Play all audios:
ABSTRACT Supercontinents signify self-organization in plate tectonics. Over the past ~2 billion years, three major supercontinents have been identified, with increasing age: Pangaea, Rodinia
and Columbia. In a prototypal form, a cyclic pattern of continental assembly and breakup likely extends back to ~3 billion years ago, albeit on the smaller scale of Archaean supercratons,
which, unlike global supercontinents, were tectonically segregated. In this Review, we discuss how the emergence of supercontinents provides a minimum age for the onset of the modern global
plate tectonic network, whereas Archaean supercratons might reflect an earlier geodynamic and nascent tectonic regime. The assembly and breakup of Pangaea attests that the supercontinent
cycle is intimately linked with whole-mantle convection. The supercontinent cycle is, consequently, interpreted as both an effect and a cause of mantle convection, emphasizing the importance
of both top-down and bottom-up geodynamics, and the coupling between them. However, the nature of this coupling and how it has evolved remains controversial, resulting in contrasting models
of supercontinent formation, which can be tested by quantitative geodynamic modelling and geochemical proxies. Specifically, which oceans close to create a supercontinent, and how such
predictions are linked to mantle convection, are directions for future research. KEY POINTS * The supercontinent cycle is an outcome of plate tectonics as a self-organizing system, where a
supercontinent is both an effect and a cause of mantle convection, thus creating a feedback loop. * According to palaeogeography, three supercontinent cycles of assembly and breakup have
occurred over the past 2 billion years (Gyr). * Before 2 Gyr ago, the occurrence of an older supercontinent is uncertain, and possibly only smaller and separated landmasses existed. *
Geochemical proxies indicate secular change, suggesting tectonic evolution from non-cyclic to cyclic changes occurring ca. 2 Gyr ago, with the appearance of supercontinents. * For a better
understanding of supercontinent dynamics, it is necessary to connect mantle convection and plate tectonics into one theory. * Both top-down (lithospheric) and bottom-up (mantle) tectonics
control supercontinent dynamics, and it is critical to understand the coupling between them. Access through your institution Buy or subscribe This is a preview of subscription content,
access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99
/ 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article *
Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn
about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE EVOLUTION OF BASAL MANTLE STRUCTURE IN RESPONSE TO SUPERCONTINENT
AGGREGATION AND DISPERSAL Article Open access 25 November 2021 EARTH'S ANOMALOUS MIDDLE-AGE MAGMATISM DRIVEN BY PLATE SLOWDOWN Article Open access 21 June 2022 SLAB BUCKLING AS A DRIVER
FOR RAPID OSCILLATIONS IN INDIAN PLATE MOTION AND SUBDUCTION RATE Article Open access 12 June 2024 REFERENCES * Coltice, N., Gérault, M. & Ulvrová, M. A mantle convection perspective on
global tectonics. _Earth Sci. Rev._ 165, 120–150 (2017). EXPLORES HOW GEODYNAMIC MODELS, BASED ON OBSERVATIONS SUCH AS KINEMATICS, STRESS, DEFORMATION AND RHEOLOGY, THAT LINK MANTLE
CONVECTION AND PLATE TECTONICS CAN TAKE INTO ACCOUNT SELF-ORGANIZATION. Article Google Scholar * Bercovici, D. The generation of plate tectonics from mantle convection. _Earth Planet. Sci.
Lett._ 205, 107–121 (2003). Article Google Scholar * Stern, R. J. & Gerya, T. Earth evolution, emergence, and uniformitarianism. _GSA Today_ https://doi.org/10.1130/GSATG479GW.1
(2020). Article Google Scholar * Alblowitz, R. The theory of emergence. _Philos. Sci._ 6, 1–16 (1939). Article Google Scholar * Worsley, T. R., Nance, R. D. & Moody, J. B. Tectonic
cycles and the history of the Earth’s biogeochemical and paleoceanographic record. _Paleoceanography_ 1, 233–263 (1986). Article Google Scholar * Worsley, T. R., Nance, R. D. & Moody,
J. B. Global tectonics and eustasy for the past 2 billion years. _Mar. Geol._ 58, 373–400 (1984). Article Google Scholar * Nance, D., Worsley, T. R. & Moody, J. B. The supercontinent
cycle. _Sci. Am._ 259, 72–79 (1988). Article Google Scholar * Nance, R. D., Worsley, T. R. & Moody, J. B. Post-Archean biogeochemical cycles and long-term episodicity in tectonic
processes. _Geology_ 14, 514–518 (1986). Article Google Scholar * Nance, R. D., Murphy, J. B. & Santosh, M. The supercontinent cycle: A retrospective essay. _Gondwana Res._ 25, 4–29
(2014). Article Google Scholar * Evans, D. A. D. Reconstructing pre-Pangean supercontinents. _Geol. Soc. Am. Bull._ 125, 1735–1751 (2013). OFFERS A REVIEW OF THE HISTORY OF EFFORTS TO
RECONSTRUCT PRE-PANGAEAN SUPERCONTINENTS AND SHOWS THE EMERGING CONSENSUS, AND REMAINING UNCERTAINTIES, OF EACH OF THEIR RECONSTRUCTIONS. Article Google Scholar * Valentine, J. W. &
Moores, E. M. Plate-tectonic regulation of faunal diversity and sea level: A model. _Nature_ 228, 657–659 (1970). Article Google Scholar * Zaffos, A., Finnegan, S. & Peters, S. E.
Plate tectonic regulation of global marine animal diversity. _Proc. Natl Acad. Sci. USA_ 114, 5653–5658 (2017). Article Google Scholar * Mitchell, R. N., Raub, T. D., Silva, S. C. &
Kirschvink, J. L. Was the Cambrian explosion both an effect and an artifact of true polar wander? _Am. J. Sci._ 315, 945–957 (2015). Article Google Scholar * Allison, P. A. & Briggs,
D. E. G. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. _Geology_ 21, 65–68 (1993). Article Google Scholar * Wegener, A. _The Origin of
Continents and Oceans_ 4th edn (Dover, 1929). * Vine, F. J. & Matthews, D. H. Magnetic anomalies over oceanic ridges. _Nature_ 199, 947–949 (1963). Article Google Scholar * Wilson, J.
T. Evidence from islands on the spreading of ocean floors. _Nature_ 197, 536–538 (1963). Article Google Scholar * Wilson, J. T. A new class of faults and their bearing on continental
drift. _Nature_ 207, 343–347 (1965). Article Google Scholar * Wilson, J. T. Did the Atlantic close and then re-open? _Nature_ 211, 676–681 (1966). Article Google Scholar * Wilson, J. T.
Hypothesis of Earth’s behaviour. _Nature_ 198, 925–929 (1963). Article Google Scholar * McKenzie, D. P. & Parker, R. L. The North Pacific: an example of tectonics on a sphere. _Nature_
216, 1276–1280 (1967). Article Google Scholar * Morgan, J. Rises, trenches, great faults, and crustal blocks. _J. Geophys. Res._ 73, 1959–1982 (1968). Article Google Scholar * Wan, B.
et al. Seismological evidence for the earliest global subduction network at 2 Ga. _Sci. Adv._ 6, eabc5491 (2020). REPORTS THE FIRST GLOBAL-SCALE EVIDENCE FOR SUBDUCTION USING SEISMIC IMAGES
FROM MULTIPLE CONTINENTS, ARGUING FOR THE ONSET OF THE GLOBAL PLATE TECTONIC NETWORK BY CA. 2GA. Article Google Scholar * Mitchell, R. N. et al. Plate tectonics before 2.0 Ga: Evidence
from paleomagnetism of cratons within supercontinent Nuna. _Am. J. Sci._ 314, 878–894 (2014). Article Google Scholar * Stern, R. J. The evolution of plate tectonics. _Philos. Trans. R.
Soc. A_ 376, 20170406 (2018). Article Google Scholar * Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. _Annu. Rev. Earth Planet. Sci._ 48, 291–320
(2020). Article Google Scholar * Guo, M. & Korenaga, J. Argon constraints on the early growth of felsic continental crust. _Sci. Adv._ 6, eaaz6234 (2020). Article Google Scholar *
Rosas, J. C. & Korenaga, J. Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. _Earth Planet. Sci. Lett._ 494,
42–49 (2018). Article Google Scholar * Windley, B. F., Kusky, T. M. & Polat, A. Onset of plate tectonics by the Eoarchean. _Precambrian Res._ 352, 105980 (2021). Article Google
Scholar * El Dien, H. G., Doucet, L. S., Murphy, J. B. & Li, Z. X. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate
tectonics. _Sci. Rep._ 10, 9461 (2020). Article Google Scholar * Hoffman, P. F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. _J. Afr. Earth Sci._
28, 17–33 (1999). Article Google Scholar * Meert, J. G. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. _Gondwana Res._ 21, 987–993 (2012). Article Google Scholar *
Pastor-Galán, D. et al. Supercontinents: myths, mysteries, and milestones. _Geol. Soc. Lond. Spec. Publ._ 470, 39–64 (2018). Article Google Scholar * Ebinger, C. J. & Sleep, N. H.
Cenozoic magmatism throughout east Africa resulting from impact of a single plume. _Nature_ 395, 788–791 (1998). Article Google Scholar * van Hinsbergen, D. J. J. et al. Greater India
Basin hypothesis and a two-stage Cenozoic collision between India and Asia. _Proc. Natl Acad. Sci. USA_ 109, 7659–7664 (2012). Article Google Scholar * Evans, D. A. D., Li, Z.-X. &
Murphy, J. B. Four-dimensional context of Earth’s supercontinents. _Geol. Soc. Lond. Spec. Publ._ 424, 1–14 (2016). Article Google Scholar * Mitchell, R. N. et al. Harmonic hierarchy of
mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. _Gondwana Res._ 75, 239–248 (2019). Article Google Scholar * Gardiner, N. J., Kirkland, C. L.
& van Kranendonk, M. The juvenile hafnium isotope signal as a record of supercontinent cycles. _Sci. Rep._ 6, 38503 (2016). Article Google Scholar * Kirscher, U. et al. Paleomagnetic
constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. _Geology_ 49, 174–179 (2021). Article Google Scholar * Irving, E. _Paleomagnetism
and Its Application to Geological and Geophysical Problems_ (Wiley, 1964). * van der Voo, R. _Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans_ (Cambridge Univ. Press, 1993). *
Murphy, J. B. & Nance, R. D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. _Geology_ 19, 469–472 (1991). Article Google Scholar * Murphy, J. B.
& Nance, R. D. The Pangea conundrum. _Geology_ 36, 703–706 (2008). Article Google Scholar * Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late
Paleozoic. _Glob. Planet. Change_ 146, 226–250 (2016). Article Google Scholar * Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. _Earth-Sci. Rev._ 114, 325–368
(2012). Article Google Scholar * Irving, E. Drift of the major continental blocks since the Devonian. _Nature_ 270, 304–309 (1977). Article Google Scholar * Du Toit, A. L. _Our
Wandering Continents_ (Oliver and Boyd, 1937). * Morel, P. & Irving, E. Paleomagnetism and the evolution of Pangea. _J. Geophys. Res._ 86, 1858–1872 (1981). Article Google Scholar *
Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. _J. Geophys. Res. Solid Earth_ 124, 7231–7258 (2019).
Article Google Scholar * Domeier, M. & Torsvik, T. Plate tectonics in the late Paleozoic. _Geosci. Front._ 5, 303–350 (2014). Article Google Scholar * Burke, K., Steinberger, B.,
Torsvik, T. & Smethurst, M. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. _Earth Planet. Sci. Lett._ 265, 49–60 (2008). Article
Google Scholar * Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. _Earth Planet. Sci.
Lett._ 227, 531–538 (2004). Article Google Scholar * Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary.
_Nature_ 466, 352–355 (2010). Article Google Scholar * Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large
low-velocity provinces in the deep mantle. _Geophys. J. Int._ 167, 1447–1460 (2006). Article Google Scholar * Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. Longitude:
Linking Earth’s ancient surface to its deep interior. _Earth Planet. Sci. Lett._ 276, 273–282 (2008). Article Google Scholar * Torsvik, T. H. et al. Deep mantle structure as a reference
frame for movements in and on the Earth. _Proc. Natl Acad. Sci. USA_ 111, 8735–8740 (2014). Article Google Scholar * Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to
reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. _Geochem. Geophys. Geosystems_ 17, 1130–1163 (2016). Article Google Scholar
* Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. _Nature_ 498, 479–482 (2013). SHOWS HOW PLATE
TECTONIC MOTIONS DURING THE PAST 250 MYR HAVE BEEN TIGHTLY COUPLED WITH DEGREE 1 AND DEGREE 2 MANTLE FLOW, OWING TO BASAL TRACTIONS BEING NEARLY AS STRONG AS SLAB-PULL FORCES. Article
Google Scholar * Spencer, C. J. et al. Evidence for whole mantle convection driving Cordilleran tectonics. _Geophys. Res. Lett._ 46, 4239–4248 (2019). Article Google Scholar * Mitchell,
R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. _Nature_ 482, 208–211 (2012). PROVIDES THE FIRST GEODYNAMIC
MODEL OF SUPERCONTINENT FORMATION, ORTHOVERSION, WHERE A NEW SUPERCONTINENT WILL FORM ALONG THE DEGREE 2 SUBDUCTION GIRDLE ~90° AWAY FROM ITS PREDECESSOR. Article Google Scholar * Chase,
C. G. & Sprowl, D. R. The modern geoid and ancient plate boundaries. _Earth Planet. Sci. Lett._ 62, 314–320 (1983). Article Google Scholar * Hager, B. H. Subducted slabs and the geoid:
constraints on mantle rheology and flow. _J. Geophys. Res. Solid Earth_ 89, 6003–6015 (1984). Article Google Scholar * Steinberger, B. & Torsvik, T. H. Absolute plate motions and true
polar wander in the absence of hotspot tracks. _Nature_ 452, 620–623 (2008). FINDS OSCILLATORY TOTAL MOTIONS OF ALL CONTINENTS USING APPARENT POLAR WANDER (APW), WHICH CAN BE INTERPRETED AS
TRUE POLAR WANDER (TPW) ABOUT A STABLE AXIS NEAR THE CENTRE OF SUPERCONTINENT PANGAEA. Article Google Scholar * Mitchell, R. N. True polar wander and supercontinent cycles: Implications
for lithospheric elasticity and the triaxial Earth. _Am. J. Sci._ 314, 966–979 (2014). Article Google Scholar * Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic
evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. _Geol. Soc. Am. Bull._ 118, 1099–1124 (2006). Article Google Scholar * Kent, D. V.,
Kjarsgaard, B. A., Gee, J. S., Muttoni, G. & Heaman, L. M. Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior
Province of Canada). _Geochem. Geophys. Geosystems_ 16, 983–994 (2015). Article Google Scholar * Fu, R. R. & Kent, D. V. Anomalous Late Jurassic motion of the Pacific Plate with
implications for true polar wander. _Earth Planet. Sci. Lett._ 490, 20–30 (2018). Article Google Scholar * Fu, R. R., Kent, D. V., Hemming, S. R., Gutierrez, P. & Creveling, J. R.
Testing the occurrence of Late Jurassic true polar wander using the La Negra volcanics of northern Chile. _Earth Planet. Sci. Lett._ 529, 115835 (2020). Article Google Scholar * Creveling,
J. R., Mitrovica, J. X., Chan, N. H., Latychev, K. & Matsuyama, I. Mechanisms for oscillatory true polar wander. _Nature_ 491, 244–248 (2012). Article Google Scholar * Evans, D. A. D.
True polar wander, a supercontinental legacy. _Earth Planet. Sci. Lett._ 157, 1–8 (1998). Article Google Scholar * Evans, D. A. D. True polar wander and supercontinents. _Tectonophysics_
362, 303–320 (2003). Article Google Scholar * Su, W. & Dziewonski, A. M. Predominance of long-wavelength heterogeneity in the mantle. _Nature_ 352, 121–126 (1991). Article Google
Scholar * Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. _J. Geophys. Res. Solid Earth_ 115, B06401
(2010). Google Scholar * Zhong, S. J., Zhang, N., Li, Z. X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. _Earth Planet. Sci.
Lett._ 261, 551–564 (2007). PROVIDES NUMERICAL MODELLING TO LINK MAJOR MODES OF MANTLE CONVECTION (DEGREES 1 AND 2) TO SUPERCONTINENT FORMATION AND TPW, WITH DEGREE 1 DOWNWELLING
FACILITATING SUPERCONTINENT FORMATION AND DEGREE 2 CONVECTION THEN RESULTING FROM CIRCUM-SUPERCONTINENT DOWNWELLING. Article Google Scholar * Dziewonski, A. M., Lekic, V. & Romanowicz,
B. Mantle anchor structure: An argument for bottom up tectonics. _Earth Planet. Sci. Lett._ 299, 69–79 (2010). Article Google Scholar * Li, Z.-X. & Zhong, S. Supercontinent–superplume
coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. _Phys. Earth Planet. Inter._ 176, 143–156 (2009). Article Google Scholar * Zhong, S. & Liu,
X. The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerzoic. _Gondwana Res._ 29, 83–104 (2016). Article Google Scholar *
Mitchell, R. N., Wu, L., Murphy, J. B. & Li, Z. X. Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. _Geosci. Front._ 11,
1253–1256 (2020). Article Google Scholar * Heron, P. J. & Lowman, J. P. The impact of Rayleigh number on assessing the significance of supercontinent insulation. _J. Geophys. Res.
Solid Earth_ 119, 711–733 (2014). Article Google Scholar * Phillips, B. R. & Coltice, N. Temperature beneath continents as a function of continental cover and convective wavelength.
_J. Geophys. Res._ 115, B04408 (2010). Google Scholar * Doucet, L. S. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. _Nat. Geosci._ 13,
511–515 (2020). Article Google Scholar * Doucet, L. S., Li, Z. X., Ernst, R. E., Kirscher, U. & Gamal El Diean, H. Coupled supercontinent–mantle plume events evidenced by oceanic plume
record. _Geology_ 48, 159–163 (2020). Article Google Scholar * Anderson, D. L. Hotspots, polar wander, Mesozoic convection and the geoid. _Nature_ 297, 391–393 (1982). Article Google
Scholar * Evans, D. A. D. Proposal with a ring of diamonds. _Nature_ 466, 326–327 (2010). Article Google Scholar * Liu, X. & Zhong, S. The long-wavelength geoid from three-dimensional
spherical models of thermal and thermochemical mantle convection. _J. Geophys. Res. Solid Earth_ 120, 4572–4596 (2015). Article Google Scholar * Gurnis, M. Large-scale mantle convection
and the aggregation and dispersal of supercontinents. _Nature_ 332, 695–699 (1988). Article Google Scholar * Anderson, D. L. Superplumes or supercontinents? _Geology_ 22, 39–42 (1994).
Article Google Scholar * Torsvik, T. H. & Cocks, R. M. _Earth History and Palaeogeography_ (Cambridge Univ. Press, 2016). * Berner, R. A. Phanerozoic atmospheric oxygen: New results
using the GEOCARBSULF model. _Am. J. Sci._ 309, 603–606 (2009). Article Google Scholar * Kump, L. R. The rise of atmospheric oxygen. _Nature_ 451, 277–278 (2008). Article Google Scholar
* Mann, P., Gahagan, L. & Gordon, M. B. in _Giant Oil and Gas Fields of the Decade 1990–1999_ Vol. 78 (ed. Halbouty, M. T.) 15-105 (AAPG Memoir, 2003). * Campbell, I. H. & Allen, C.
M. Formation of supercontinents linked to increases in atmospheric oxygen. _Nat. Geosci._ 1, 554–558 (2008). Article Google Scholar * Condie, K. C. Episodic continental growth and
supercontinents: a mantle avalanche connection? _Earth Planet. Sci. Lett._ 163, 97–108 (1998). Article Google Scholar * Condie, K. C. The supercontinent cycle: Are there two patterns of
cyclicity? _J. Afr. Earth Sci._ 35, 179–183 (2002). Article Google Scholar * Sutton, J. Long-term cycles in the evolution of the continents. _Nature_ 198, 731–735 (1963). Article Google
Scholar * Bradley, D. C. Secular trends in the geologic record and the supercontinent cycle. _Earth Sci. Rev._ 108, 16–33 (2011). Article Google Scholar * Li, Z. X. et al. Decoding
Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. _Precambrian Res._ 323, 1–5 (2019). Article Google Scholar * Zhao, H. Q. et al. New geochronologic and
paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the
reconstruction of Rodinia. _GSA Bull._ 132, 739–766 (2020). Article Google Scholar * Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. _Gondwana Res._ 50,
84–134 (2017). Article Google Scholar * Evans, D. A. D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. _Geol. Soc. Lond. Spec. Publ._
327, 371–404 (2009). Article Google Scholar * Li, Z. X. & Evans, D. A. D. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting
Rodinia. _Geology_ 39, 39–42 (2011). Article Google Scholar * Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. _Precambrian Res._ 160, 179–210
(2008). Article Google Scholar * Li, Z. X., Evans, D. A. D. & Halverson, G. P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the
assembly of Gondwanaland. _Sediment. Geol._ 294, 219–232 (2013). Article Google Scholar * Hoffman, P. F. Did the breakout of Laurentia turn Gondwanaland inside-out? _Science_ 252,
1409–1412 (1991). Article Google Scholar * Hoffman, P. F. in _Earth Structure: An Introduction to Structural Geology and Tectonics_ (eds van der Pluijm, B. A. & Marshak, S.) 459-464
(McGraw-Hill, 1997). * Evans, D. A. D. & Mitchell, R. N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. _Geology_ 39, 443–446 (2011). Article
Google Scholar * Zhang, S. et al. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. _Earth Planet. Sci. Lett._ 353-354, 145–155
(2012). Article Google Scholar * Kirscher, U. et al. Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) - A two-stage assembly of the supercontinent Nuna? _Precambrian
Res._ 329, 170–181 (2019). Article Google Scholar * Mitchell, R. N., Kirscher, U., Kunzmann, M., Liu, Y. & Cox, G. M. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic
oceanic euxinic event. _Geology_ 49, 25–29 (2021). Article Google Scholar * Wu, H., Zhang, S., Li, Z.-X., Li, H. & Dong, J. New paleomagnetic results from the Yangzhuang Formation of
the Jixian System, North China, and tectonic implications. _Chin. Sci. Bull._ 50, 1483–1489 (2005). Article Google Scholar * Pisarevsky, S. A., Elming, S.-A., Pesonen, L. J. & Li,
Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond. _Precambrian Res._ 244, 207–225 (2014). Article Google Scholar * Zhao, G., Cawood, P. A., Wilde, S. A. & Sun, M. Review
of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. _Earth Sci. Rev._ 59, 125–162 (2002). Article Google Scholar * Zhao, G. C., Sun, M., Wilde, S. A. & Li, S.
Z. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. _Earth-Sci. Rev._ 67, 91–123 (2004). Article Google Scholar * Zhao, G., Li, S., Sun, M. & Wilde, S. A.
Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. _Int. Geol. Rev._ 53, 1331–1356 (2011). Article Google
Scholar * Wang, C., Mitchell, R. N., Murphy, J. B., Peng, P. & Spencer, C. J. The role of megacontinents in the supercontinent cycle. _Geology_ https://doi.org/10.1130/G47988.1 (2020).
ESTABLISHES A MEGACONTINENT (FOR EXAMPLE, GONDWANA) AS AN IMPORTANT GEODYNAMIC PRECURSOR TO THE LATER ASSEMBLY OF A SUPERCONTINENT (FOR EXAMPLE, PANGAEA). Article Google Scholar * Raub, T.
D., Kirschvink, J. L. & Evans, D. in _Treatise on Geophysics_ Vol. 5 565–589 (Elsevier Science, 2007). * Ernst, R. E. et al. Long-lived connection between southern Siberia and northern
Laurentia in the Proterozoic. _Nat. Geosci._ 9, 464–469 (2016). Article Google Scholar * Evans, D. A. D., Veselovsky, R. V., Petrov, P. Y., Shatsillo, A. V. & Pavlov, V. E.
Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. _Precambrian Res._ 281, 639–655 (2016). Article
Google Scholar * Pisarevsky, S. A., Natapov, L. M., Donskaya, T. V., Gladkochub, D. P. & Vernikovsky, V. A. Proterozoic Siberia: a promontory of Rodinia. _Precambrian Res._ 160, 66–76
(2008). Article Google Scholar * Cawood, P. A. et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. _Earth Sci. Rev._ 204, 103169 (2020). Article Google
Scholar * Spencer, C. J., Hawkesworth, C., Cawood, P. A. & Dhiume, B. Not all supercontinents are created equal: Gondwana-Rodinia case study. _Geology_ 41, 795–798 (2013). Article
Google Scholar * Liu, C., Knoll, A. H. & Hazen, R. M. Geochemical and mineralogical evidence that Rodinian assembly was unique. _Nat. Commun._ 8, 1950 (2017). Article Google Scholar *
Leach, D. L. et al. Sediment-hosted lead-zinc deposits in Earth history. _Econ. Geol._ 105, 593–625 (2010). Article Google Scholar * Hoffman, P. F. et al. Snowball Earth climate dynamics
and Cryogenian geology-geobiology. _Sci. Adv._ 3, e1600983 (2017). Article Google Scholar * Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball
Earth. _Science_ 281, 1342–1346 (1998). Article Google Scholar * Kirschvink, J. L. in _The Proterozoic Biosphere: A Multidisciplinary Study_ (eds Schopf, J. W. & Klein, C.) 51-52
(Cambridge Univ. Press, 1992). * Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climate paradox. _Am. J. Sci._ 300, 347–433 (2000).
Article Google Scholar * Keller, C. B. et al. Neoproterozoic glacial origin of the great unconformity. _Proc. Natl Acad. Sci. USA_ 116, 1136–1145 (2019). Article Google Scholar *
Mitchell, R. N. et al. Hit or miss: Glacial incisions of snowball Earth. _Terra Nova_ 31, 381–389 (2019). Google Scholar * Gernon, T. M., Hincks, T. K., Tyrell, T., Rohling, E. J. &
Palmer, M. R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. _Nat. Geosci._ 9, 242–248 (2016). Article Google Scholar * Bowring, S. A. &
Grotzinger, J. P. Implications of new chronostratigraphy for tectonic evolution of Wopmay Orogen, northwest Canadian Shield. _Am. J. Sci._ 292, 1–20 (1992). Article Google Scholar *
Hoffman, P. F. The origin of Laurentia: Rae Craton as the backstop for proto-Laurentian amalgamation by slab suction. _Geosci. Can._ 41, 313–320 (2014). Article Google Scholar * Pourteau,
A. et al. 1.6 Ga crustal thickening along the final Nuna suture. _Geology_ 46, 959–962 (2018). Article Google Scholar * Hoffman, P. F. Speculations on Laurentia’s first gigayear (2.0 to
1.0 Ga). _Geology_ 17, 135–138 (1989). Article Google Scholar * Li, Z. X. et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with
other continents: evidence for a mantle superplume that broke up Rodinia. _Precambrian Res._ 122, 85–109 (2003). Article Google Scholar * Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J.
The breakup of Rodinia: did it start with a mantle plume beneath South China? _Earth Planet. Sci. Lett._ 173, 171–181 (1999). Article Google Scholar * Mitchell, R. N., Hoffman, P. F.
& Evans, D. A. D. Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton. _Precambrian Res._ 179, 121–134 (2010).
Article Google Scholar * Mitchell, R. N. et al. Sutton hotspot: Resolving Ediacaran-Cambrian Tectonics and true polar wander for Laurentia. _Am. J. Sci._ 311, 651–663 (2011). Article
Google Scholar * Li, Z.-X., Evans, D. A. D. & Zhang, S. A 90 degrees spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and
low-latitude glaciation. _Earth Planet. Sci. Lett._ 220, 409–421 (2004). Article Google Scholar * Jing, X. et al. A pan-latitudinal Rodinia in the Tonian true polar wander frame. _Earth
Planet. Sci. Lett._ 530, 115880 (2020). Article Google Scholar * Swanson-Hysell, N. L. et al. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic
records of the Bitter Springs Formation, Amadeus Basin, central Australia. _Am. J. Sci._ 312, 817–884 (2012). Article Google Scholar * Dhuime, B., Hawkesworth, C. J., Cawood, P. A. &
Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. _Science_ 334, 1334–1336 (2012). Article Google Scholar * Hawkesworth, C. J., Cawood, P. A. &
Dhiume, B. Rates of generation and growth of the continental crust. _Geosci. Front._ 10, 165–173 (2019). Article Google Scholar * Korenaga, J. Crustal evolution and mantle dynamics through
Earth history. _Philos. Trans. A_ 376, 20170408 (2018). Article Google Scholar * Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric
oxygen to growth in the continental phosphorus inventory. _Earth Planet. Sci. Lett._ 489, 28–36 (2018). Article Google Scholar * Blichert-Toft, J. & Albarde, F. Short-lived chemical
heterogeneities in the Archean mantle with implications for mantle convection. _Science_ 263, 1593–1596 (1994). Article Google Scholar * Williams, H., Hoffman, P. F., Lewry, J. F., Monger,
J. W. H. & Rivers, T. Anatomy of North America: thematic geologic portrayals of the continent. _Tectonophysics_ 187, 117–134 (1991). Article Google Scholar * Salminen, J., Oliveira,
E., Piispa, E., Smirnov, A. & Trindade, R. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons. _Precambrian Res._ 329,
108–123 (2019). Article Google Scholar * Pisarevsky, S. A., De Waele, B., Jones, S., Soderlund, U. & Ernst, R. E. Paleomagnetism and U–Pb age of the 2.4 Ga Erayinia mafic dykes in the
south-western Yilgarn, Western Australia: Paleogeographic and geodynamic implications. _Precambrian Res._ 259, 222–231 (2015). Article Google Scholar * Ernst, R. E. & Bleeker, W. Large
igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada from 2.5 Ga to present. _Can. J. Earth Sci._ 47, 695–739 (2010). Article
Google Scholar * Bleeker, W. & Ernst, R. E. in _Dyke Swarms - Time Markers of Crustal Evolution_ (eds Hanski, E., Mertanen, S., Ramo, T., & Vuollo, J. I.) 3-26 (Taylor & Francis
Group, 2006). * Bleeker, W. The late Archean record: a puzzle in ca. 35 pieces. _Lithos_ 71, 99–134 (2003). PROPOSES THAT SMALL AND SEGREGATED ARCHAEAN SUPERCRATONS EXISTED INSTEAD OF ONE
UNIFIED SUPERCONTINENT BASED ON HIGHLY DIACHRONOUS TECTONOMAGMATIC EVENTS. Article Google Scholar * Windley, B. F. Crustal development in the Precambrian. _Philos. Trans. R. Soc. Lond. A_
273, 321–341 (1973). Article Google Scholar * Cawood, P. et al. Geological archive of the onset of plate tectonics. _Philos. Trans. A Math. Phys. Eng. Sci._ 376, 20170405 (2018). Google
Scholar * Gumsley, A. P. et al. Timing and tempo of the great oxidation event. _Proc. Natl Acad. Sci. USA_ 114, 1811–1816 (2017). OFFERS A COMBINED GEOLOGIC AND PALAEOMAGNETIC
RECONSTRUCTION OF SUPERCRATON SUPERIA AND ITS CONTEXT IN LOW-LATITUDE GLACIATION AND THE GREAT OXIDATION EVENT. Article Google Scholar * Roscoe, S. M. & Card, K. D. The reappearance of
the Huronian in Wyoming: rifting and drifting of ancient continents. _Can. J. Earth Sci._ 30, 2475–2480 (1993). Article Google Scholar * Kilian, T. M., Bleeker, W., Chamberlain, K. R.,
Evans, D. A. D. & Cousens, B. L. Palaeomagnetism, geochronology and geochemistry of the Palaeoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in
supercraton Superia. _Geol. Soc. Lond. Spec. Publ._ 424, 15–45 (2016). Article Google Scholar * Liu, Y. et al. Archean geodynamics: Ephemeral supercontinents or long-lived supercratons.
_Geology_ https://doi.org/10.1130/G48575.1 (2021). FINDS PALAEOMAGNETIC EVIDENCE THAT ARGUES STRONGLY IN FAVOUR OF SEGREGATED ARCHAEAN SUPERCRATONS INSTEAD OF ONE UNIFIED SUPERCONTINENT.
Article Google Scholar * De Kock, M. O., Evans, D. A. D. & Beukes, N. J. Validating the existence of Vaalbara in the Neoarchean. _Precambrian Res._ 174, 145–154 (2009). Article Google
Scholar * Evans, M. E. & Muxworthy, A. R. Vaalbara palaeomagnetism. _Can. J. Earth Sci._ 56, 912–916 (2019). Article Google Scholar * de Wit, M. J. et al. Formation of an Archaean
continent. _Nature_ 357, 553–562 (1992). Article Google Scholar * van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? _Annu. Rev. Earth Planet. Sci._ 40, 195–219 (2012).
Article Google Scholar * Moyen, J.-F. & Laurent, O. Archaean tectonic systems: A view from igneous rocks. _Lithos_ 302–303, 99–125 (2018). Article Google Scholar * Rolf, T., Coltice,
N. & Tackley, P. J. Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. _Earth Planet. Sci. Lett._ 351–352, 134–146 (2012). Article Google Scholar
* Zhang, N., Zhong, S. J. & McNamara, A. K. Supercontinent formation from stochastic collision and mantle convection models. _Gondwana Res._ 15, 267–275 (2009). Article Google Scholar
* Yoshida, M. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two? _Geophys. Res. Lett._ 35, L23302 (2008). Article Google Scholar *
Grigne, C., Labrosse, S. & Tackley, P. J. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. _J. Geophys. Res._ 110, B03409 (2005). Google
Scholar * Lenardic, A., Richards, M. A. & Busse, F. H. Depth-dependent rheology and the horizontal length scale of mantle convection. _J. Geophys. Res._ 111, B07404 (2006). Google
Scholar * Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest mesoproterozoic inner-core nucleation. _Nature_ 526, 245–248 (2015). Article Google Scholar * Bono, R. K.,
Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. _Nat. Geosci._ 12, 143–147 (2019). Article Google Scholar *
Bunge, H. P., Richards, M. A. & Baumgardner, J. R. Effect of depth-dependent viscosity on the planform of mantle convection. _Nature_ 379, 436–438 (1996). Article Google Scholar *
Evans, D. A. Pannotia under prosecution. _Geol. Soc. Lond. Spec. Publ._ 503, 63–81 (2020). Article Google Scholar * Murphy, J. B. et al. Pannotia: in defence of its existence and
geodynamic significance. _Geol. Soc. Lond. Spec. Publ._ 503, 13–39 (2021). Article Google Scholar * Yoshida, M. Formation of a future supercontinent through plate motion-driven flow
coupled with mantle downwelling flow. _Geology_ 44, 755–758 (2016). Article Google Scholar * Yoshida, M. & Santosh, M. Future supercontinent assembled in the northern hemisphere.
_Terra Nova_ 23, 333–338 (2011). Article Google Scholar * Replumaz, A., Karasn, H., van der Hilst, R., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological
reconstructions and seismic tomography. _Earth Planet. Sci. Lett._ 221, 103–115 (2004). Article Google Scholar * Coltice, N., Phillips, B. R., Bertrand, H., Ricard, Y. & Rey, P. Global
warming of the mantle at the origin of flood basalts over supercontinents. _Geology_ 35, 391–394 (2007). Article Google Scholar * Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R.
Age, spreading rates, and spreading asymmetry of the world’s ocean crust. _Geochem. Geophys. Geosystems_ 9, Q04006 (2008). Article Google Scholar * Zhang, N., Dang, Z., Huang, C. &
Li, Z. X. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? _Geosci. Front._ 9, 997–1007 (2018). Article Google Scholar * Buiter, S. J. H. &
Torsvik, T. H. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? _Gondwana Res._ 26, 627–653 (2014). Article Google Scholar * Dang, Z.
et al. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. _Commun. Earth Environ._ 1, 51 (2020). Article Google Scholar * Brune, S., Popov, A. A.
& Sobolev, S. V. Quantifying the thermo-mechanical impact of plume arrival on continental break-up. _Tectonophysics_ 604, 51–59 (2013). Article Google Scholar * Koptev, A., Calais, E.,
Burov, E., Leroy, S. & Gerya, T. Dual continental rift systems generated by plume–lithosphere interaction. _Nat. Geosci._ 8, 388–392 (2015). Article Google Scholar * Bercovici, D.
& Long, M. D. Slab rollback instability and supercontinent dispersal. _Geophys. Res. Lett._ 41, 6659–6666 (2014). Article Google Scholar * Huang, C. et al. Modeling the inception of
supercontinent breakup: stress state and the importance of orogens. _Geochem. Geophys. Geosystems_ 20, 4830–4848 (2019). Article Google Scholar * Hartnady, C. J. H. About turn for
supercontinents. _Nature_ 352, 476–478 (1991). Article Google Scholar * Hartnady, C. J. H. Supercontinents and geotectonic megacycles. _Precambrian Research Unit, Department of Geology,
University of Cape Town, Information Circular No. 1_ PART 2, 6–16 (1991). Google Scholar * Veevers, J. J., Walter, M. R. & Scheibner, E. Neoproterozoic tectonics of Australia-Antarctica
and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m.y. Pangean supercycle. _J. Geol._ 105, 225–242 (1997). Article Google Scholar * Silver, P. G. & Behn, M. D.
Intermittent plate tectonics? _Science_ 319, 85–88 (2008). Article Google Scholar * Murphy, J. B. & Nance, R. D. Do supercontinents introvert or extrovert? Sm-Nd isotope evidence.
_Geology_ 31, 873–876 (2003). Article Google Scholar * Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. Two contrasting Phanerozoic orogenic systems revealed by hafnium
isotope data. _Nat. Geosci._ 4, 333–337 (2011). Article Google Scholar * Murphy, J. B. & Nance, R. D. Speculations on the mechanisms for the formation and breakup of supercontinents.
_Geosci. Front._ 4, 185–194 (2013). Article Google Scholar * Bradley, D. C. Passive margins through earth history. _Earth Sci. Rev._ 91, 1–26 (2008). Article Google Scholar * Condie, K.
C. & Aster, R. C. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. _Precambrian Res._ 180, 227–236 (2010). Article Google
Scholar * El Dien, H. G., Doucet, L. S. & Li, Z. X. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. _Nat. Commun._ 10, 5270 (2019).
Article Google Scholar * Spencer, C. J., Roberts, N. M. W. & Santosh, M. Growth, destruction, and preservation of Earth’s continental crust. _Earth Sci. Rev._ 172, 87–106 (2017).
Article Google Scholar * Valley, J. W. et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. _Contrib. Mineral. Petrol._ 150, 561–580 (2005). Article
Google Scholar * Spencer, C. J. et al. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. _Geochem. Cosmochem. Acta_ 257, 16–25 (2019). Article Google
Scholar * Jensen, G. Closed-form estimation of multiple change-point models. _PeerJ PrePrints_ https://doi.org/10.7287/peerj.preprints.90v3 (2013). Article Google Scholar * Barnosky, A.
D. et al. Approaching a state shift in Earth’s biosphere. _Nature_ 486, 52–58 (2012). Article Google Scholar * Lenardic, A. The diversity of tectonic modes and thoughts about transitions
between them. _Philos. Trans. R. Soc. A Math. Phys. Eng. Sci._ 376, 20170416 (2018). Article Google Scholar * Bauer, A. M. et al. Hafnium isotopes in zircons document the gradual onset of
mobile-lid tectonics. _Geochem. Perspect. Lett._ 14, 1–6 (2020). Article Google Scholar * Spencer, C. J., Murphy, J. B., Kirkland, C. L., Liu, Y. & Mitchell, R. N. A Palaeoproterozoic
tectono-magmatic lull as a potential trigger for the supercontinent cycle. _Nat. Geosci._ 11, 97–101 (2018). FINDS WIDESPREAD AND DIVERSE EVIDENCE FOR A TECTONOMAGMATIC LULL AT CA. 2.3 GA
THAT PLAYED A CRITICAL ROLE IN TRIGGERING INITIATION OF THE SUBSEQUENT MODERN AGE OF SUPERCONTINENTS. Article Google Scholar * McNamara, A. K. & Zhong, S. Thermochemical structures
beneath Africa and the Pacific Ocean. _Nature_ 437, 1136–1139 (2005). Article Google Scholar * Davaille, A. & Romanowicz, B. Deflating the LLSVPs: Bundles of mantle thermochemical
plumes rather than thick stagnant “piles”. _Tectonics_ 39, e2020TC006265 (2020). Article Google Scholar * Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean
at the base of the Earth’s mantle. _Nature_ 450, 866–869 (2007). Article Google Scholar * Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of
the silicate Earth. _Science_ 309, 576–581 (2005). Article Google Scholar * Upadhyay, D., Scherer, E. E. & Mezger, K. 142Nd evidence for an enriched Hadean reservoir in cratonic roots.
_Nature_ 459, 1118–1121 (2009). Article Google Scholar * Roth, A. S. G., Scherer, E. E., Maden, C., Mezger, K. & Bourdon, B. Revisiting the 142Nd deficits in the 1.48 Ga Khariar
alkaline rocks, India. _Chem. Geol._ 386, 238–248 (2014). Article Google Scholar * Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood
basalts. _Science_ 352, 809–812 (2016). Article Google Scholar * Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. _Science_ 356, 66–69 (2017). Article Google
Scholar * Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. _Nat. Geosci._ 10,
236–240 (2017). Article Google Scholar * Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. _Earth Planet. Sci. Lett._ 484, 184–191 (2018). Article Google
Scholar * Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. _Earth Planet. Sci.
Lett._ 377–378, 324–335 (2013). Article Google Scholar * Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the
mantle from the Hadean to the present. _Proc. Natl Acad. Sci. USA_ 117, 14738–14744 (2020). Article Google Scholar * Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen
in Earth’s early ocean and atmosphere. _Nature_ 506, 307–315 (2014). Article Google Scholar * Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern
hydrologic cycle 2.5 billion years ago. _Nature_ 557, 545–548 (2018). Article Google Scholar * Nicoli, G., Moyen, J.-F. & Stevens, G. Diversity of burial rates in convergent settings
decreased as Earth aged. _Sci. Rep._ 6, 26359 (2016). Article Google Scholar * Knoll, A. H. & Nowak, M. A. The timetable of evolution. _Sci. Adv._ 3, e1603076 (2017). Article Google
Scholar * Hazen, R. M. et al. Mineral evolution. _Am. Mineral._ 93, 1693–1720 (2008). Article Google Scholar * Lepot, K. et al. Iron minerals within specific microfossil morphospecies of
the 1.88 Ga Gunflint Formation. _Nat. Commun._ 8, 14890 (2017). Article Google Scholar * Eriksson, K. A. & Simpson, E. L. Controls on spatial and temporal distribution of Precambrian
eolianites. _Sediment. Geol._ 120, 275–294 (1998). Article Google Scholar * Rodriguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to recent
aeolian sand systems and their sedimentary record: Current understanding and future prospects. _Sedimentology_ 61, 1487–1534 (2014). Article Google Scholar * Merdith, A. S., Williams, S.
E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. _Glob. Planet. Change_ 173, 1–14 (2019). Article Google Scholar *
Zhang, N. & Zhong, S. Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. _Earth Planet. Sci.
Lett._ 306, 205–216 (2011). Article Google Scholar * Zhang, S.-H., Zhao, Y., Li, X.-H., Ernst, R. E. & Yang, Z.-Y. The 1.33–1.30 Ga Yanliao large igneous province in the North China
Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. _Earth Planet. Sci. Lett._ 465, 112–125 (2017). Article
Google Scholar * Domeier, M. & Torsvik, T. H. Full-plate modelling in pre-Jurassic time. _Geol. Mag._ 152, 261–280 (2019). Article Google Scholar * Rogers, J. J. W. & Santosh, M.
Configuration of Columbia, a Mesoproterozoic supercontinent. _Gondwana Res._ 5, 5–22 (2002). Article Google Scholar * Evans, D. A. D. Proterozoic low orbital obliquity and axial-dipolar
geomagnetic field from evaporite palaeolatitudes. _Nature_ 444, 51–55 (2006). Article Google Scholar * Panzik, J. & Evans, D. A. Assessing the GAD hypothesis with paleomagnetic data
from large dike swarms. _Earth Planet. Sci. Lett._ 406, 134–141 (2014). Article Google Scholar * Evans, D. A. D. & Pisarevsky, S. in _When Did Plate Tectonics Begin on Planet Earth?:
Geological Society of America Special Paper 440_ (eds Condie, K. C. & Pease, V.) 249-263 (Geological Society of America, 2008). * Bercovici, D., Tackley, P. J. & Ricard, Y. in
_Treatise on Geophysics_ 2nd edn Vol. 7 Mantle Dynamics (ed. Bercovici, D.) (Elsevier, 2015). * Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. _Rev. Geophysics_
46, RG2007 (2008). Article Google Scholar * Steinberger, B. & Torsvik, T. H. Toward an explanation for the present and past locations of the poles. _Geochem. Geophys. Geosystems_ 11,
Q06W06 (2010). Article Google Scholar * Steinberger, B., Schmeling, H. & Marquart, G. Large-scale lithospheric stress field and topography induced by global mantle circulation. _Earth
Planet. Sci. Lett._ 186, 75–91 (2001). Article Google Scholar * Herzberg, C., Condie, K. C. & Korenaga, J. Thermal history of the Earth and its petrological expression. _Earth Planet.
Sci. Lett._ 292, 79–88 (2010). Article Google Scholar * Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.
_Nature_ 485, 490–493 (2012). Article Google Scholar * McLennan, S. M. in _Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy_ Vol. 21 (eds Lipin, B. R. & McKay,
G. A.) 169-200 (Mineralogical Society of America, 1989). * Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by
gravitational instabilities. _Nat. Geosci._ 7, 47–52 (2013). Article Google Scholar * Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable
continents did not form by subduction. _Nature_ 543, 239–242 (2017). Article Google Scholar * Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds
from subcontinental mantle. _Science_ 333, 434–436 (2011). Article Google Scholar Download references ACKNOWLEDGEMENTS Support for this work came from the National Natural Science
Foundation of China (grants 41888101 and 41890833 to R.N.M. and 41976066 to N.Z.), the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (grant
IGGCAS-201905 to R.N.M.), the Academy of Finland (grant 288277 to J.S.), the Centre of Excellence project 223272 through the Research Council of Norway and the innovation pool of the
Helmholtz Association through the ‘Advanced Earth System Modelling Capacity (ESM)’ activity (B.S.), and the Australian Research Council (grant FL150100133 to Z.-X.L.). This is a contribution
to International Geoscience Programme (IGCP) 648. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
Academy of Sciences, Beijing, China Ross N. Mitchell * Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China Nan Zhang
* Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland Johanna Salminen * Earth Dynamics Research Group, School of Earth and Planetary Sciences, Curtin
University, Perth, Western Australia, Australia Yebo Liu & Zheng-Xiang Li * Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada
Christopher J. Spencer * Section 2.5 Geodynamic Modelling, GFZ German Research Centre for Geosciences, Potsdam, Germany Bernhard Steinberger * Centre for Earth Evolution and Dynamics,
University of Oslo, Oslo, Norway Bernhard Steinberger * Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada J. Brendan Murphy Authors * Ross N.
Mitchell View author publications You can also search for this author inPubMed Google Scholar * Nan Zhang View author publications You can also search for this author inPubMed Google Scholar
* Johanna Salminen View author publications You can also search for this author inPubMed Google Scholar * Yebo Liu View author publications You can also search for this author inPubMed
Google Scholar * Christopher J. Spencer View author publications You can also search for this author inPubMed Google Scholar * Bernhard Steinberger View author publications You can also
search for this author inPubMed Google Scholar * J. Brendan Murphy View author publications You can also search for this author inPubMed Google Scholar * Zheng-Xiang Li View author
publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS R.N.M. conceived the idea. N.Z. and B.S. conducted numerical modelling. J.S., Y.L. and Z.-X.L. made
palaeogeographic reconstructions. C.J.S. conducted geochemical analyses. J.B.M. coordinated the presentation of the various sections. All authors contributed to the manuscript preparation,
interpretation, discussion and writing, led by R.N.M. CORRESPONDING AUTHORS Correspondence to Ross N. Mitchell or Nan Zhang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no
competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Earth & Environment_ thanks T. Kusky, K. Condie and A. Merdith for their contribution to the peer
review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION
SUPPLEMENTARY TABLE 1 SUPPLEMENTARY DATA GLOSSARY * Large igneous provinces Extremely large (>105 km2 areal extent, >105 km3 volume) magmatic events of intrusives (sills, dykes) and
extrusives (lava flows, tephras) often attributed to mantle plumes. * Mantle plumes Buoyant hot mantle material that rises from the core–mantle boundary, owing to basal heating of the mantle
by the core. * Large low shear-wave velocity provinces Two low-seismic velocity structures in the lower mantle covering one fifth of the core-mantle boundary and up to several hundred km
tall. * True polar wander Rotation of solid Earth (mantle and crust) about the liquid outer core to align Earth’s maximum moment of inertia with the spin axis; also known as planetary
reorientation. * Degree 1 mantle flow One hemisphere of mantle upwelling and one hemisphere of mantle downwelling. * Degree 2 mantle flow Two antipodal mantle upwellings bisected by a
meridional girdle of mantle downwelling as the most likely degree 2 configuration for Earth’s mantle. * Orthoversion Model of supercontinent formation by closure of orthogonal seas (Arctic
and Caribbean seas and either the Indian Ocean or the Scotia Sea) ~90° away from the centre of the previous supercontinent. * Subduction girdle Circum-supercontinent subduction coupled with
degree 2 mantle downwelling, for example, the present-day ‘Ring of Fire’ of circum-Pacific subduction zones. * Megacontinent Geodynamic precursor to supercontinent formation that is large
(~70% the size of its supercontinent) and early (assembly ~200 Myr before supercontinent amalgamation). * Apparent polar wander Palaeomagnetically measured motion of a continent relative to
Earth’s time-averaged magnetic pole, and results from a combination of both plate motion and true polar wander. * Palaeomagnetism Study of rocks containing magnetic minerals that preserve
the orientation of the magnetic field and constrain the position of the continent with respect to the North Pole at that age. * Geocentric axial dipole Earth’s magnetic field is dominated by
a dipole at the surface that aligns with the spin axis when averaged over 1,000–10,000 years. * Geologic piercing points Geologic correlations used to test palaeogeographic reconstructions,
including orogenic sutures, conjugate rift margins, and magmatic intrusions and dyke swarms. * Magmatic barcodes Record of short-lived magmatic events on a continent or a craton that can be
compared with those of different fragments to test ancient palaeogeographic reconstructions. * Supercratons Assembly of Archaean cratons, where the landmasses were likely in small and
segregated clusters, which form an alternative hypothesis to an Archaean supercontinent. * Introversion Model of supercontinent formation by closure of the internal (Atlantic-like) ocean. *
Extroversion Model of supercontinent formation by closure of the external (Pacific-like) ocean. * Continental freeboard Mean height of the continental crust relative to mean sea level; also
referred to as continental emergence when positive in sign. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mitchell, R.N., Zhang, N., Salminen, J. _et
al._ The supercontinent cycle. _Nat Rev Earth Environ_ 2, 358–374 (2021). https://doi.org/10.1038/s43017-021-00160-0 Download citation * Accepted: 10 March 2021 * Published: 20 April 2021 *
Issue Date: May 2021 * DOI: https://doi.org/10.1038/s43017-021-00160-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link
Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative