Neuromorphic weighted sums with magnetic skyrmions

Neuromorphic weighted sums with magnetic skyrmions

Play all audios:

Loading...

ABSTRACT Integrating magnetic skyrmions into neuromorphic computing could help improve hardware efficiency and computational power. However, developing a scalable implementation of the


weighted sum of neuron signals—a core operation in neural networks—has remained a challenge. Here we show that weighted sum operations can be performed in a compact, biologically inspired


manner by using the non-volatile and particle-like characteristics of magnetic skyrmions that make them easily countable and summable. The skyrmions are electrically generated in numbers


proportional to an input with an efficiency given by a non-volatile weight. The chiral particles are then directed using localized current injections to a location in which their presence is


quantified through non-perturbative electrical measurements. Our experimental demonstration, which currently has two inputs, can be scaled to accommodate multiple inputs and outputs using a


crossbar-array design, potentially nearing the energy efficiency observed in biological systems. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99


/ 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NEUROMORPHIC COMPUTING AT SCALE Article 22 January 2025 PHYSICS FOR


NEUROMORPHIC COMPUTING Article 28 July 2020 LINEAR SYMMETRIC SELF-SELECTING 14-BIT KINETIC MOLECULAR MEMRISTORS Article 11 September 2024 DATA AVAILABILITY The data that support the findings


of this study are available via Zenodo at https://doi.org/10.5281/zenodo.13988409 (ref. 60). Other relevant data are available from the corresponding authors on request. REFERENCES * Fert,


A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. _Nat. Rev. Mater._ 2, 17031 (2017). Article  Google Scholar  * Moreau-Luchaire, C. et al.


Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. _Nat. Nanotechnol._ 11, 444–448 (2016). Article  MATH  Google


Scholar  * Jiang, W. et al. Blowing magnetic skyrmion bubbles. _Science_ 349, 283–286 (2015). Article  Google Scholar  * Woo, S. et al. Observation of room-temperature magnetic skyrmions and


their current-driven dynamics in ultrathin metallic ferromagnets. _Nat. Mater._ 15, 501–506 (2016). Article  MATH  Google Scholar  * Boulle, O. et al. Room-temperature chiral magnetic


skyrmions in ultrathin magnetic nanostructures. _Nat. Nanotechnol._ 11, 449–454 (2016). Article  MATH  Google Scholar  * Legrand, W. et al. Room-temperature current-induced generation and


motion of sub-100 nm skyrmions. _Nano Lett._ 17, 2703–2712 (2017). Article  MATH  Google Scholar  * Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by


spin–orbit torques. _Nat. Nanotechnol._ 12, 1040–1044 (2017). Article  MATH  Google Scholar  * Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt


multilayers. _Nat. Mater._ 16, 898–904 (2017). Article  MATH  Google Scholar  * Finizio, S. et al. Deterministic field-free skyrmion nucleation at a nanoengineered injector device. _Nano


Lett._ 19, 7246–7255 (2019). Article  MATH  Google Scholar  * Wang, Z. et al. Thermal generation, manipulation and thermoelectric detection of skyrmions. _Nat. Electron._ 3, 672–679 (2020).


Article  MATH  Google Scholar  * Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. _Nat. Electron._ 1,


288–296 (2018). Article  MATH  Google Scholar  * Yang, S. et al. Electrical generation and deletion of magnetic skyrmion-bubbles via vertical current injection. _Adv. Mater._ 33, 2104406


(2021). Article  Google Scholar  * Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. _Nat. Nanotechnol._ 13, 233–237


(2018). Article  Google Scholar  * Zeissler, K. et al. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. _Nat. Nanotechnol._ 13, 1161–1166 (2018). Article 


MATH  Google Scholar  * Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. _Nat. Nanotechnol._ 10, 1039–1042 (2015). Article  MATH


  Google Scholar  * Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. _Nature_ 627, 522–527 (2024). Article  Google Scholar  * Urrestarazu Larrañaga, J. et al. Electrical


detection and nucleation of a magnetic skyrmion in a magnetic tunnel junction observed via operando magnetic microscopy. _Nano Lett._ 24, 3557–3565 (2024). Article  MATH  Google Scholar  *


Bourianoff, G., Pinna, D., Sitte, M. & Everschor-Sitte, K. Potential implementation of reservoir computing models based on magnetic skyrmions. _AIP Adv._ 8, 055602 (2018). Article  MATH


  Google Scholar  * Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. _Nat. Electron._ 3, 148–155 (2020). Article  MATH  Google Scholar  * Grollier, J. et al.


Neuromorphic spintronics. _Nat. Electron._ 3, 360–370 (2020). Article  Google Scholar  * Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices.


_Nanotechnology_ 28, 08LT02 (2017). Article  Google Scholar  * Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Spin-based neuron model with domain-wall magnets as synapse. _IEEE


Trans. Nanotechnol._ 11, 843–853 (2012). Article  MATH  Google Scholar  * Chen, R. et al. Nanoscale room-temperature multilayer skyrmionic synapse for deep spiking neural networks. _Phys.


Rev. Appl._ 14, 014096 (2020). Article  Google Scholar  * Pinna, D. et al. Skyrmion gas manipulation for probabilistic computing. _Phys. Rev. Appl._ 9, 064018 (2018). Article  MATH  Google


Scholar  * Zázvorka, J. et al. Thermal skyrmion diffusion used in a reshuffler device. _Nat. Nanotechnol._ 14, 658–661 (2019). Article  MATH  Google Scholar  * Prychynenko, D. et al.


Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. _Phys. Rev. Appl._ 9, 014034 (2018). Article  Google Scholar  * Raab, K. et al.


Brownian reservoir computing realized using geometrically confined skyrmion dynamics. _Nat. Commun._ 13, 6982 (2022). Article  MATH  Google Scholar  * Yokouchi, T. et al. Pattern recognition


with neuromorphic computing using magnetic field–induced dynamics of skyrmions. _Sci. Adv._ 8, eabq5652 (2023). Article  MATH  Google Scholar  * Sun, Y. et al. Experimental demonstration of


a skyrmion-enhanced strain-mediated physical reservoir computing system. _Nat. Commun._ 14, 3434 (2023). Article  MATH  Google Scholar  * Frenkel, C., Lefebvre, M., Legat, J.-D. & Bol,


D. A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. _IEEE Trans. Biomed. Circuits Syst._ 13, 145–158 (2019). Google


Scholar  * Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. _J. Cerebr. Blood Flow Metab._ 21, 1133–1145 (2001). Article  MATH  Google


Scholar  * Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. _Neuron_ 75, 762–777 (2012). Article  MATH  Google Scholar  * Chanaday, N. L., Cousin, M. A.,


Milosevic, I., Watanabe, S. & Morgan, J. R. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. _J. Neurosci._ 39, 8209–8216 (2019). Article  Google Scholar


  * Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. _Nat. Commun._ 12, 1562 (2021). Article  MATH  Google Scholar  * Grelier, M. et al. Three-dimensional


skyrmionic cocoons in magnetic multilayers. _Nat. Commun._ 13, 6843 (2022). Article  MATH  Google Scholar  * Krishnia, S. et al. Large interfacial Rashba interaction generating strong


spin–orbit torques in atomically thin metallic heterostructures. _Nano Lett._ 23, 6785–6791 (2023). Article  MATH  Google Scholar  * Jiang, W. et al. Direct observation of the skyrmion Hall


effect. _Nat. Phys._ 13, 162–169 (2017). Article  MATH  Google Scholar  * Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. _Nat. Nanotechnol._ 8, 152–156 (2013). Article  MATH 


Google Scholar  * He, B. et al. All-electrical 9-bit skyrmion-based racetrack memory designed with laser irradiation. _Nano Lett._ 23, 9482–9490 (2023). * Figueiredo-Prestes, N. et al.


Magnetization switching and deterministic nucleation in Co/Ni multilayered disks induced by spin-orbit torques. _Appl. Phys. Lett._ 119, 032410 (2021). Article  Google Scholar  * Ambrogio,


S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. _Nature_ 620, 768–775 (2023). Article  MATH  Google Scholar  * Torrejon, J. et al. Neuromorphic


computing with nanoscale spintronic oscillators. _Nature_ 547, 428–431 (2017). Article  MATH  Google Scholar  * Azghadi, M. R. et al. Hardware implementation of deep network accelerators


towards healthcare and biomedical applications. _IEEE Trans. Biomed. Circuits Syst._ 14, 1138–1159 (2020). Article  MATH  Google Scholar  * Krishnia, S. et al. Quantifying the large


contribution from orbital Rashba-Edelstein effect to the effective damping-like torque on magnetization. _APL Mater._ 12, 051105 (2024). Article  MATH  Google Scholar  * Schott, M. et al.


The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. _Nano Lett._ 17, 3006–3012 (2017). Article  MATH  Google Scholar  * Bhattacharya, D. et al. Creation


and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. _Nat. Electron._ 3, 539–545 (2020). Article  MATH  Google Scholar  * Bernand-Mantel,


A. et al. Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet. _Appl. Phys. Lett._ 102, 122406 (2013). Article  MATH  Google Scholar  * Bauer, U. et al.


Magneto-ionic control of interfacial magnetism. _Nat. Mater._ 14, 174–181 (2015). Article  MATH  Google Scholar  * Herrera Diez, L. et al. Nonvolatile ionic modification of the


Dzyaloshinskii-Moriya interaction. _Phys. Rev. Appl._ 12, 034005 (2019). Article  MATH  Google Scholar  * Srivastava, T. et al. Large-voltage tuning of Dzyaloshinskii–Moriya interactions: a


route toward dynamic control of skyrmion chirality. _Nano Lett._ 18, 4871–4877 (2018). Article  MATH  Google Scholar  * Fillion, C.-E. et al. Gate-controlled skyrmion and domain wall


chirality. _Nat. Commun._ 13, 5257 (2022). Article  MATH  Google Scholar  * Dai, B. et al. Electric field manipulation of spin chirality and skyrmion dynamic. _Sci. Adv._ 9, eade6836 (2023).


Article  Google Scholar  * Mishra, R., Kumar, D. & Yang, H. Oxygen-migration-based spintronic device emulating a biological synapse. _Phys. Rev. Appl._ 11, 054065 (2019). Article  MATH


  Google Scholar  * da Câmara Santa Clara Gomes, T. et al. Control of the magnetic anisotropy in multirepeat Pt/Co/Al heterostructures using magnetoionic gating. _Phys. Rev. Appl._ 21,


024010 (2024). Article  MATH  Google Scholar  * Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. _Nat. Mater._ 19, 34–42


(2020). Article  MATH  Google Scholar  * Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. _Phys. Rev. Appl._ 12, 044007 (2019).


Article  MATH  Google Scholar  * Litzius, K. et al. The role of temperature and drive current in skyrmion dynamics. _Nat. Electron._ 3, 30–36 (2020). Article  Google Scholar  * He, Z. &


Fan, D. A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network. In _Design, Automation & Test in Europe Conference & Exhibition (DATE) 2017_


350–355 (IEEE, 2017). * Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read and write. _Nat. Electron._ 4, 392–398 (2021). Article  Google Scholar  * da


Câmara Santa Clara Gomes, T. et al. Data for: Neuromorphic weighted sums with magnetic skyrmions. _Zenodo_ https://doi.org/10.5281/zenodo.13988409 (2024). Download references


ACKNOWLEDGEMENTS This work is supported by the Horizon 2020 Framework Program of the European Commission under FET-Proactive Grant SKYTOP (no. 824123), by the European Research Council


advanced grant GrenaDyn (reference no. 101020684), by the EU project SkyANN (reference no. 101135729) and from a France 2030 government grant managed by the French National Research Agency


(grant no. ANR-22-EXSP-0002 PEPR SPIN CHIREX). AUTHOR INFORMATION Author notes * Tristan da Câmara Santa Clara Gomes Present address: Institute of Condensed Matter and Nanosciences,


Université Catholique de Louvain, Louvain-la-Neuve, Belgium AUTHORS AND AFFILIATIONS * Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France Tristan da Câmara


Santa Clara Gomes, Yanis Sassi, Dédalo Sanz-Hernández, Sachin Krishnia, Sophie Collin, Marie-Blandine Martin, Pierre Seneor, Vincent Cros, Julie Grollier & Nicolas Reyren Authors *


Tristan da Câmara Santa Clara Gomes View author publications You can also search for this author inPubMed Google Scholar * Yanis Sassi View author publications You can also search for this


author inPubMed Google Scholar * Dédalo Sanz-Hernández View author publications You can also search for this author inPubMed Google Scholar * Sachin Krishnia View author publications You can


also search for this author inPubMed Google Scholar * Sophie Collin View author publications You can also search for this author inPubMed Google Scholar * Marie-Blandine Martin View author


publications You can also search for this author inPubMed Google Scholar * Pierre Seneor View author publications You can also search for this author inPubMed Google Scholar * Vincent Cros


View author publications You can also search for this author inPubMed Google Scholar * Julie Grollier View author publications You can also search for this author inPubMed Google Scholar *


Nicolas Reyren View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.-B.M., P.S., V.C., J.G. and N.R. conceived the project. N.R., D.S.-H.,


Y.S. and T.d.C.S.C.G. designed the measurement procedure. S.C., Y.S. and T.d.C.S.C.G. grew the multilayer films and Ta electrodes. T.d.C.S.C.G. patterned the samples, acquired the


magneto-optic Kerr effect and transport data, treated and analysed the data with support from Y.S., D.S.-H., S.K., M.-B.M., P.S., V.C., J.G. and N.R. T.d.C.S.C.G., V.C., J.G. and N.R.


prepared the manuscript. All authors discussed and commented on the manuscript. CORRESPONDING AUTHORS Correspondence to Tristan da Câmara Santa Clara Gomes, Vincent Cros, Julie Grollier or


Nicolas Reyren. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Electronics_ thanks Jayasimha Atulasimha and


the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Notes 1–11, Figs. 1–13 and discussion. RIGHTS AND


PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s);


author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE da Câmara Santa Clara Gomes, T., Sassi, Y., Sanz-Hernández, D. _et al._ Neuromorphic weighted sums with magnetic skyrmions. _Nat Electron_ 8, 204–214 (2025).


https://doi.org/10.1038/s41928-024-01303-z Download citation * Received: 31 October 2023 * Accepted: 05 November 2024 * Published: 06 January 2025 * Issue Date: March 2025 * DOI:


https://doi.org/10.1038/s41928-024-01303-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative