, it is alternatively plausible that the weaker beta ERD might
just reflect the reduced number of neurons that can be excited due to the developmental brain injury. This notion is partly aligned with a prior transcranial magnetic simulation (TMS) study
that revealed persons with CP lack the ability to modulate the excitability of the sensorimotor cortical neurons 79. Our results identified that the strength of the gamma ERS was not
different between the proactive and reactive conditions for the adults with CP, but there was a condition-wise difference for the NT controls. As stated previously, several prior studies
have found that the strength of the gamma ERS is influenced by higher order cognitive processes64,66,67,68,80. Given that the general tenets of the motor actions to be completed for both
conditions were the same, the differences in gamma ERS seen for the controls implies that the gamma ERS reflects the heightened cognitive demand or attention involved in altering the timing
of the motor action on-the-fly to match the updated task demands. The lack of a change in the gamma ERS seen in the adults with CP suggests that they were less capable of cognitively
adapting the timing of their motor action during the reactive condition. Alternatively, it could be that generating rapid motor actions might be challenging for adults with CP regardless of
the task condition. We suspect that these challenges might be related to spasticity and/or the inability to activate the Type II fast-twitch alpha motor neurons81. Taken together, these data
suggest that adults with CP might not be able to adapt as well to last-second changes in the motor task demands. Across both conditions, the theta ERS for the adults with CP was also weaker
when compared to the NT controls. Furthermore, adults with CP who had a weaker theta ERS also tended to have poorer performance on the standardized motor assessments. Together, these
results suggest that alterations in the motor-related theta oscillations are linked with the hand dexterity of adults with CP. We infer that this connection reflects an inability to properly
regulate the temporal structure of motor execution63. It is alternatively possible that the weaker theta ERS reflects deficiencies in exciting these pathways, as a prior TMS study has shown
that persons with CP lack the ability to modulate the excitability of the corticospinal pathways79. On the other hand, it is possible that those who could perform the MEG task better had
more theta power because the theta band response is phase-locked to the onset of the button press. Although these explanations are plausible, fewer studies have evaluated motor-related theta
ERS responses in those with CP. As such, further investigations are necessary to illuminate the connection between the aberrations in theta oscillations and the uncharacteristic motor
actions seen in adults with CP. LIMITATIONS As with any investigation of persons with CP, there was heterogeneity in our patient sample. Thus, it is possible that there are individual
differences due to the perinatal brain lesions. Based on our small sample size, we are unable to evaluate how differences in the perinatal brain injuries may have impacted the strength of
the respective sensorimotor cortical oscillations. That being said, care should be taken when attempting to connect such structural alterations to functional deficits as there are many
studies showing that structural brain aberrations do not frequently predict the sensorimotor deficiencies82,83,84,85,86,87,88. The reason is that there is an enormous potential for
experience and environmental factors to instigate beneficial and/or detrimental neuroplastic changes that impact the long-term sensorimotor presentation. As such, some individuals with CP
can have no notable brain insults on their MRI, yet have significant sensorimotor presentations82,83,84,85,86,87,88. The opposite is also true in that individuals with CP can have
substantial brain insults, but the insult appears to have less of an impact on their sensorimotor presentations. There still is a notable knowledge gap in our understanding of the
structure–function connection in persons with CP. An additional limitation is that our understanding of the sensorimotor control of the hand motor actions was based on a simplified
button-press task. Performing a button-press is obviously very different from the dexterous motor actions that can be performed by the hand. That being said, the button press task was used
as a surrogate for reveling how the classic sensorimotor cortical oscillations are perturbed in adults with CP when the task demands are changed on the fly. It should be highlighted that our
conjectures between alterations in the sensorimotor cortical oscillations and the hand dexterity clinical assessments were associative and not causal. CONCLUSION This study found that
individuals with CP exhibit atypical sensorimotor cortical oscillations during an adaptive sensorimotor control task. Specifically, the strength of the gamma ERS was different during the
reactive trials for NT controls but did not significantly change for adults with CP between conditions. This may imply that adults with CP were less capable of cognitively adapting the
timing of their motor action during the reactive condition. Secondarily, the adults with CP had a weaker beta ERD, PMBR and theta ERS. Lastly, better hand dexterity on the clinical
assessments appeared to be linked with a stronger theta ERS in the adults with CP. Based on the results shown here, we speculate that employing unexpected changes in the motor goal might
enhance the upper extremity adaptability of persons with CP during physical or occupational therapy. An exemplary approach would be to slightly change the location of the target prior to the
initiation of the reach. Hence, requiring the participant to update their feedforward motor command. This approach could be implemented with a touchscreen technology (i.e., Bioness
Integrated Therapy System) or reaction training lights (i.e., BlazePods, ROX). We suspect that this neuroscience informed treatment approach might result in greater clinical gains that
transfer to the real-world and are not restricted to performance in the clinical environment. DATA AVAILABILITY The data that support the findings of the study are available from the
corresponding author upon reasonable request. REFERENCES * Rosenbaum, P. _et al._ A report: The definition and classification of cerebral palsy April 2006. _Dev. Med. Child Neurol._ 49, 8–14
(2007). Article Google Scholar * Wu, Y. W., Mehravari, A. S., Numis, A. L. & Gross, P. Cerebral palsy research funding from the National Institutes of Health, 2001 to 2013. _Dev. Med.
Child Neurol._ 57, 936–941 (2015). Article PubMed Google Scholar * Blair, E., Langdon, K., McIntyre, S., Lawrence, D. & Watson, L. Survival and mortality in cerebral palsy:
Observations to the sixth decade from a data linkage study of a total population register and National Death Index. _BMC Neurol._ 19, 111 (2019). Article PubMed PubMed Central Google
Scholar * Wilson, T. W. Noninvasive neurophysiological imaging with magnetoencephalography. in _Current Laboratory Methods in Neuroscience Research_ (eds. Xiong, H. & Gendelman, H. E.)
293–311 (Springer New York, 2014). https://doi.org/10.1007/978-1-4614-8794-4_21. * Wilson, T. W., Heinrichs-Graham, E., Proskovec, A. L. & McDermott, T. J. Neuroimaging with
magnetoencephalography: A dynamic view of brain pathophysiology. _Transl. Res._ 175, 17–36 (2016). Article PubMed PubMed Central Google Scholar * Alegre, M. _et al._ Alpha and beta
oscillatory changes during stimulus-induced movement paradigms: E¡ect of stimulus predictability. _Neuroreport_ 14, 381–385 (2003). Article PubMed Google Scholar * Cheyne, D., Bakhtazad,
L. & Gaetz, W. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. _Hum. Brain Mapp._ 27, 213–229 (2006). Article
PubMed Google Scholar * Doyle, L. M. F., Yarrow, K. & Brown, P. Lateralization of event-related beta desynchronization in the EEG during pre-cued reaction time tasks. _Clin.
Neurophysiol._ 116, 1879–1888 (2005). Article PubMed Google Scholar * Engel, A. K. & Fries, P. Beta-band oscillations—Signalling the status quo?. _Curr. Opin. Neurobiol._ 20, 156–165
(2010). Article CAS PubMed Google Scholar * Gaetz, W., MacDonald, M., Cheyne, D. & Snead, O. C. Neuromagnetic imaging of movement-related cortical oscillations in children and
adults: Age predicts post-movement beta rebound. _NeuroImage_ 51, 792–807 (2010). Article CAS PubMed Google Scholar * Heinrichs-Graham, E. _et al._ Neuromagnetic evidence of abnormal
movement-related beta desynchronization in Parkinson’s disease. _Cereb. Cortex_ 24, 2669–2678 (2014). Article PubMed Google Scholar * Kurz, M. J., Becker, K. M., Heinrichs-Graham, E.
& Wilson, T. W. Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy. _Dev. Med. Child
Neurol._ 56, 1072–1077 (2014). Article PubMed PubMed Central Google Scholar * Kurz, M. J., Heinrichs-Graham, E., Arpin, D. J., Becker, K. M. & Wilson, T. W. Aberrant synchrony in the
somatosensory cortices predicts motor performance errors in children with cerebral palsy. _J. Neurophysiol._ 111, 573–579 (2014). Article PubMed Google Scholar * Tzagarakis, C., Ince, N.
F., Leuthold, A. C. & Pellizzer, G. Beta-band activity during motor planning reflects response uncertainty. _J. Neurosci._ 30, 11270–11277 (2010). Article CAS PubMed PubMed Central
Google Scholar * Cheyne, D., Bells, S., Ferrari, P., Gaetz, W. & Bostan, A. C. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. _NeuroImage_ 42,
332–342 (2008). Article PubMed Google Scholar * Cheyne, D. & Ferrari, P. MEG studies of motor cortex gamma oscillations: Evidence for a gamma “fingerprint” in the brain? _Front. Hum.
Neurosci._ 7, (2013). * Muthukumaraswamy, S. D. Functional properties of human primary motor cortex gamma oscillations. _J. Neurophysiol._ 104, 2873–2885 (2010). Article PubMed Google
Scholar * Tomassini, A., Ambrogioni, L., Medendorp, W. P. & Maris, E. Theta oscillations locked to intended actions rhythmically modulate perception. _eLife_ 6, e25618 (2017). Article
PubMed PubMed Central Google Scholar * Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C. & Cheyne, D. Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic
recordings. _NeuroImage_ 32, 1281–1289 (2006). Article PubMed Google Scholar * Wilson, T. W. _et al._ An extended motor network generates beta and gamma oscillatory perturbations during
development. _Brain Cogn._ 73, 75–84 (2010). Article ADS PubMed PubMed Central Google Scholar * Arpin, D. J. _et al._ Altered sensorimotor cortical oscillations in individuals with
multiple sclerosis suggests a faulty internal model. _Hum. Brain Mapp._ 38, 4009–4018 (2017). Article PubMed PubMed Central Google Scholar * Heinrichs-Graham, E., Kurz, M. J., Gehringer,
J. E. & Wilson, T. W. The functional role of post-movement beta oscillations in motor termination. _Brain Struct. Funct._ 222, 3075–3086 (2017). Article PubMed PubMed Central Google
Scholar * Tan, H., Wade, C. & Brown, P. Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. _J. Neurosci._ 36, 1516–1528
(2016). Article CAS PubMed PubMed Central Google Scholar * Hoffman, R. M., Wilson, T. W. & Kurz, M. J. Hand motor actions of children with cerebral palsy are associated with
abnormal sensorimotor cortical oscillations. _Neurorehabil. Neural Repair_ 33, 1018–1028 (2019). Article PubMed PubMed Central Google Scholar * Trevarrow, M. P. _et al._ Spinal cord
microstructural changes are connected with the aberrant sensorimotor cortical oscillatory activity in adults with cerebral palsy. _Sci. Rep._ 12, 4807 (2022). Article ADS CAS PubMed
PubMed Central Google Scholar * Busboom, M. T. _et al._ Disruption of sensorimotor cortical oscillations by visual interference predicts the altered motor performance of persons with
cerebral palsy. _Neuroscience_ 536, 92–103 (2024). Article CAS PubMed Google Scholar * Kurz, M. J., Proskovec, A. L., Gehringer, J. E., Heinrichs-Graham, E. & Wilson, T. W. Children
with cerebral palsy have altered oscillatory activity in the motor and visual cortices during a knee motor task. _NeuroImage Clin._ 15, 298–305 (2017). Article PubMed PubMed Central
Google Scholar * Kurz, M. J. _et al._ Motor beta cortical oscillations are related with the gait kinematics of youth with cerebral palsy. _Ann. Clin. Transl. Neurol._ 7, 2421–2432 (2020).
Article PubMed PubMed Central Google Scholar * Brockett, A. T. & Roesch, M. R. Reactive and proactive adaptation of cognitive and motor neural signals during performance of a
stop-change task. _Brain Sci._ 11, 617 (2021). Article PubMed PubMed Central Google Scholar * Spooner, R. K. & Wilson, T. W. Cortical theta-gamma coupling governs the adaptive
control of motor commands. _Brain Commun._ fcac249 (2022) https://doi.org/10.1093/braincomms/fcac249. * Aron, A. R. From reactive to proactive and selective control: Developing a richer
model for stopping inappropriate responses. _Biol. Psychiatry_ 69, e55–e68 (2011). Article PubMed Google Scholar * Chen, X., Scangos, K. W. & Stuphorn, V. Supplementary motor area
exerts proactive and reactive control of arm movements. _J. Neurosci._ 30, 14657–14675 (2010). Article CAS PubMed PubMed Central Google Scholar * Logan, G. D. & Cowan, W. B. On the
ability to inhibit thought and action: A theory of an act of control. _Psychol. Rev._ 91, 295–327 (1984). Article Google Scholar * Nishat, E. _et al._ Visuomotor activation of
inhibition-processing in pediatric obsessive compulsive disorder: A magnetoencephalography study. _Front. Psychiatry_ 12, 632736 (2021). Article PubMed PubMed Central Google Scholar *
Zhu, Y. _et al._ Response inhibition in children with different subtypes/presentations of attention deficit hyperactivity disorder: A near-infrared spectroscopy study. _Front. Neurosci._ 17,
1119289 (2023). Article PubMed PubMed Central Google Scholar * Duff, S. V. & Gordon, A. M. Learning of grasp control in children with hemiplegic cerebral palsy. _Dev. Med. Child
Neurol._ 45, 746–757 (2003). Article PubMed Google Scholar * Mutsaarts, M., Steenbergen, B. & Bekkering, H. Anticipatory planning of movement sequences in hemiparetic cerebral palsy.
_Motor Control_ 9, 439–458 (2005). Article PubMed Google Scholar * Crajé, C., Aarts, P., Nijhuis-van der Sanden, M. & Steenbergen, B. Action planning in typically and atypically
developing children (unilateral cerebral palsy). _Res. Dev. Disabil._ 31, 1039–1046 (2010). Article PubMed Google Scholar * Janssen, L., Beuting, M., Meulenbroek, R. & Steenbergen, B.
Combined effects of planning and execution constraints on bimanual task performance. _Exp. Brain Res._ 192, 61–73 (2009). Article PubMed Google Scholar * Steenbergen, B., Meulenbroek, R.
G. J. & Rosenbaum, D. A. Constraints on grip selection in hemiparetic cerebral palsy: Effects of lesional side, end-point accuracy, and context. _Cogn. Brain Res._ 19, 145–159 (2004).
Article Google Scholar * Steenbergen, B. & Gordon, A. M. Activity limitation in hemiplegic cerebral palsy: Evidence for disorders in motor planning. _Dev. Med. Child Neurol._ 48,
780–783 (2006). Article PubMed Google Scholar * Steenbergen, B. & Van Der Kamp, J. Control of prehension in hemiparetic cerebral palsy: Similarities and differences between the ipsi-
and contra-lesional sides of the body. _Dev. Med. Child Neurol._ 46, 325–332 (2004). Article PubMed Google Scholar * Surkar, S. M., Hoffman, R. M., Davies, B., Harbourne, R. & Kurz,
M. J. Impaired anticipatory vision and visuomotor coordination affects action planning and execution in children with hemiplegic cerebral palsy. _Res. Dev. Disabil._ 80, 64–73 (2018).
Article PubMed Google Scholar * Busboom, M. _et al._ Therapeutic lower extremity power training alters the sensorimotor cortical activity of individuals with cerebral palsy. _Arch.
Rehabil. Res. Clin. Transl._ 4, 100180 (2022). PubMed PubMed Central Google Scholar * Damiano, D. L. Rehabilitative therapies in cerebral palsy: The good, the not as good, and the
possible. _J. Child Neurol._ 24, 1200–1204 (2009). Article PubMed PubMed Central Google Scholar * Sakzewski, L., Ziviani, J. & Boyd, R. N. Efficacy of upper limb therapies for
unilateral cerebral palsy: A meta-analysis. _Pediatrics_ 133, e175–e204 (2014). Article PubMed Google Scholar * Taghizadeh, A., Webster, K. E., Bhopti, A., Carey, L. & Hoare, B. Are
they really motor learning therapies? A scoping review of evidence-based, task-focused models of upper limb therapy for children with unilateral cerebral palsy. _Disabil. Rehabil._ 45,
1536–1548 (2023). Article PubMed Google Scholar * Paulson, A. & Vargus-Adams, J. Overview of four functional classification systems commonly used in cerebral palsy. _Children_ 4, 30
(2017). Article PubMed PubMed Central Google Scholar * Eliasson, A.-C. _et al._ The Manual Ability Classification System (MACS) for children with cerebral palsy: Scale development and
evidence of validity and reliability. _Dev. Med. Child Neurol._ 48, 549–554 (2007). Article Google Scholar * Palisano, R. J., Rosenbaum, P., Bartlett, D. & Livingston, M. H. Content
validity of the expanded and revised Gross Motor Function Classification System. _Dev. Med. Child Neurol._ 50, 744–750 (2008). Article PubMed Google Scholar * Taulu, S. & Simola, J.
Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. _Phys. Med. Biol._ 51, 1759–1768 (2006). Article CAS PubMed Google Scholar * Ernst,
M. D. Permutation methods: A basis for exact inference. _Stat. Sci._ 19, 676–685 (2004). Article MathSciNet Google Scholar * Maris, E. & Oostenveld, R. Nonparametric statistical
testing of EEG- and MEG-data. _J. Neurosci. Methods_ 164, 177–190 (2007). Article PubMed Google Scholar * Wiesman, A. I. & Wilson, T. W. Attention modulates the gating of primary
somatosensory oscillations. _Neuroimage_ 211, 116610 (2020). Article PubMed Google Scholar * Gross, J. _et al._ Dynamic imaging of coherent sources: Studying neural interactions in the
human brain. _Proc. Natl. Acad. Sci. USA_ 98, 694–699 (2001). Article ADS CAS PubMed PubMed Central Google Scholar * Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L. &
Barnes, G. R. A new approach to neuroimaging with magnetoencephalography. _Hum. Brain Mapp._ 25, 199–211 (2005). Article PubMed PubMed Central Google Scholar * Van Veen, B. D., van
Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. _IEEE Trans. Biomed. Eng._ 44, 867–880
(1997). Article PubMed Google Scholar * Araneda, R. _et al._ Reliability and responsiveness of the Jebsen-Taylor Test of Hand Function and the Box and Block Test for children with
cerebral palsy. _Dev. Med. Child Neurol._ 61, 1182–1188 (2019). Article PubMed PubMed Central Google Scholar * Mathiowetz, V., Volland, G., Kashman, N. & Weber, K. Adult norms for
the Box and Block Test of manual dexterity. _Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc._ 39, 386–391 (1985). Article CAS Google Scholar * Tiffin, J. & Asher, E. J. The
Purdue pegboard; norms and studies of reliability and validity. _J. Appl. Psychol._ 32, 234–247 (1948). Article CAS PubMed Google Scholar * Carey, L. M., Oke, L. E. & Matyas, T. A.
Impaired limb position sense after stroke: A quantitative test for clinical use. _Arch. Phys. Med. Rehabil._ 77, 1271–1278 (1996). Article CAS PubMed Google Scholar * Dukkipati, S. S.
_et al._ Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy. _Front. Neurol._ 13, 930303 (2022). Article PubMed
PubMed Central Google Scholar * Igarashi, J., Isomura, Y., Arai, K., Harukuni, R. & Fukai, T. A θ–γ oscillation code for neuronal coordination during motor behavior. _J. Neurosci._ 33,
18515–18530 (2013). Article CAS PubMed PubMed Central Google Scholar * Gaetz, W., Liu, C., Zhu, H., Bloy, L. & Roberts, T. P. L. Evidence for a motor gamma-band network governing
response interference. _NeuroImage_ 74, 245–253 (2013). Article CAS PubMed Google Scholar * Grent-‘t-Jong, T., Oostenveld, R., Jensen, O., Medendorp, W. P. & Praamstra, P.
Oscillatory dynamics of response competition in human sensorimotor cortex. _NeuroImage_ 83, 27–34 (2013). Article PubMed Google Scholar * Heinrichs-Graham, E., Hoburg, J. M. & Wilson,
T. W. The peak frequency of motor-related gamma oscillations is modulated by response competition. _NeuroImage_ 165, 27–34 (2018). Article PubMed Google Scholar * Spooner, R. K.,
Wiesman, A. I., Proskovec, A. L., Heinrichs-Graham, E. & Wilson, T. W. Prefrontal theta modulates sensorimotor gamma networks during the reorienting of attention. _Hum. Brain Mapp._ 41,
520–529 (2020). Article PubMed Google Scholar * Wiesman, A. I., Koshy, S. M., Heinrichs-Graham, E. & Wilson, T. W. Beta and gamma oscillations index cognitive interference effects
across a distributed motor network. _NeuroImage_ 213, 116747 (2020). Article PubMed Google Scholar * Clayton, K., Fleming, J. M. & Copley, J. Behavioral responses to tactile stimuli
in children with cerebral palsy. _Phys. Occup. Ther. Pediatr._ 23, 43–62 (2003). Article PubMed Google Scholar * Cooper, J., Majnemer, A., Rosenblatt, B. & Birnbaum, R. The
determination of sensory deficits in children with hemiplegic cerebral palsy. _J. Child Neurol._ 10, 300–309 (1995). Article CAS PubMed Google Scholar * Sanger, T. D. & Kukke, S. N.
Abnormalities of tactile sensory function in children with dystonic and diplegic cerebral palsy. _J. Child Neurol._ 22, 289–293 (2007). Article PubMed Google Scholar * Wingert, J. R.,
Burton, H., Sinclair, R. J., Brunstrom, J. E. & Damiano, D. L. Tactile sensory abilities in cerebral palsy: Deficits in roughness and object discrimination. _Dev. Med. Child Neurol._ 50,
832–838 (2008). Article PubMed PubMed Central Google Scholar * Kurz, M. J., Becker, K. M., Heinrichs-Graham, E. & Wilson, T. W. Children with cerebral palsy have uncharacteristic
somatosensory cortical oscillations after stimulation of the hand mechanoreceptors. _Neuroscience_ 305, 67–75 (2015). Article CAS PubMed Google Scholar * Kurz, M. J., Wiesman, A. I.,
Coolidge, N. M. & Wilson, T. W. Children with cerebral palsy hyper-gate somatosensory stimulations of the foot. _Cereb. Cortex N. Y. N_ 1991(28), 2431–2438 (2018). Google Scholar *
Kurz, M. J., Heinrichs-Graham, E., Becker, K. M. & Wilson, T. W. The magnitude of the somatosensory cortical activity is related to the mobility and strength impairments seen in children
with cerebral palsy. _J. Neurophysiol._ 113, 3143–3150 (2015). Article PubMed PubMed Central Google Scholar * Papadelis, C. _et al._ Reorganization of the somatosensory cortex in
hemiplegic cerebral palsy associated with impaired sensory tracts. _NeuroImage Clin._ 17, 198–212 (2018). Article PubMed Google Scholar * Teflioudi, E. P., Zafeiriou, D. I., Vargiami, E.,
Kontopoulos, E. & Tsikoulas, I. Somatosensory evoked potentials in children with bilateral spastic cerebral palsy. _Pediatr. Neurol._ 44, 177–182 (2011). Article PubMed Google Scholar
* Trevarrow, M. P. _et al._ Altered somatosensory cortical activity is associated with cortical thickness in adults with cerebral palsy: multimodal evidence from MEG/sMRI. _Cereb. Cortex_
bhab293 (2021). https://doi.org/10.1093/cercor/bhab293. * Condliffe, E. G. _et al._ Full activation profiles and integrity of corticospinal pathways in adults with bilateral spastic cerebral
palsy. _Neurorehabil. Neural Repair_ 33, 59–69 (2019). Article PubMed Google Scholar * Spooner, R. K., Arif, Y., Taylor, B. K. & Wilson, T. W. Movement-related gamma synchrony
differentially predicts behavior in the presence of visual interference across the lifespan. _Cereb. Cortex_ 31, 5056–5066 (2021). Article PubMed PubMed Central Google Scholar *
Dukkipati, S. S. _et al._ Linking corticospinal tract activation and upper-limb motor control in adults with cerebral palsy. _Dev. Med. Child Neurol._ https://doi.org/10.1111/dmcn.15750
(2023). Article PubMed Google Scholar * Himmelmann, K. & Uvebrant, P. Function and neuroimaging in cerebral palsy: A population-based study. _Dev. Med. Child Neurol._ 53, 516–521
(2011). Article PubMed Google Scholar * Lee, D. _et al._ Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy. _Hum. Brain Mapp._ 38,
5292–5306 (2017). Article PubMed PubMed Central Google Scholar * Grunt, S. _et al._ Effect of selective dorsal rhizotomy on gait in children with bilateral spastic paresis: Kinematic and
EMG-pattern changes. _Neuropediatrics_ 41, 209–216 (2010). Article CAS PubMed Google Scholar * Glenn, O. A. _et al._ Diffusion tensor MR imaging tractography of the pyramidal tracts
correlates with clinical motor function in children with congenital hemiparesis. _AJNR Am. J. Neuroradiol._ 28, 1796–1802 (2007). Article CAS PubMed PubMed Central Google Scholar *
Trivedi, R. _et al._ Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. _Neuroradiology_ 52, 759–765 (2010). Article PubMed Google Scholar *
Trivedi, R. _et al._ Treatment-induced plasticity in cerebral palsy: A diffusion tensor imaging study. _Pediatr. Neurol._ 39, 341–349 (2008). Article PubMed Google Scholar * Son, S. M.
_et al._ Diffusion tensor imaging demonstrates focal lesions of the corticospinal tract in hemiparetic patients with cerebral palsy. _Neurosci. Lett._ 420, 34–38 (2007). Article CAS PubMed
Google Scholar Download references FUNDING This work was partially supported by funding from the National Institutes of Health (R01HD101833, R01HD108205, P20GM144641). AUTHOR INFORMATION
AUTHORS AND AFFILIATIONS * Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA Erica H. Hinton, Morgan T. Busboom, Christine M. Embury, Rachel K. Spooner,
Tony W. Wilson & Max J. Kurz * Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA Erica H. Hinton, Morgan T. Busboom, Christine M. Embury, Rachel
K. Spooner, Tony W. Wilson & Max J. Kurz * Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA Tony W. Wilson & Max J. Kurz * Institute for Human
Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA Max J. Kurz Authors * Erica H. Hinton View author publications You can also search for
this author inPubMed Google Scholar * Morgan T. Busboom View author publications You can also search for this author inPubMed Google Scholar * Christine M. Embury View author publications
You can also search for this author inPubMed Google Scholar * Rachel K. Spooner View author publications You can also search for this author inPubMed Google Scholar * Tony W. Wilson View
author publications You can also search for this author inPubMed Google Scholar * Max J. Kurz View author publications You can also search for this author inPubMed Google Scholar
CONTRIBUTIONS The experiment was performed at the Institute for Human Neuroscience at Boys Town National Research Hospital. EHH, CME, RKS, TWW, MJK contributed to the conception or design of
the work. EHH, MTB, CME, MJK contributed to the acquisition, analysis, or interpretation of the data for the work. EHH drafted the work and MTB, CME, RKS, TWW, and MJK revised it critically
for important intellectual content. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship and all those who qualify for
authorship are listed. CORRESPONDING AUTHOR Correspondence to Max J. Kurz. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION
PUBLISHER'S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY
INFORMATION. RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE
CITE THIS ARTICLE Hinton, E.H., Busboom, M.T., Embury, C.M. _et al._ Adults with cerebral palsy exhibit uncharacteristic cortical oscillations during an adaptive sensorimotor control task.
_Sci Rep_ 14, 10788 (2024). https://doi.org/10.1038/s41598-024-61375-x Download citation * Received: 14 June 2023 * Accepted: 06 May 2024 * Published: 11 May 2024 * DOI:
https://doi.org/10.1038/s41598-024-61375-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * Neuroimaging * Brain imaging * Magnetoencephalography *
Dexterity * Hand