Quantifying the spatial homogeneity of urban road networks via graph neural networks

Quantifying the spatial homogeneity of urban road networks via graph neural networks

Play all audios:

Loading...

ABSTRACT Quantifying the topological similarities of different parts of urban road networks enables us to understand urban growth patterns. Although conventional statistics provide useful


information about the characteristics of either a single node’s direct neighbours or the entire network, such metrics fail to measure the similarities of subnetworks or capture local,


indirect neighbourhood relationships. Here we propose a graph-based machine learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road


networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intracity spatial homogeneity is highly


associated with socioeconomic status indicators such as gross domestic product and population growth. Moreover, intercity spatial homogeneity values obtained by transferring the model across


different cities reveal the intercity similarity of urban network structures originating in Europe, passed on to cities in the United States and Asia. The socioeconomic development and


intercity similarity revealed using our method can be leveraged to understand and transfer insights between cities. It also enables us to address urban policy challenges including network


planning in rapidly urbanizing areas and regional inequality. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant


access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions *


Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS URBANITY: AUTOMATED MODELLING AND ANALYSIS OF MULTIDIMENSIONAL NETWORKS IN CITIES Article Open access 25 July


2023 NEURAL EMBEDDINGS OF URBAN BIG DATA REVEAL SPATIAL STRUCTURES IN CITIES Article Open access 14 March 2024 QUANTIFYING THE NON-ISOMORPHISM OF GLOBAL URBAN ROAD NETWORKS USING GNNS AND


GRAPH KERNELS Article Open access 22 February 2025 DATA AVAILABILITY We used the publicly available road network data from OpenStreetMap (https://www.openstreetmap.org/) via the OSMnx Python


package (https://github.com/gboeing/osmnx). We also used images from Google Maps (https://www.google.com/maps) to validate the node merging results. These images are also available to the


public. The population data we used comes from https://worldpopulationreview.com/, which is a visualization platform for the open datasets owned by the United Nations. The airport flow data


for 21 cities are from the 2019 Annual Airport Traffic Report at https://www.panynj.gov/airports/en/statistics-general-info.html owned by the Port Authority of New York and New Jersey and


are also publicly available. The airport flow data for the other nine cities can be accessed from links that are listed in Supplementary Section 4. Both the road network data and


socioeconomic data are available at the online data warehouse: https://github.com/jiang719/road-network-predictability.git. The data are available via Zenodo at


https://doi.org/10.5281/zenodo.5866593 (ref. 109). CODE AVAILABILITY Source codes for the training and testing results are available at the online data warehouse:


https://github.com/jiang719/road-network-predictability.git. The code is available via Zenodo at https://doi.org/10.5281/zenodo.5866593 (ref. 109). REFERENCES * Sun, L., Axhausen, K. W.,


Lee, D.-H. & Huang, X. Understanding metropolitan patterns of daily encounters. _Proc. Natl Acad. Sci. USA_ 110, 13774–13779 (2013). Article  Google Scholar  * Roth, C., Kang, S. M.,


Batty, M. & Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. _PLoS ONE_ 6, e15923 (2011). Article  Google Scholar  * SteadieSeifi, M.,


Dellaert, N. P., Nuijten, W., Van Woensel, T. & Raoufi, R. Multimodal freight transportation planning: a literature review. _Eur. J. Oper. Res._ 233, 1–15 (2014). Article  MATH  Google


Scholar  * Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. _Proc. Natl Acad. Sci. USA_ 104, 7301–7306


(2007). Article  Google Scholar  * Arcaute, E. et al. Constructing cities, deconstructing scaling laws. _J. R. Soc. Interface_ 12, 20140745 (2015). Article  Google Scholar  * Xu, Y., Olmos,


L. E., Abbar, S. & González, M. C. Deconstructing laws of accessibility and facility distribution in cities. _Sci. Adv._ 6, eabb4112 (2020). Article  Google Scholar  * Snellen, D.,


Borgers, A. & Timmermans, H. Urban form, road network type, and mode choice for frequently conducted activities: a multilevel analysis using quasi-experimental design data. _Environ.


Plan. Econ. Space_ 34, 1207–1220 (2002). Article  Google Scholar  * Wang, P., Hunter, T., Bayen, A. M., Schechtner, K. & González, M. C. Understanding road usage patterns in urban areas.


_Sci. Rep._ 2, 1001 (2012). Article  Google Scholar  * Zhan, X., Ukkusuri, S. V. & Rao, P. S. C. Dynamics of functional failures and recovery in complex road networks. _Phys. Rev. E_


96, 052301 (2017). Article  Google Scholar  * Li, D. et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks. _Proc. Natl Acad. Sci. USA_ 112, 669–672


(2015). Article  Google Scholar  * Saberi, M. et al. A simple contagion process describes spreading of traffic jams in urban networks. _Nat. Commun._ 11, 1616 (2020). Article  Google Scholar


  * Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. _Nat. Commun._ 7, 10793 (2016). Article  Google Scholar  * Zhang, L. et al. Scale-free resilience


of real traffic jams. _Proc. Natl Acad. Sci. USA_ 116, 8673–8678 (2019). Article  Google Scholar  * Foley, J. A. et al. Global consequences of land use. _Science_ 309, 570–574 (2005).


Article  Google Scholar  * Strano, E. et al. The scaling structure of the global road network. _R. Soc. Open Sci._ 4, 170590 (2017). Article  Google Scholar  * Molinero, C., Murcio, R. &


Arcaute, E. The angular nature of road networks. _Sci. Rep._ 7, 4312 (2017). Article  Google Scholar  * Kalapala, V., Sanwalani, V., Clauset, A. & Moore, C. Scale invariance in road


networks. _Phys. Rev. E_ 73, 026130 (2006). Article  Google Scholar  * Porta, S., Crucitti, P. & Latora, V. The network analysis of urban streets: a dual approach. _Phys. A_ 369, 853–866


(2006). Article  MATH  Google Scholar  * Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. _Phys. Rev. E_ 73, 036125 (2006). Article  MATH 


Google Scholar  * Kirkley, A., Barbosa, H., Barthelemy, M. & Ghoshal, G. From the betweenness centrality in street networks to structural invariants in random planar graphs. _Nat.


Commun._ 9, 2501 (2018). Article  Google Scholar  * Jiang, B. & Claramunt, C. Topological analysis of urban street networks. _Environ. Plan. B_ 31, 151–162 (2004). Article  Google


Scholar  * Louf, R. & Barthelemy, M. A typology of street patterns. _J. R. Soc. Interface_ 11, 20140924 (2014). Article  Google Scholar  * Lee, M., Barbosa, H., Youn, H., Holme, P. &


Ghoshal, G. Morphology of travel routes and the organization of cities. _Nat. Commun._ 8, 2229 (2017). Article  Google Scholar  * Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. &


Batty, M. On the problem of boundaries and scaling for urban street networks. _J. R. Soc. Interface_ 12, 20150763 (2015). Article  Google Scholar  * Lämmer, S., Gehlsen, B. & Helbing, D.


Scaling laws in the spatial structure of urban road networks. _Phys. A_ 363, 89–95 (2006). Article  Google Scholar  * Depersin, J. & Barthelemy, M. From global scaling to the dynamics


of individual cities. _Proc. Natl Acad. Sci. USA_ 115, 2317–2322 (2018). Article  Google Scholar  * Thadakamalla, H. P., Albert, R. & Kumara, S. R. T. Search in weighted complex


networks. _Phys. Rev. E_ 72, 066128 (2005). Article  Google Scholar  * Jeong, J. & Berman, P. Low-cost search in scale-free networks. _Phys. Rev. E_ 75, 036104 (2007). Article  Google


Scholar  * Ahmadzai, F., Rao, K. M. L. & Ulfat, S. Assessment and modelling of urban road networks using integrated graph of natural road network (a GIS-based approach). _J. Urban


Manag._ 8, 109–125 (2019). Article  Google Scholar  * Nigam, R., Sharma, D. K., Jain, S. & Srivastava, G. A local betweenness centrality based forwarding technique for social


opportunistic IoT networks. _Mob. Netw. Appl_. https://doi.org/10.1007/s11036-021-01820-7 (2021). * Porta, S. et al. Street centrality and the location of economic activities in Barcelona.


_Urban Stud._ 49, 1471–1488 (2012). Article  Google Scholar  * Mahyar, H., Hasheminezhad, R. & Stanley, H. E. Compressive closeness in networks. _Appl. Netw. Sci._ 4, 100 (2019). Article


  Google Scholar  * Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. _J. R. Soc. Interface_ 10, 20130246 (2013). Article


  Google Scholar  * Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. _Proc. Natl Acad. Sci. USA_ 116, 19368–19373


(2019). Article  Google Scholar  * Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. _Proc. Natl Acad. Sci. USA_


115, E11221–E11230 (2018). Article  Google Scholar  * Chandra, A. & Thompson, E. Does public infrastructure affect economic activity? _Reg. Sci. Urban Econ._ 30, 457–490 (2000). Article


  Google Scholar  * Molinero, C. & Thurner, S. How the geometry of cities determines urban scaling laws. _J. R. Soc. Interface_ 18, 20200705 (2021). rsif.2020.0705. Article  Google


Scholar  * Currid, E. & Williams, S. Two cities, five industries: similarities and differences within and between cultural industries in New York and Los Angeles. _J. Plan. Educ. Res._


29, 322–335 (2010). Article  Google Scholar  * Cheng, F., Kovács, I. A. & Barabási, A.-L. Network-based prediction of drug combinations. _Nat. Commun._ 10, 1197 (2019). Article  Google


Scholar  * Jalili, M., Orouskhani, Y., Asgari, M., Alipourfard, N. & Perc, M. Link prediction in multiplex online social networks. _R. Soc. Open Sci._ 4, 160863 (2017). Article 


MathSciNet  Google Scholar  * Lerique, S., Abitbol, J. L. & Karsai, M. Joint embedding of structure and features via graph convolutional networks. _Appl. Netw. Sci._ 5, 5 (2020). Article


  Google Scholar  * Ren, Y., Ercsey-Ravasz, M., Wang, P., González, M. C. & Toroczkai, Z. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges.


_Nat. Commun._ 5, 5347 (2014). Article  Google Scholar  * Teney, D., Liu, L. & Van Den Hengel, A. Graph-structured representations for visual question answering. In _2017 IEEE Conference


on Computer Vision and Pattern Recognition_ 2017, 3233–3241 (IEEE, 2017); https://doi.org/10.1109/CVPR.2017.344 * Wu, N., Zhao, X. W., Wang, J. & Pan, D. Learning effective road network


representation with hierarchical graph neural networks. In _Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining_ 6–14 (ACM, 2020);


https://doi.org/10.1145/3394486.3403043 * Gebru, T. et al. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. _Proc.


Natl Acad. Sci. USA_ 114, 13108–13113 (2017). Article  Google Scholar  * Abitbol, J. L. & Karsai, M. Interpretable socioeconomic status inference from aerial imagery through urban


patterns. _Nat. Mach. Intell._ 2, 684–692 (2020). Article  Google Scholar  * Kempinska, K. & Murcio, R. Modelling urban networks using variational autoencoders. _Appl. Netw. Sci._ 4, 114


(2019). Article  Google Scholar  * Peng, X., Chen, X. & Cheng, Y. _Urbanization and its Consequences_ (Eolss, 2011). * Hanson, S. _The Geography of Urban Transportation_ (Guilford,


2004). * Cook, I. R. Mobilising urban policies: the policy transfer of US business improvement districts to England and Wales. _Urban Stud._ 45, 773–795 (2008). Article  Google Scholar  *


Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M. & Clauset, A. Stacking models for nearly optimal link prediction in complex networks. _Proc. Natl Acad. Sci. USA_ 117,


23393–23400 (2020). Article  Google Scholar  * Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. _Nature_ 453, 98–101


(2008). Article  Google Scholar  * Stanfield, Z., Coskun, M. & Koyuturk, M. Drug response prediction as a link prediction problem. In _Proc. 8th ACM International Conference on


Bioinformatics, Computational Biology, and Health Informatics_ 638–638 (ACM, 2017); https://doi.org/10.1145/3107411.3107459 * Schlichtkrull, M. et al. in _The Semantic Web_ Vol. 10843 (eds


Gangemi, A. et al.) 593–607 (Springer International, 2018). * Barrington-Leigh, C. & Millard-Ball, A. A global assessment of street-network sprawl. _PLoS ONE_ 14, e0223078 (2019).


Article  Google Scholar  * Barrington-Leigh, C. & Millard-Ball, A. Global trends toward urban street-network sprawl. _Proc. Natl Acad. Sci. USA_ 117, 1941–1950 (2020). Article  Google


Scholar  * Hammack, D. C., Weighley, R. F. & Lukacs, J. Philadelphia: a 300-year history. _Am. Hist. Rev._ 89, 878 (1984). Article  Google Scholar  * Barthelemy, M., Bordin, P.,


Berestycki, H. & Gribaudi, M. Self-organization versus top-down planning in the evolution of a city. _Sci. Rep._ 3, 2153 (2013). Article  Google Scholar  * Peterson, J. A. The birth of


organized city planning in the United States, 1909–1910. _J. Am. Plann. Assoc._ 75, 123–133 (2009). Article  Google Scholar  * Boeing, G. A multi-scale analysis of 27,000 urban street


networks: every US city, town, urbanized area, and Zillow neighborhood. _Environ. Plan. B_ 47, 590–608 (2020). Google Scholar  * Wang, J. Resilience of self-organised and top-down planned


cities—a case study on London and Beijing street networks. _PLoS ONE_ 10, e0141736 (2015). Article  Google Scholar  * Giacomin, D. J. & Levinson, D. M. Road network circuity in


metropolitan areas. _Environ. Plan. B_ 42, 1040–1053 (2015). Article  Google Scholar  * Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O. & Bettencourt, L. M. A. The pre-history of urban


scaling. _PLoS ONE_ 9, e87902 (2014). Article  Google Scholar  * Whittemore, A. H. Zoning Los Angeles: a brief history of four regimes. _Plan. Perspect._ 27, 393–415 (2012). Article  Google


Scholar  * Endoh, T. Historical review of reclamation works in Tokyo port area. _J. Geogr. Chigaku Zasshi_ 113, 534–538 (2004). Article  Google Scholar  * Bettencourt, L. M. A. Urban growth


and the emergent statistics of cities. _Sci. Adv._ 6, eaat8812 (2020). Article  Google Scholar  * Wei, Y., Zheng, Y. & Yang, Q. Transfer knowledge between cities. In _Proc. 22nd ACM


SIGKDD International Conference on Knowledge Discovery and Data Mining_ 1905–1914 (ACM, 2016); https://doi.org/10.1145/2939672.2939830 * Dai, W., Jin, O., Xue, G.-R., Yang, Q. & Yu, Y.


EigenTransfer: a unified framework for transfer learning. In _Proc. 26th Annual International Conference on Machine Learning_ 193–200 (ACM, 2009); https://doi.org/10.1145/1553374.1553399 *


Dong, L., Ratti, C. & Zheng, S. Predicting neighborhoods’ socioeconomic attributes using restaurant data. _Proc. Natl Acad. Sci. USA_ 116, 15447–15452 (2019). Article  Google Scholar  *


Mandelbrot, B. B. _The Fractal Geometry of Nature_ (W.H. Freeman, 1982). * Falconer, K. J. _Techniques in Fractal Geometry_ (Wiley, 1997). * Meakin, P. Formation of fractal clusters and


networks by irreversible diffusion-limited aggregation. _Phys. Rev. Lett._ 51, 1119–1122 (1983). Article  Google Scholar  * Batty, M. & Longley, P. A. _Fractal Cities: A Geometry of Form


and Function_ (Academic, 1994). * Sidqi, Y., Thomas, I., Frankhauser, P. & Retière, N. Comparing fractal indices of electric networks to roads and buildings: the case of Grenoble


(France). _Phys. Stat. Mech. Appl._ 531, 121774 (2019). Article  Google Scholar  * Ariza-Villaverde, A. B., Jiménez-Hornero, F. J. & Ravé, E. G. D. Multifractal analysis of axial maps


applied to the study of urban morphology. _Comput. Environ. Urban Syst._ 38, 1–10 (2013). Article  Google Scholar  * Makse, H. A., Andrade, J. S., Batty, M., Havlin, S. & Stanley, H. E.


Modeling urban growth patterns with correlated percolation. _Phys. Rev. E_ 58, 7054–7062 (1998). Article  Google Scholar  * Murcio, R., Masucci, A. P., Arcaute, E. & Batty, M.


Multifractal to monofractal evolution of the London street network. _Phys. Rev. E_ 92, 062130 (2015). Article  Google Scholar  * He, K., Zhang, X., Ren, S. & Sun, J. Deep residual


learning for image recognition. In _2016 IEEE Conference on Computer Vision and Pattern Recognition_ 770–778 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.90 * Chen, D. et al. Measuring


and relieving the over-smoothing problem for graph neural networks from the topological view. _Proc. AAAI Conf. Artif. Intell._ 34, 3438–3445 (2020). Google Scholar  * Berry, B., Goheen, P.


& Goldstein, H. _Metropolitan Area Definition: A Re-evaluation of Concept and Statistical Practice_ Vol. 28 (US Department of Commerce, Bureau of the Census, 1968). * Corbane, C. et al.


Automated global delineation of human settlements from 40 years of Landsat satellite data archives. _Big Earth Data_ 3, 140–169 (2019). Article  Google Scholar  * Rozenfeld, H. D. et al.


Laws of population growth. _Proc. Natl Acad. Sci. USA_ 105, 18702–18707 (2008). Article  Google Scholar  * Shen, Y. & Batty, M. Delineating the perceived functional regions of London


from commuting flows. _Environ. Plan. Econ. Space_ 51, 547–550 (2019). Article  Google Scholar  * Long, Y., Shen, Y. & Jin, X. Mapping block-level urban areas for all Chinese cities.


_Ann. Am. Assoc. Geogr._ 106, 96–113 (2016). Google Scholar  * Cao, W., Dong, L., Wu, L. & Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. _Remote


Sens. Environ._ 241, 111730 (2020). Article  Google Scholar  * Zischg, J., Klinkhamer, C., Zhan, X., Rao, P. S. C. & Sitzenfrei, R. A century of topological coevolution of complex


infrastructure networks in an Alpine city. _Complexity_ 2019, 2096749 (2019). Article  Google Scholar  * Yabe, T., Tsubouchi, K., Shimizu, T., Sekimoto, Y. & Ukkusuri, S. V. Unsupervised


translation via hierarchical anchoring: functional mapping of places across cities. In _Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining_ 2841–2851


(ACM, 2020); https://doi.org/10.1145/3394486.3403335 * Zhao, J., Li, D., Sanhedrai, H., Cohen, R. & Havlin, S. Spatio-temporal propagation of cascading overload failures in spatially


embedded networks. _Nat. Commun._ 7, 10094 (2016). Article  Google Scholar  * Loder, A., Ambühl, L., Menendez, M. & Axhausen, K. W. Understanding traffic capacity of urban networks.


_Sci. Rep._ 9, 16283 (2019). Article  Google Scholar  * Zeng, G. et al. Multiple metastable network states in urban traffic. _Proc. Natl Acad. Sci. USA_ 117, 17528–17534 (2020). Article 


Google Scholar  * Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In _Proc. of the 2019 Conference of


the North American Chapter ofthe Association for Computational Linguistics: Human Language Technologies_ 4171–4186 (NAACL-HLT, 2019); https://doi.org/10.18653/v1/n19-1423 * Zoph, B. &


Le, Q. V. Neural architecture search with reinforcement learning. _The_ _5th International Conference on Learning Representations_ (ICLR, 2017). * Zhang, X. & Zitnik, M. GNNGuard:


defending graph neural networks against adversarial attacks. In _Advances in Neural Information Processing Systems_ 9263–9275 (NeurIPS, 2020). * Boeing, G. OSMnx: New methods for acquiring,


constructing, analyzing, and visualizing complex street networks. _Comput. Environ. Urban Syst._ 65, 126–139 (2017). Article  Google Scholar  * Ganin, A. A. et al. Resilience and efficiency


in transportation networks. _Sci. Adv._ 3, e1701079 (2017). Article  Google Scholar  * Louail, T. et al. From mobile phone data to the spatial structure of cities. _Sci. Rep._ 4, 5276


(2015). Article  Google Scholar  * Thompson, J. et al. A global analysis of urban design types and road transport injury: an image processing study. _Lancet Planet. Health_ 4, e32–e42


(2020). Article  Google Scholar  * _Urban Atlas 2018_ (Copernicus Land Monitoring Service, accessed 7 March 2022); https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=mapview *


Khiali-Miab, A., van Strien, M. J., Axhausen, K. W. & Grêt-Regamey, A. Combining urban scaling and polycentricity to explain socio-economic status of urban regions. _PLoS ONE_ 14,


e0218022 (2019). Article  Google Scholar  * Rozenblat, C. Extending the concept of city for delineating large urban regions (LUR) for the cities of the world. _Cybergeo_


https://doi.org/10.4000/cybergeo.35411 (2020). * Ma, S. & Long, Y. Functional urban area delineations of cities on the Chinese mainland using massive Didi ride-hailing records. _Cities_


97, 102532 (2020). Article  Google Scholar  * Yang, B., Yih, W., He, X., Gao, J. & Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. _The_ _3rd


International Conference on Learning Representations_ (ICLR, 2015). * Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. In _Proc. 22nd ACM SIGKDD International


Conference on Knowledge Discovery and Data Mining_ 855–864 (ACM, 2016); https://doi.org/10.1145/2939672.2939754 * Ribeiro, L. F. R., Saverese, P. H. P. & Figueiredo, D. R. struc2vec:


learning node representations from structural identity. In _Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining_ 385–394 (ACM, 2017);


https://doi.org/10.1145/3097983.3098061 * Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In _Advances in Neural Information Processing


Systems_ 1024–1034 (NIPS, 2017). * Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. _The_ _5th International Conference on Learning


Representations_ (ICLR, 2017). * Veličković, P. et al. Graph attention networks. _The_ 6th _International Conference on Learning Representations_ (ICLR, 2018). * Kingma, D. P. & Ba, J.


Adam: a method for stochastic optimization. _The_ _3rd International Conference on Learning Representations_ (ICLR, 2015). * Xue, J. et al. Quantifying the spatial homogeneity of urban road


networks via graph neural networks [Data set]. _Zenodo_ https://doi.org/10.5281/zenodo.5866593 (2022). Download references ACKNOWLEDGEMENTS We thank S. Rao from Purdue University for


discussions about the comparison between the spatial homogeneity metric and existing network metrics. S.L. acknowledges support from the Ross-Lynn fellowship, Purdue University. T.Y. is


partly funded by National Science Foundation (grant number 1638311). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Lyles School of Civil Engineering, Purdue University, West Lafayette, IN,


USA Jiawei Xue, Takahiro Yabe & Satish V. Ukkusuri * Department of Computer Science, Purdue University, West Lafayette, IN, USA Nan Jiang & Jianzhu Ma * Department of Mathematics,


Purdue University, West Lafayette, IN, USA Senwei Liang & Qiyuan Pang * Institute for Artificial Intelligence, Peking University, Beijing, China Jianzhu Ma * Beijing Institute for


General Artificial Intelligence, Beijing, China Jianzhu Ma Authors * Jiawei Xue View author publications You can also search for this author inPubMed Google Scholar * Nan Jiang View author


publications You can also search for this author inPubMed Google Scholar * Senwei Liang View author publications You can also search for this author inPubMed Google Scholar * Qiyuan Pang


View author publications You can also search for this author inPubMed Google Scholar * Takahiro Yabe View author publications You can also search for this author inPubMed Google Scholar *


Satish V. Ukkusuri View author publications You can also search for this author inPubMed Google Scholar * Jianzhu Ma View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS J.X., T.Y., S.V.U. and J.M. proposed the question. J.X., N.J., S.L., Q.P. and J.M. designed the research. N.J. trained and tested the GNN models. S.L. and Q.P.


performed the intracity analysis. N.J. and J.X. conducted the intercity analysis. J.X. and J.M. drew the figures. J.X., T.Y., S.V.U. and J.M. wrote the paper. CORRESPONDING AUTHORS


Correspondence to Satish V. Ukkusuri or Jianzhu Ma. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Machine


Intelligence_ thanks Martin Fleischmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–28 and Tables


1–5. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Xue, J., Jiang, N., Liang, S. _et al._ Quantifying the spatial homogeneity of


urban road networks via graph neural networks. _Nat Mach Intell_ 4, 246–257 (2022). https://doi.org/10.1038/s42256-022-00462-y Download citation * Received: 09 July 2021 * Accepted: 15


February 2022 * Published: 23 March 2022 * Issue Date: March 2022 * DOI: https://doi.org/10.1038/s42256-022-00462-y SHARE THIS ARTICLE Anyone you share the following link with will be able


to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative