Enantioselective c–h functionalization of bicyclo[1. 1. 1]pentanes

Enantioselective c–h functionalization of bicyclo[1. 1. 1]pentanes

Play all audios:

Loading...

ABSTRACT Bicyclo[1.1.1]pentanes (BCPs) are highly strained carbocycles that have fascinated the chemical community for decades because of their unique structure. Despite the immense interest


in this scaffold and extensive synthetic efforts, the construction of BCP derivatives still relies substantially on the manipulation of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate.


Furthermore, BCPs that contain a proximal stereocentre are underrepresented in the literature and their generation requires stoichiometric chiral auxiliaries. Here we explore


enantioselective C–H functionalization of BCPs as a conceptually innovative strategy that provides access to chiral substituted BCPs. For this purpose, enantioselective intermolecular _sp_3


C–H insertion reactions of donor/acceptor diazo compounds catalysed by the chiral dirhodium complex, Rh2(TCPTAD)4, were employed to forge new C–C bonds at the tertiary position of a variety


of BCPs. This work also establishes that highly strained molecules can undergo direct C–H insertion without losing the integrity of their carbocyclic framework. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles


$119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


DIFUNCTIONALIZATION OF BICYCLO[1.1.0]BUTANES ENABLED BY MERGING C−C CLEAVAGE AND RUTHENIUM-CATALYSED REMOTE C−H ACTIVATION Article Open access 17 February 2025 ASYMMETRIC SYNTHESIS OF


ATROPISOMERS FEATURING CYCLOBUTANE BORONIC ESTERS FACILITATED BY RING-STRAINED B-ATE COMPLEXES Article Open access 30 December 2024 ENANTIOSELECTIVE SYNTHESIS OF 2-SUBSTITUTED


BICYCLO[1.1.1]PENTANES VIA SEQUENTIAL ASYMMETRIC IMINE ADDITION OF BICYCLO[1.1.0]BUTANES AND SKELETAL EDITING Article 28 January 2025 DATA AVAILABILITY Crystallographic data for the


structures reported in this Letter have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. 1906391 and 1906395. Copies of the data can be obtained free of


charge via www.ccdc.cam.ac.uk/data_request/cif. Complete experimental procedures and compound characterization data are available in the Supplementary Information; any other data is


available from the authors on request. REFERENCES * Levin, M. D., Kaszynski, P. & Michl, J. Bicyclo[1.1.1]pentanes, [_n_]staffanes, [1.1.1]propellanes, and tricyclo[2.1.0.02,5]pentanes.


_Chem. Rev._ 100, 169–234 (2000). CAS  PubMed  Google Scholar  * Wiberg, K. B. The concept of strain in organic chemistry. _Angew. Chem. Int. Ed._ 25, 312–322 (1986). Google Scholar  *


Locke, G. M., Bernhard, S. S. R. & Senge, M. O. Nonconjugated hydrocarbons as rigid-linear motifs: isosteres for material sciences and bioorganic and medicinal _Chemistry. Chem. Eur. J._


25, 4590-4647 (2018). * Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. _Synlett_ 30, 1–11 (2019). CAS  Google Scholar  * Stepan, A. F.


et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. _J. Med. Chem._ 55,


3414–3424 (2012). CAS  PubMed  Google Scholar  * Westphal, M. V., Wolfstädter, B. T., Plancher, J.-M., Gatfield, J. & Carreira, E. M. Evaluation of _tert_-butyl isosteres: case studies


of physicochemical and pharmacokinetic properties, efficacies, and activities. _ChemMedChem_ 10, 461–469 (2015). CAS  PubMed  Google Scholar  * Makarov, I. S., Brocklehurst, C. E.,


Karaghiosoff, K., Koch, G. & Knochel, P. Synthesis of bicyclo[1.1.1]pentane bioisosteres of internal alkynes and _para_‐disubstituted benzenes from [1.1.1]propellane. _Angew. Chem. Int.


Ed._ 56, 12774–12777 (2017). CAS  Google Scholar  * Barbachyn, M. R. et al. U-87947E, a protein quinolone antibacterial agent incorporating a bicyclo[1.1.1]pent-1-yl (BCP) subunit. _Bioorg.


Medicinal Chem. Lett._ 3, 671–676 (1993). CAS  Google Scholar  * Goh, Y. L., Cui, Y. T., Pendharkar, V. & Adsool, V. A. Toward resolving the resveratrol conundrum: synthesis and in vivo


pharmacokinetic evaluation of BCP–resveratrol. _ACS Med. Chem. Lett_. 8, 516−520 (2017). * Measom, N. D. et al. Investigation of a bicyclo[1.1.1]pentane as a phenyl replacement within an


LpPLA2 Inhibitor. _ACS Med. Chem. Lett._ 8, 43–48 (2017). CAS  PubMed  Google Scholar  * Kaszynski, P., Friedli, A. & Michl, J. Toward a molecular-size tinkertoy construction set.


Preparation of terminally functionalized [n]staffanes from [1.1.1]propellane. _J. Am. Chem. Soc._ 114, 601–620 (1992). CAS  Google Scholar  * Wiberg, K. B. & Connor, D. S.


Bicyclo[1.1.1]pentane. _J. Am. Chem. Soc._ 88, 4437–4441 (1966). CAS  Google Scholar  * Wiberg, K. B. & Waddell, S. T. Reactions of [1.1.1]propellane. _J. Am. Chem. Soc._ 112, 2194–2216


(1990). CAS  Google Scholar  * Bunker, K. D., Sach, N. W., Huang, Q. & Richardson, P. F. Scalable synthesis of 1-bicyclo[1.1.1]pentylamine via a hydrohydrazination reaction. _Org. Lett._


13, 4746–4748 (2011). CAS  PubMed  Google Scholar  * Goh, Y. L. et al. A new route to bicyclo[1.1.1]pentan-1-amine from 1-azido-3- iodobicyclo[1.1.1]pentane. _Org. Lett._ 16, 1884–1887


(2014). CAS  PubMed  Google Scholar  * Kanazawa, J., Maeda, K. & Uchiyama, M. Radical multicomponent carboamination of [1.1.1]propellane. _J. Am. Chem. Soc._ 139, 17791–17794 (2017). CAS


  PubMed  Google Scholar  * Gianatassio, R. et al. Strain-release amination. _Science_ 351, 241–246 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Lopchuk, J. M. et al.


Strain-release heteroatom functionalization: development, scope, and stereospecificity. _J. Am. Chem. Soc._ 139, 3209–3226 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Della, E. W.


& Taylor, D. K. Synthesis of some bridgehead–bridgehead-disubstituted bicyclo[1.1.1]pentanes. _J. Org. Chem._ 59, 2986–2996 (1994). CAS  Google Scholar  * Rehm, J. D. D., Ziemer, B.


& Szeimies, G. A facile route to bridgehead disubstituted bicyclo[1.1.1]pentanes involving palladium-catalyzed cross-coupling reactions. _Eur. J. Org. Chem_. 1999, 2079–2085 (1999). *


Messner, M., Kozhushkov, S. I. & de Meijere, A. Nickel- and palladium-catalyzed cross-coupling reactions at the bridgehead of bicyclo[1.1.1]pentane derivatives—a convenient access to


liquid crystalline compounds containing bicyclo[1.1.1]pentane moieties. _Eur. J. Org. Chem_. 2000, 1137–1155 (2000). * Matos, J. L. M., Vásquez-Céspedes, S., Gu, J., Oguma, T. & Shenvi,


R. A. Branch-selective addition of unactivated olefins into imines and aldehydes. _J. Am. Chem. Soc._ 140, 16976–16981 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Caputo, D. F. J.


et al. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. _Chem. Sci._ 9, 5295–5300 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Schelp, R. A. & Walsh, P. J. Synthesis of BCP benzylamines from 2-azaallyl anions and [1.1.1]propellane. _Angew. Chem. Int. Ed_. 55, 15857–15861 (2018). * Ni, S. et al. A general amino


acid synthesis enabled by innate radical cross-coupling. _Angew. Chem. Int. Ed._ 57, 14560–14565 (2018). CAS  Google Scholar  * Pellicciari, R. et al.


(S)-(+)-2-(3'-Carboxybicyclo[1.1.1]pentyl)-glycine, a structurally new group I metabotropic glutamate receptor antagonist. _J. Med. Chem._ 39, 2874–2876 (1996). CAS  PubMed  Google


Scholar  * Pritz, S., Pätzel, M., Szeimies, G., Dathe, M. & Bienert, M. Synthesis of a chiral amino acid with bicyclo[1.1.1]pentane moiety and its incorporation into linear and cyclic


antimicrobial peptides. _Org. Biomol. Chem._ 5, 1789–1794 (2007). CAS  PubMed  Google Scholar  * Filosa, R. et al. Design, synthesis and biological evaluation of novel


bicyclo[1.1.1]pentane-based omega-acidic amino acids as glutamate receptors ligands. _Bioorg. Medicinal Chem._ 17, 242–250 (2009). CAS  Google Scholar  * Kokhan, S. O. et al. Design,


synthesis, and application of an optimized monofluorinated aliphatic label for peptide studies by solid-state 19F NMR spectroscopy. _Angew. Chem. Int. Ed._ 55, 14788–14792 (2016). CAS 


Google Scholar  * Mikhailiuk, P. K. et al. Conformationally rigid trifluoromethyl-substituted α-amino acid designed for peptide structure analysis by solid-state 19F NMR spectroscopy.


_Angew. Chem. Int. Ed._ 45, 5659–5661 (2006). CAS  Google Scholar  * Wong, M. L. J., Mousseau, J. J., Mansfield, S. J. & Anderson, E. A. Synthesis of enantioenriched α-chiral


bicyclo[1.1.1]pentanes. _Org. Lett_. 7, 2408–2411 (2019). * Wiberg K. B. & Williams, V. Z. Jr. Bicyclo[1.1.1]pentane derivatives. _J. Org. Chem._ 35, 366–369 (1970). Google Scholar  *


Della, E. W., Grob, C. A. & Taylor, D. K. Bridgehead carbocations: a solvolytic study of 1-bromobicyclo[1.1.1]pentane and its bridgehead-substituted derivatives. _J. Am. Chem. Soc._ 116,


6159–6166 (1994). CAS  Google Scholar  * Gutekunst, W. R. & Baran, P. S. C–H Functionalization logic in total synthesis. _Chem. Soc. Rev._ 40, 1976–1991 (2011). CAS  PubMed  Google


Scholar  * Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. _Chem. Soc.


Rev._ 40, 1857–1869 (2011). CAS  PubMed  Google Scholar  * Guptill, D. M. & Davies, H. M. L. 2,2,2-Trichloroethyl aryldiazoacetates as robust reagents for the enantioselective C–H


functionalization of methyl ethers. _J. Am. Chem. Soc._ 136, 17718–17721 (2014). CAS  PubMed  Google Scholar  * Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L.


Site-selective and stereoselective functionalization of unactivated C–H bonds. _Nature_ 533, 230–234 (2016). CAS  PubMed  Google Scholar  * Liao, K. et al. Site-selective and stereoselective


functionalization of non-activated tertiary C–H bonds. _Nature_ 551, 609–613 (2017). CAS  PubMed  Google Scholar  * Liao, K. et al. Design of catalysts for site-selective and


enantioselective functionalization of non-activated primary C–H bonds. _Nat. Chem._ 10, 1048–1055 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Liu, W. et al. Catalyst-controlled


selective functionalization of unactivated C–H bonds in the presence of electronically activated C–H bonds. _J. Am. Chem. Soc._ 140, 12247–12255 (2018). CAS  PubMed  Google Scholar  * Fu,


J., Ren, Z., Bacsa, J., Musaev, D. G. & Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. _Nature_ 564, 395–399 (2018). CAS  PubMed 


Google Scholar  * Qin, C. & Davies, H. M. L. Role of sterically demanding chiral dirhodium catalysts in site-selective C–H functionalization of activated primary C–H bonds. _J. Am. Chem.


Soc._ 136, 9792–9796 (2014). CAS  PubMed  Google Scholar  * Auberson, Y. P. et al. Improving nonspecific binding and solubility: bicycloalkyl groups and cubanes as para-phenyl bioisosteres.


_ChemMedChem_ 12, 590–598 (2017). CAS  PubMed  Google Scholar  * _Biphenyl-4-yl(phenyl)acetic Acid_ Section 7 (PubChem, accessed 7 November 2018);


https://pubchem.ncbi.nlm.nih.gov/compound/226171#section=Biological-Test-Results * _2-Phenyl-2-(4-phenylphenyl)ethanamine_ Section 6 (PubChem, acessed 7 November 2018);


https://pubchem.ncbi.nlm.nih.gov/compound/44719858#section=BioAssay-Results * Davies, H. M. L., Hansen, T. & Churchill, M. R. Catalytic asymmetric C–H activation of alkanes and


tetrahydrofuran. _J. Am. Chem. Soc._ 122, 3063–3070 (2000). CAS  Google Scholar  * Della, E. W. & Schiesser, C. H. Hyperconjugation in strained bridgehead cyclobutyl cations: an ab


initio study of bicyclo[1.1.1]pent-1-yl cubyl and norcubyl cations. _J. Chem. Soc. Chem. Commun._ 1994, 417–419 (1994). Google Scholar  * Wiberg, K. B. & McMurdie, N. Formation and


reactions of bicyclo[1.1.1]pentyl-1 cations. _J. Am. Chem. Soc._ 116, 11990–11998 (1994). CAS  Google Scholar  * Wiberg, K. B. & McMurdie, N. Mechanism of the solvolysis of


bicyclo[1.1.1]pentyl-1 derivatives. _J. Org. Chem._ 58, 5603–5604 (1993). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the NSF under the Center for


C–H Functionalization (grant no. CHE-1700982) and the NIGMS of the NIH under award nos. F32GM130020 (Z.J.G.) and F32GM122218 (J.N.S.). The content is solely the responsibility of the authors


and does not necessarily represent the views of the NSF or NIH. Additional financial support was provided by Novartis. Instrumentation used in this work was supported by the National


Science Foundation (grant nos. CHE 1531620 and CHE 1626172). Computational resources were provided by the UCLA Institute for Digital Research and Education (IDRE). We wish to thank the


members of the NSF Center for C–H Functionalization (grant no. CHE-1700982), especially J.Du. Bois . and N. Chiappini, for helpful discussions regarding this work. We thank J. Bacsa and T.


Pickel at the Emory X-ray Crystallography Facility for the X-ray structural analysis. We thank S. Skolnik and J. Poirier at the Novartis Institutes for BioMedical Research for carrying out


solubility and logD measurements. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemistry, Emory University, Atlanta, GA, USA Zachary J. Garlets & Huw M. L. Davies *


Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA Jacob N. Sanders & K. N. Houk * Novartis Institutes for Biomedical Research Inc., Cambridge, MA,


USA Hasnain Malik & Christian Gampe Authors * Zachary J. Garlets View author publications You can also search for this author inPubMed Google Scholar * Jacob N. Sanders View author


publications You can also search for this author inPubMed Google Scholar * Hasnain Malik View author publications You can also search for this author inPubMed Google Scholar * Christian


Gampe View author publications You can also search for this author inPubMed Google Scholar * K. N. Houk View author publications You can also search for this author inPubMed Google Scholar *


Huw M. L. Davies View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Z.J.G. performed the synthetic experiments. J.N.S. and K.N.H. conducted


the computational studies. H.M. and C.G. evaluated the biologically relevant compounds and conducted the comparison studies. Z.J.G. and H.M.L.D. designed and analysed the synthetic


experiments and prepared the manuscript. All authors contributed to the final draft of the manuscript. CORRESPONDING AUTHOR Correspondence to Huw M. L. Davies. ETHICS DECLARATIONS COMPETING


INTERESTS H.M.L.D. is a named inventor on a patent entitled ‘Dirhodium catalyst compositions and synthetic processes related thereto’ (US 8,974,428, issued 10 March 2015). The other authors


declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Figs. 1–3, Tables 1–16 and references. COMPOUND 8D Crystallographic Data for Compound 8d. COMPOUND 29


Crystallographic Data for Compound 29. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Garlets, Z.J., Sanders, J.N., Malik, H. _et al._ Enantioselective


C–H functionalization of bicyclo[1.1.1]pentanes. _Nat Catal_ 3, 351–357 (2020). https://doi.org/10.1038/s41929-019-0417-1 Download citation * Received: 08 April 2019 * Accepted: 09 December


2019 * Published: 27 January 2020 * Issue Date: April 2020 * DOI: https://doi.org/10.1038/s41929-019-0417-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read


this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative