The supercontinent cycle | Nature Reviews Earth & Environment

The supercontinent cycle | Nature Reviews Earth & Environment

Play all audios:

Loading...

ABSTRACT Supercontinents signify self-organization in plate tectonics. Over the past ~2 billion years, three major supercontinents have been identified, with increasing age: Pangaea, Rodinia


and Columbia. In a prototypal form, a cyclic pattern of continental assembly and breakup likely extends back to ~3 billion years ago, albeit on the smaller scale of Archaean supercratons,


which, unlike global supercontinents, were tectonically segregated. In this Review, we discuss how the emergence of supercontinents provides a minimum age for the onset of the modern global


plate tectonic network, whereas Archaean supercratons might reflect an earlier geodynamic and nascent tectonic regime. The assembly and breakup of Pangaea attests that the supercontinent


cycle is intimately linked with whole-mantle convection. The supercontinent cycle is, consequently, interpreted as both an effect and a cause of mantle convection, emphasizing the importance


of both top-down and bottom-up geodynamics, and the coupling between them. However, the nature of this coupling and how it has evolved remains controversial, resulting in contrasting models


of supercontinent formation, which can be tested by quantitative geodynamic modelling and geochemical proxies. Specifically, which oceans close to create a supercontinent, and how such


predictions are linked to mantle convection, are directions for future research. KEY POINTS * The supercontinent cycle is an outcome of plate tectonics as a self-organizing system, where a


supercontinent is both an effect and a cause of mantle convection, thus creating a feedback loop. * According to palaeogeography, three supercontinent cycles of assembly and breakup have


occurred over the past 2 billion years (Gyr). * Before 2 Gyr ago, the occurrence of an older supercontinent is uncertain, and possibly only smaller and separated landmasses existed. *


Geochemical proxies indicate secular change, suggesting tectonic evolution from non-cyclic to cyclic changes occurring ca. 2 Gyr ago, with the appearance of supercontinents. * For a better


understanding of supercontinent dynamics, it is necessary to connect mantle convection and plate tectonics into one theory. * Both top-down (lithospheric) and bottom-up (mantle) tectonics


control supercontinent dynamics, and it is critical to understand the coupling between them. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99


/ 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE EVOLUTION OF BASAL MANTLE STRUCTURE IN RESPONSE TO SUPERCONTINENT


AGGREGATION AND DISPERSAL Article Open access 25 November 2021 EARTH'S ANOMALOUS MIDDLE-AGE MAGMATISM DRIVEN BY PLATE SLOWDOWN Article Open access 21 June 2022 SLAB BUCKLING AS A DRIVER


FOR RAPID OSCILLATIONS IN INDIAN PLATE MOTION AND SUBDUCTION RATE Article Open access 12 June 2024 REFERENCES * Coltice, N., Gérault, M. & Ulvrová, M. A mantle convection perspective on


global tectonics. _Earth Sci. Rev._ 165, 120–150 (2017). EXPLORES HOW GEODYNAMIC MODELS, BASED ON OBSERVATIONS SUCH AS KINEMATICS, STRESS, DEFORMATION AND RHEOLOGY, THAT LINK MANTLE


CONVECTION AND PLATE TECTONICS CAN TAKE INTO ACCOUNT SELF-ORGANIZATION. Article  Google Scholar  * Bercovici, D. The generation of plate tectonics from mantle convection. _Earth Planet. Sci.


Lett._ 205, 107–121 (2003). Article  Google Scholar  * Stern, R. J. & Gerya, T. Earth evolution, emergence, and uniformitarianism. _GSA Today_ https://doi.org/10.1130/GSATG479GW.1


(2020). Article  Google Scholar  * Alblowitz, R. The theory of emergence. _Philos. Sci._ 6, 1–16 (1939). Article  Google Scholar  * Worsley, T. R., Nance, R. D. & Moody, J. B. Tectonic


cycles and the history of the Earth’s biogeochemical and paleoceanographic record. _Paleoceanography_ 1, 233–263 (1986). Article  Google Scholar  * Worsley, T. R., Nance, R. D. & Moody,


J. B. Global tectonics and eustasy for the past 2 billion years. _Mar. Geol._ 58, 373–400 (1984). Article  Google Scholar  * Nance, D., Worsley, T. R. & Moody, J. B. The supercontinent


cycle. _Sci. Am._ 259, 72–79 (1988). Article  Google Scholar  * Nance, R. D., Worsley, T. R. & Moody, J. B. Post-Archean biogeochemical cycles and long-term episodicity in tectonic


processes. _Geology_ 14, 514–518 (1986). Article  Google Scholar  * Nance, R. D., Murphy, J. B. & Santosh, M. The supercontinent cycle: A retrospective essay. _Gondwana Res._ 25, 4–29


(2014). Article  Google Scholar  * Evans, D. A. D. Reconstructing pre-Pangean supercontinents. _Geol. Soc. Am. Bull._ 125, 1735–1751 (2013). OFFERS A REVIEW OF THE HISTORY OF EFFORTS TO


RECONSTRUCT PRE-PANGAEAN SUPERCONTINENTS AND SHOWS THE EMERGING CONSENSUS, AND REMAINING UNCERTAINTIES, OF EACH OF THEIR RECONSTRUCTIONS. Article  Google Scholar  * Valentine, J. W. &


Moores, E. M. Plate-tectonic regulation of faunal diversity and sea level: A model. _Nature_ 228, 657–659 (1970). Article  Google Scholar  * Zaffos, A., Finnegan, S. & Peters, S. E.


Plate tectonic regulation of global marine animal diversity. _Proc. Natl Acad. Sci. USA_ 114, 5653–5658 (2017). Article  Google Scholar  * Mitchell, R. N., Raub, T. D., Silva, S. C. &


Kirschvink, J. L. Was the Cambrian explosion both an effect and an artifact of true polar wander? _Am. J. Sci._ 315, 945–957 (2015). Article  Google Scholar  * Allison, P. A. & Briggs,


D. E. G. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. _Geology_ 21, 65–68 (1993). Article  Google Scholar  * Wegener, A. _The Origin of


Continents and Oceans_ 4th edn (Dover, 1929). * Vine, F. J. & Matthews, D. H. Magnetic anomalies over oceanic ridges. _Nature_ 199, 947–949 (1963). Article  Google Scholar  * Wilson, J.


T. Evidence from islands on the spreading of ocean floors. _Nature_ 197, 536–538 (1963). Article  Google Scholar  * Wilson, J. T. A new class of faults and their bearing on continental


drift. _Nature_ 207, 343–347 (1965). Article  Google Scholar  * Wilson, J. T. Did the Atlantic close and then re-open? _Nature_ 211, 676–681 (1966). Article  Google Scholar  * Wilson, J. T.


Hypothesis of Earth’s behaviour. _Nature_ 198, 925–929 (1963). Article  Google Scholar  * McKenzie, D. P. & Parker, R. L. The North Pacific: an example of tectonics on a sphere. _Nature_


216, 1276–1280 (1967). Article  Google Scholar  * Morgan, J. Rises, trenches, great faults, and crustal blocks. _J. Geophys. Res._ 73, 1959–1982 (1968). Article  Google Scholar  * Wan, B.


et al. Seismological evidence for the earliest global subduction network at 2 Ga. _Sci. Adv._ 6, eabc5491 (2020). REPORTS THE FIRST GLOBAL-SCALE EVIDENCE FOR SUBDUCTION USING SEISMIC IMAGES


FROM MULTIPLE CONTINENTS, ARGUING FOR THE ONSET OF THE GLOBAL PLATE TECTONIC NETWORK BY CA. 2GA. Article  Google Scholar  * Mitchell, R. N. et al. Plate tectonics before 2.0 Ga: Evidence


from paleomagnetism of cratons within supercontinent Nuna. _Am. J. Sci._ 314, 878–894 (2014). Article  Google Scholar  * Stern, R. J. The evolution of plate tectonics. _Philos. Trans. R.


Soc. A_ 376, 20170406 (2018). Article  Google Scholar  * Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. _Annu. Rev. Earth Planet. Sci._ 48, 291–320


(2020). Article  Google Scholar  * Guo, M. & Korenaga, J. Argon constraints on the early growth of felsic continental crust. _Sci. Adv._ 6, eaaz6234 (2020). Article  Google Scholar  *


Rosas, J. C. & Korenaga, J. Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. _Earth Planet. Sci. Lett._ 494,


42–49 (2018). Article  Google Scholar  * Windley, B. F., Kusky, T. M. & Polat, A. Onset of plate tectonics by the Eoarchean. _Precambrian Res._ 352, 105980 (2021). Article  Google


Scholar  * El Dien, H. G., Doucet, L. S., Murphy, J. B. & Li, Z. X. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate


tectonics. _Sci. Rep._ 10, 9461 (2020). Article  Google Scholar  * Hoffman, P. F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. _J. Afr. Earth Sci._


28, 17–33 (1999). Article  Google Scholar  * Meert, J. G. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. _Gondwana Res._ 21, 987–993 (2012). Article  Google Scholar  *


Pastor-Galán, D. et al. Supercontinents: myths, mysteries, and milestones. _Geol. Soc. Lond. Spec. Publ._ 470, 39–64 (2018). Article  Google Scholar  * Ebinger, C. J. & Sleep, N. H.


Cenozoic magmatism throughout east Africa resulting from impact of a single plume. _Nature_ 395, 788–791 (1998). Article  Google Scholar  * van Hinsbergen, D. J. J. et al. Greater India


Basin hypothesis and a two-stage Cenozoic collision between India and Asia. _Proc. Natl Acad. Sci. USA_ 109, 7659–7664 (2012). Article  Google Scholar  * Evans, D. A. D., Li, Z.-X. &


Murphy, J. B. Four-dimensional context of Earth’s supercontinents. _Geol. Soc. Lond. Spec. Publ._ 424, 1–14 (2016). Article  Google Scholar  * Mitchell, R. N. et al. Harmonic hierarchy of


mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. _Gondwana Res._ 75, 239–248 (2019). Article  Google Scholar  * Gardiner, N. J., Kirkland, C. L.


& van Kranendonk, M. The juvenile hafnium isotope signal as a record of supercontinent cycles. _Sci. Rep._ 6, 38503 (2016). Article  Google Scholar  * Kirscher, U. et al. Paleomagnetic


constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. _Geology_ 49, 174–179 (2021). Article  Google Scholar  * Irving, E. _Paleomagnetism


and Its Application to Geological and Geophysical Problems_ (Wiley, 1964). * van der Voo, R. _Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans_ (Cambridge Univ. Press, 1993). *


Murphy, J. B. & Nance, R. D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. _Geology_ 19, 469–472 (1991). Article  Google Scholar  * Murphy, J. B.


& Nance, R. D. The Pangea conundrum. _Geology_ 36, 703–706 (2008). Article  Google Scholar  * Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late


Paleozoic. _Glob. Planet. Change_ 146, 226–250 (2016). Article  Google Scholar  * Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. _Earth-Sci. Rev._ 114, 325–368


(2012). Article  Google Scholar  * Irving, E. Drift of the major continental blocks since the Devonian. _Nature_ 270, 304–309 (1977). Article  Google Scholar  * Du Toit, A. L. _Our


Wandering Continents_ (Oliver and Boyd, 1937). * Morel, P. & Irving, E. Paleomagnetism and the evolution of Pangea. _J. Geophys. Res._ 86, 1858–1872 (1981). Article  Google Scholar  *


Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. _J. Geophys. Res. Solid Earth_ 124, 7231–7258 (2019).


Article  Google Scholar  * Domeier, M. & Torsvik, T. Plate tectonics in the late Paleozoic. _Geosci. Front._ 5, 303–350 (2014). Article  Google Scholar  * Burke, K., Steinberger, B.,


Torsvik, T. & Smethurst, M. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. _Earth Planet. Sci. Lett._ 265, 49–60 (2008). Article


  Google Scholar  * Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. _Earth Planet. Sci.


Lett._ 227, 531–538 (2004). Article  Google Scholar  * Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary.


_Nature_ 466, 352–355 (2010). Article  Google Scholar  * Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large


low-velocity provinces in the deep mantle. _Geophys. J. Int._ 167, 1447–1460 (2006). Article  Google Scholar  * Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. Longitude:


Linking Earth’s ancient surface to its deep interior. _Earth Planet. Sci. Lett._ 276, 273–282 (2008). Article  Google Scholar  * Torsvik, T. H. et al. Deep mantle structure as a reference


frame for movements in and on the Earth. _Proc. Natl Acad. Sci. USA_ 111, 8735–8740 (2014). Article  Google Scholar  * Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to


reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. _Geochem. Geophys. Geosystems_ 17, 1130–1163 (2016). Article  Google Scholar 


* Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. _Nature_ 498, 479–482 (2013). SHOWS HOW PLATE


TECTONIC MOTIONS DURING THE PAST 250 MYR HAVE BEEN TIGHTLY COUPLED WITH DEGREE 1 AND DEGREE 2 MANTLE FLOW, OWING TO BASAL TRACTIONS BEING NEARLY AS STRONG AS SLAB-PULL FORCES. Article 


Google Scholar  * Spencer, C. J. et al. Evidence for whole mantle convection driving Cordilleran tectonics. _Geophys. Res. Lett._ 46, 4239–4248 (2019). Article  Google Scholar  * Mitchell,


R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. _Nature_ 482, 208–211 (2012). PROVIDES THE FIRST GEODYNAMIC


MODEL OF SUPERCONTINENT FORMATION, ORTHOVERSION, WHERE A NEW SUPERCONTINENT WILL FORM ALONG THE DEGREE 2 SUBDUCTION GIRDLE ~90° AWAY FROM ITS PREDECESSOR. Article  Google Scholar  * Chase,


C. G. & Sprowl, D. R. The modern geoid and ancient plate boundaries. _Earth Planet. Sci. Lett._ 62, 314–320 (1983). Article  Google Scholar  * Hager, B. H. Subducted slabs and the geoid:


constraints on mantle rheology and flow. _J. Geophys. Res. Solid Earth_ 89, 6003–6015 (1984). Article  Google Scholar  * Steinberger, B. & Torsvik, T. H. Absolute plate motions and true


polar wander in the absence of hotspot tracks. _Nature_ 452, 620–623 (2008). FINDS OSCILLATORY TOTAL MOTIONS OF ALL CONTINENTS USING APPARENT POLAR WANDER (APW), WHICH CAN BE INTERPRETED AS


TRUE POLAR WANDER (TPW) ABOUT A STABLE AXIS NEAR THE CENTRE OF SUPERCONTINENT PANGAEA. Article  Google Scholar  * Mitchell, R. N. True polar wander and supercontinent cycles: Implications


for lithospheric elasticity and the triaxial Earth. _Am. J. Sci._ 314, 966–979 (2014). Article  Google Scholar  * Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic


evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. _Geol. Soc. Am. Bull._ 118, 1099–1124 (2006). Article  Google Scholar  * Kent, D. V.,


Kjarsgaard, B. A., Gee, J. S., Muttoni, G. & Heaman, L. M. Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior


Province of Canada). _Geochem. Geophys. Geosystems_ 16, 983–994 (2015). Article  Google Scholar  * Fu, R. R. & Kent, D. V. Anomalous Late Jurassic motion of the Pacific Plate with


implications for true polar wander. _Earth Planet. Sci. Lett._ 490, 20–30 (2018). Article  Google Scholar  * Fu, R. R., Kent, D. V., Hemming, S. R., Gutierrez, P. & Creveling, J. R.


Testing the occurrence of Late Jurassic true polar wander using the La Negra volcanics of northern Chile. _Earth Planet. Sci. Lett._ 529, 115835 (2020). Article  Google Scholar  * Creveling,


J. R., Mitrovica, J. X., Chan, N. H., Latychev, K. & Matsuyama, I. Mechanisms for oscillatory true polar wander. _Nature_ 491, 244–248 (2012). Article  Google Scholar  * Evans, D. A. D.


True polar wander, a supercontinental legacy. _Earth Planet. Sci. Lett._ 157, 1–8 (1998). Article  Google Scholar  * Evans, D. A. D. True polar wander and supercontinents. _Tectonophysics_


362, 303–320 (2003). Article  Google Scholar  * Su, W. & Dziewonski, A. M. Predominance of long-wavelength heterogeneity in the mantle. _Nature_ 352, 121–126 (1991). Article  Google


Scholar  * Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. _J. Geophys. Res. Solid Earth_ 115, B06401


(2010). Google Scholar  * Zhong, S. J., Zhang, N., Li, Z. X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. _Earth Planet. Sci.


Lett._ 261, 551–564 (2007). PROVIDES NUMERICAL MODELLING TO LINK MAJOR MODES OF MANTLE CONVECTION (DEGREES 1 AND 2) TO SUPERCONTINENT FORMATION AND TPW, WITH DEGREE 1 DOWNWELLING


FACILITATING SUPERCONTINENT FORMATION AND DEGREE 2 CONVECTION THEN RESULTING FROM CIRCUM-SUPERCONTINENT DOWNWELLING. Article  Google Scholar  * Dziewonski, A. M., Lekic, V. & Romanowicz,


B. Mantle anchor structure: An argument for bottom up tectonics. _Earth Planet. Sci. Lett._ 299, 69–79 (2010). Article  Google Scholar  * Li, Z.-X. & Zhong, S. Supercontinent–superplume


coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. _Phys. Earth Planet. Inter._ 176, 143–156 (2009). Article  Google Scholar  * Zhong, S. & Liu,


X. The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerzoic. _Gondwana Res._ 29, 83–104 (2016). Article  Google Scholar  *


Mitchell, R. N., Wu, L., Murphy, J. B. & Li, Z. X. Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. _Geosci. Front._ 11,


1253–1256 (2020). Article  Google Scholar  * Heron, P. J. & Lowman, J. P. The impact of Rayleigh number on assessing the significance of supercontinent insulation. _J. Geophys. Res.


Solid Earth_ 119, 711–733 (2014). Article  Google Scholar  * Phillips, B. R. & Coltice, N. Temperature beneath continents as a function of continental cover and convective wavelength.


_J. Geophys. Res._ 115, B04408 (2010). Google Scholar  * Doucet, L. S. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. _Nat. Geosci._ 13,


511–515 (2020). Article  Google Scholar  * Doucet, L. S., Li, Z. X., Ernst, R. E., Kirscher, U. & Gamal El Diean, H. Coupled supercontinent–mantle plume events evidenced by oceanic plume


record. _Geology_ 48, 159–163 (2020). Article  Google Scholar  * Anderson, D. L. Hotspots, polar wander, Mesozoic convection and the geoid. _Nature_ 297, 391–393 (1982). Article  Google


Scholar  * Evans, D. A. D. Proposal with a ring of diamonds. _Nature_ 466, 326–327 (2010). Article  Google Scholar  * Liu, X. & Zhong, S. The long-wavelength geoid from three-dimensional


spherical models of thermal and thermochemical mantle convection. _J. Geophys. Res. Solid Earth_ 120, 4572–4596 (2015). Article  Google Scholar  * Gurnis, M. Large-scale mantle convection


and the aggregation and dispersal of supercontinents. _Nature_ 332, 695–699 (1988). Article  Google Scholar  * Anderson, D. L. Superplumes or supercontinents? _Geology_ 22, 39–42 (1994).


Article  Google Scholar  * Torsvik, T. H. & Cocks, R. M. _Earth History and Palaeogeography_ (Cambridge Univ. Press, 2016). * Berner, R. A. Phanerozoic atmospheric oxygen: New results


using the GEOCARBSULF model. _Am. J. Sci._ 309, 603–606 (2009). Article  Google Scholar  * Kump, L. R. The rise of atmospheric oxygen. _Nature_ 451, 277–278 (2008). Article  Google Scholar 


* Mann, P., Gahagan, L. & Gordon, M. B. in _Giant Oil and Gas Fields of the Decade 1990–1999_ Vol. 78 (ed. Halbouty, M. T.) 15-105 (AAPG Memoir, 2003). * Campbell, I. H. & Allen, C.


M. Formation of supercontinents linked to increases in atmospheric oxygen. _Nat. Geosci._ 1, 554–558 (2008). Article  Google Scholar  * Condie, K. C. Episodic continental growth and


supercontinents: a mantle avalanche connection? _Earth Planet. Sci. Lett._ 163, 97–108 (1998). Article  Google Scholar  * Condie, K. C. The supercontinent cycle: Are there two patterns of


cyclicity? _J. Afr. Earth Sci._ 35, 179–183 (2002). Article  Google Scholar  * Sutton, J. Long-term cycles in the evolution of the continents. _Nature_ 198, 731–735 (1963). Article  Google


Scholar  * Bradley, D. C. Secular trends in the geologic record and the supercontinent cycle. _Earth Sci. Rev._ 108, 16–33 (2011). Article  Google Scholar  * Li, Z. X. et al. Decoding


Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. _Precambrian Res._ 323, 1–5 (2019). Article  Google Scholar  * Zhao, H. Q. et al. New geochronologic and


paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the


reconstruction of Rodinia. _GSA Bull._ 132, 739–766 (2020). Article  Google Scholar  * Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. _Gondwana Res._ 50,


84–134 (2017). Article  Google Scholar  * Evans, D. A. D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. _Geol. Soc. Lond. Spec. Publ._


327, 371–404 (2009). Article  Google Scholar  * Li, Z. X. & Evans, D. A. D. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting


Rodinia. _Geology_ 39, 39–42 (2011). Article  Google Scholar  * Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. _Precambrian Res._ 160, 179–210


(2008). Article  Google Scholar  * Li, Z. X., Evans, D. A. D. & Halverson, G. P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the


assembly of Gondwanaland. _Sediment. Geol._ 294, 219–232 (2013). Article  Google Scholar  * Hoffman, P. F. Did the breakout of Laurentia turn Gondwanaland inside-out? _Science_ 252,


1409–1412 (1991). Article  Google Scholar  * Hoffman, P. F. in _Earth Structure: An Introduction to Structural Geology and Tectonics_ (eds van der Pluijm, B. A. & Marshak, S.) 459-464


(McGraw-Hill, 1997). * Evans, D. A. D. & Mitchell, R. N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. _Geology_ 39, 443–446 (2011). Article 


Google Scholar  * Zhang, S. et al. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. _Earth Planet. Sci. Lett._ 353-354, 145–155


(2012). Article  Google Scholar  * Kirscher, U. et al. Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) - A two-stage assembly of the supercontinent Nuna? _Precambrian


Res._ 329, 170–181 (2019). Article  Google Scholar  * Mitchell, R. N., Kirscher, U., Kunzmann, M., Liu, Y. & Cox, G. M. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic


oceanic euxinic event. _Geology_ 49, 25–29 (2021). Article  Google Scholar  * Wu, H., Zhang, S., Li, Z.-X., Li, H. & Dong, J. New paleomagnetic results from the Yangzhuang Formation of


the Jixian System, North China, and tectonic implications. _Chin. Sci. Bull._ 50, 1483–1489 (2005). Article  Google Scholar  * Pisarevsky, S. A., Elming, S.-A., Pesonen, L. J. & Li,


Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond. _Precambrian Res._ 244, 207–225 (2014). Article  Google Scholar  * Zhao, G., Cawood, P. A., Wilde, S. A. & Sun, M. Review


of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. _Earth Sci. Rev._ 59, 125–162 (2002). Article  Google Scholar  * Zhao, G. C., Sun, M., Wilde, S. A. & Li, S.


Z. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. _Earth-Sci. Rev._ 67, 91–123 (2004). Article  Google Scholar  * Zhao, G., Li, S., Sun, M. & Wilde, S. A.


Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. _Int. Geol. Rev._ 53, 1331–1356 (2011). Article  Google


Scholar  * Wang, C., Mitchell, R. N., Murphy, J. B., Peng, P. & Spencer, C. J. The role of megacontinents in the supercontinent cycle. _Geology_ https://doi.org/10.1130/G47988.1 (2020).


ESTABLISHES A MEGACONTINENT (FOR EXAMPLE, GONDWANA) AS AN IMPORTANT GEODYNAMIC PRECURSOR TO THE LATER ASSEMBLY OF A SUPERCONTINENT (FOR EXAMPLE, PANGAEA). Article  Google Scholar  * Raub, T.


D., Kirschvink, J. L. & Evans, D. in _Treatise on Geophysics_ Vol. 5 565–589 (Elsevier Science, 2007). * Ernst, R. E. et al. Long-lived connection between southern Siberia and northern


Laurentia in the Proterozoic. _Nat. Geosci._ 9, 464–469 (2016). Article  Google Scholar  * Evans, D. A. D., Veselovsky, R. V., Petrov, P. Y., Shatsillo, A. V. & Pavlov, V. E.


Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. _Precambrian Res._ 281, 639–655 (2016). Article 


Google Scholar  * Pisarevsky, S. A., Natapov, L. M., Donskaya, T. V., Gladkochub, D. P. & Vernikovsky, V. A. Proterozoic Siberia: a promontory of Rodinia. _Precambrian Res._ 160, 66–76


(2008). Article  Google Scholar  * Cawood, P. A. et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. _Earth Sci. Rev._ 204, 103169 (2020). Article  Google


Scholar  * Spencer, C. J., Hawkesworth, C., Cawood, P. A. & Dhiume, B. Not all supercontinents are created equal: Gondwana-Rodinia case study. _Geology_ 41, 795–798 (2013). Article 


Google Scholar  * Liu, C., Knoll, A. H. & Hazen, R. M. Geochemical and mineralogical evidence that Rodinian assembly was unique. _Nat. Commun._ 8, 1950 (2017). Article  Google Scholar  *


Leach, D. L. et al. Sediment-hosted lead-zinc deposits in Earth history. _Econ. Geol._ 105, 593–625 (2010). Article  Google Scholar  * Hoffman, P. F. et al. Snowball Earth climate dynamics


and Cryogenian geology-geobiology. _Sci. Adv._ 3, e1600983 (2017). Article  Google Scholar  * Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball


Earth. _Science_ 281, 1342–1346 (1998). Article  Google Scholar  * Kirschvink, J. L. in _The Proterozoic Biosphere: A Multidisciplinary Study_ (eds Schopf, J. W. & Klein, C.) 51-52


(Cambridge Univ. Press, 1992). * Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climate paradox. _Am. J. Sci._ 300, 347–433 (2000).


Article  Google Scholar  * Keller, C. B. et al. Neoproterozoic glacial origin of the great unconformity. _Proc. Natl Acad. Sci. USA_ 116, 1136–1145 (2019). Article  Google Scholar  *


Mitchell, R. N. et al. Hit or miss: Glacial incisions of snowball Earth. _Terra Nova_ 31, 381–389 (2019). Google Scholar  * Gernon, T. M., Hincks, T. K., Tyrell, T., Rohling, E. J. &


Palmer, M. R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. _Nat. Geosci._ 9, 242–248 (2016). Article  Google Scholar  * Bowring, S. A. &


Grotzinger, J. P. Implications of new chronostratigraphy for tectonic evolution of Wopmay Orogen, northwest Canadian Shield. _Am. J. Sci._ 292, 1–20 (1992). Article  Google Scholar  *


Hoffman, P. F. The origin of Laurentia: Rae Craton as the backstop for proto-Laurentian amalgamation by slab suction. _Geosci. Can._ 41, 313–320 (2014). Article  Google Scholar  * Pourteau,


A. et al. 1.6 Ga crustal thickening along the final Nuna suture. _Geology_ 46, 959–962 (2018). Article  Google Scholar  * Hoffman, P. F. Speculations on Laurentia’s first gigayear (2.0 to


1.0 Ga). _Geology_ 17, 135–138 (1989). Article  Google Scholar  * Li, Z. X. et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with


other continents: evidence for a mantle superplume that broke up Rodinia. _Precambrian Res._ 122, 85–109 (2003). Article  Google Scholar  * Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J.


The breakup of Rodinia: did it start with a mantle plume beneath South China? _Earth Planet. Sci. Lett._ 173, 171–181 (1999). Article  Google Scholar  * Mitchell, R. N., Hoffman, P. F.


& Evans, D. A. D. Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton. _Precambrian Res._ 179, 121–134 (2010).


Article  Google Scholar  * Mitchell, R. N. et al. Sutton hotspot: Resolving Ediacaran-Cambrian Tectonics and true polar wander for Laurentia. _Am. J. Sci._ 311, 651–663 (2011). Article 


Google Scholar  * Li, Z.-X., Evans, D. A. D. & Zhang, S. A 90 degrees spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and


low-latitude glaciation. _Earth Planet. Sci. Lett._ 220, 409–421 (2004). Article  Google Scholar  * Jing, X. et al. A pan-latitudinal Rodinia in the Tonian true polar wander frame. _Earth


Planet. Sci. Lett._ 530, 115880 (2020). Article  Google Scholar  * Swanson-Hysell, N. L. et al. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic


records of the Bitter Springs Formation, Amadeus Basin, central Australia. _Am. J. Sci._ 312, 817–884 (2012). Article  Google Scholar  * Dhuime, B., Hawkesworth, C. J., Cawood, P. A. &


Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. _Science_ 334, 1334–1336 (2012). Article  Google Scholar  * Hawkesworth, C. J., Cawood, P. A. &


Dhiume, B. Rates of generation and growth of the continental crust. _Geosci. Front._ 10, 165–173 (2019). Article  Google Scholar  * Korenaga, J. Crustal evolution and mantle dynamics through


Earth history. _Philos. Trans. A_ 376, 20170408 (2018). Article  Google Scholar  * Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric


oxygen to growth in the continental phosphorus inventory. _Earth Planet. Sci. Lett._ 489, 28–36 (2018). Article  Google Scholar  * Blichert-Toft, J. & Albarde, F. Short-lived chemical


heterogeneities in the Archean mantle with implications for mantle convection. _Science_ 263, 1593–1596 (1994). Article  Google Scholar  * Williams, H., Hoffman, P. F., Lewry, J. F., Monger,


J. W. H. & Rivers, T. Anatomy of North America: thematic geologic portrayals of the continent. _Tectonophysics_ 187, 117–134 (1991). Article  Google Scholar  * Salminen, J., Oliveira,


E., Piispa, E., Smirnov, A. & Trindade, R. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons. _Precambrian Res._ 329,


108–123 (2019). Article  Google Scholar  * Pisarevsky, S. A., De Waele, B., Jones, S., Soderlund, U. & Ernst, R. E. Paleomagnetism and U–Pb age of the 2.4 Ga Erayinia mafic dykes in the


south-western Yilgarn, Western Australia: Paleogeographic and geodynamic implications. _Precambrian Res._ 259, 222–231 (2015). Article  Google Scholar  * Ernst, R. E. & Bleeker, W. Large


igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada from 2.5 Ga to present. _Can. J. Earth Sci._ 47, 695–739 (2010). Article 


Google Scholar  * Bleeker, W. & Ernst, R. E. in _Dyke Swarms - Time Markers of Crustal Evolution_ (eds Hanski, E., Mertanen, S., Ramo, T., & Vuollo, J. I.) 3-26 (Taylor & Francis


Group, 2006). * Bleeker, W. The late Archean record: a puzzle in ca. 35 pieces. _Lithos_ 71, 99–134 (2003). PROPOSES THAT SMALL AND SEGREGATED ARCHAEAN SUPERCRATONS EXISTED INSTEAD OF ONE


UNIFIED SUPERCONTINENT BASED ON HIGHLY DIACHRONOUS TECTONOMAGMATIC EVENTS. Article  Google Scholar  * Windley, B. F. Crustal development in the Precambrian. _Philos. Trans. R. Soc. Lond. A_


273, 321–341 (1973). Article  Google Scholar  * Cawood, P. et al. Geological archive of the onset of plate tectonics. _Philos. Trans. A Math. Phys. Eng. Sci._ 376, 20170405 (2018). Google


Scholar  * Gumsley, A. P. et al. Timing and tempo of the great oxidation event. _Proc. Natl Acad. Sci. USA_ 114, 1811–1816 (2017). OFFERS A COMBINED GEOLOGIC AND PALAEOMAGNETIC


RECONSTRUCTION OF SUPERCRATON SUPERIA AND ITS CONTEXT IN LOW-LATITUDE GLACIATION AND THE GREAT OXIDATION EVENT. Article  Google Scholar  * Roscoe, S. M. & Card, K. D. The reappearance of


the Huronian in Wyoming: rifting and drifting of ancient continents. _Can. J. Earth Sci._ 30, 2475–2480 (1993). Article  Google Scholar  * Kilian, T. M., Bleeker, W., Chamberlain, K. R.,


Evans, D. A. D. & Cousens, B. L. Palaeomagnetism, geochronology and geochemistry of the Palaeoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in


supercraton Superia. _Geol. Soc. Lond. Spec. Publ._ 424, 15–45 (2016). Article  Google Scholar  * Liu, Y. et al. Archean geodynamics: Ephemeral supercontinents or long-lived supercratons.


_Geology_ https://doi.org/10.1130/G48575.1 (2021). FINDS PALAEOMAGNETIC EVIDENCE THAT ARGUES STRONGLY IN FAVOUR OF SEGREGATED ARCHAEAN SUPERCRATONS INSTEAD OF ONE UNIFIED SUPERCONTINENT.


Article  Google Scholar  * De Kock, M. O., Evans, D. A. D. & Beukes, N. J. Validating the existence of Vaalbara in the Neoarchean. _Precambrian Res._ 174, 145–154 (2009). Article  Google


Scholar  * Evans, M. E. & Muxworthy, A. R. Vaalbara palaeomagnetism. _Can. J. Earth Sci._ 56, 912–916 (2019). Article  Google Scholar  * de Wit, M. J. et al. Formation of an Archaean


continent. _Nature_ 357, 553–562 (1992). Article  Google Scholar  * van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? _Annu. Rev. Earth Planet. Sci._ 40, 195–219 (2012).


Article  Google Scholar  * Moyen, J.-F. & Laurent, O. Archaean tectonic systems: A view from igneous rocks. _Lithos_ 302–303, 99–125 (2018). Article  Google Scholar  * Rolf, T., Coltice,


N. & Tackley, P. J. Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. _Earth Planet. Sci. Lett._ 351–352, 134–146 (2012). Article  Google Scholar 


* Zhang, N., Zhong, S. J. & McNamara, A. K. Supercontinent formation from stochastic collision and mantle convection models. _Gondwana Res._ 15, 267–275 (2009). Article  Google Scholar 


* Yoshida, M. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two? _Geophys. Res. Lett._ 35, L23302 (2008). Article  Google Scholar  *


Grigne, C., Labrosse, S. & Tackley, P. J. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. _J. Geophys. Res._ 110, B03409 (2005). Google


Scholar  * Lenardic, A., Richards, M. A. & Busse, F. H. Depth-dependent rheology and the horizontal length scale of mantle convection. _J. Geophys. Res._ 111, B07404 (2006). Google


Scholar  * Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest mesoproterozoic inner-core nucleation. _Nature_ 526, 245–248 (2015). Article  Google Scholar  * Bono, R. K.,


Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. _Nat. Geosci._ 12, 143–147 (2019). Article  Google Scholar  *


Bunge, H. P., Richards, M. A. & Baumgardner, J. R. Effect of depth-dependent viscosity on the planform of mantle convection. _Nature_ 379, 436–438 (1996). Article  Google Scholar  *


Evans, D. A. Pannotia under prosecution. _Geol. Soc. Lond. Spec. Publ._ 503, 63–81 (2020). Article  Google Scholar  * Murphy, J. B. et al. Pannotia: in defence of its existence and


geodynamic significance. _Geol. Soc. Lond. Spec. Publ._ 503, 13–39 (2021). Article  Google Scholar  * Yoshida, M. Formation of a future supercontinent through plate motion-driven flow


coupled with mantle downwelling flow. _Geology_ 44, 755–758 (2016). Article  Google Scholar  * Yoshida, M. & Santosh, M. Future supercontinent assembled in the northern hemisphere.


_Terra Nova_ 23, 333–338 (2011). Article  Google Scholar  * Replumaz, A., Karasn, H., van der Hilst, R., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological


reconstructions and seismic tomography. _Earth Planet. Sci. Lett._ 221, 103–115 (2004). Article  Google Scholar  * Coltice, N., Phillips, B. R., Bertrand, H., Ricard, Y. & Rey, P. Global


warming of the mantle at the origin of flood basalts over supercontinents. _Geology_ 35, 391–394 (2007). Article  Google Scholar  * Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R.


Age, spreading rates, and spreading asymmetry of the world’s ocean crust. _Geochem. Geophys. Geosystems_ 9, Q04006 (2008). Article  Google Scholar  * Zhang, N., Dang, Z., Huang, C. &


Li, Z. X. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? _Geosci. Front._ 9, 997–1007 (2018). Article  Google Scholar  * Buiter, S. J. H. &


Torsvik, T. H. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? _Gondwana Res._ 26, 627–653 (2014). Article  Google Scholar  * Dang, Z.


et al. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. _Commun. Earth Environ._ 1, 51 (2020). Article  Google Scholar  * Brune, S., Popov, A. A.


& Sobolev, S. V. Quantifying the thermo-mechanical impact of plume arrival on continental break-up. _Tectonophysics_ 604, 51–59 (2013). Article  Google Scholar  * Koptev, A., Calais, E.,


Burov, E., Leroy, S. & Gerya, T. Dual continental rift systems generated by plume–lithosphere interaction. _Nat. Geosci._ 8, 388–392 (2015). Article  Google Scholar  * Bercovici, D.


& Long, M. D. Slab rollback instability and supercontinent dispersal. _Geophys. Res. Lett._ 41, 6659–6666 (2014). Article  Google Scholar  * Huang, C. et al. Modeling the inception of


supercontinent breakup: stress state and the importance of orogens. _Geochem. Geophys. Geosystems_ 20, 4830–4848 (2019). Article  Google Scholar  * Hartnady, C. J. H. About turn for


supercontinents. _Nature_ 352, 476–478 (1991). Article  Google Scholar  * Hartnady, C. J. H. Supercontinents and geotectonic megacycles. _Precambrian Research Unit, Department of Geology,


University of Cape Town, Information Circular No. 1_ PART 2, 6–16 (1991). Google Scholar  * Veevers, J. J., Walter, M. R. & Scheibner, E. Neoproterozoic tectonics of Australia-Antarctica


and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m.y. Pangean supercycle. _J. Geol._ 105, 225–242 (1997). Article  Google Scholar  * Silver, P. G. & Behn, M. D.


Intermittent plate tectonics? _Science_ 319, 85–88 (2008). Article  Google Scholar  * Murphy, J. B. & Nance, R. D. Do supercontinents introvert or extrovert? Sm-Nd isotope evidence.


_Geology_ 31, 873–876 (2003). Article  Google Scholar  * Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. Two contrasting Phanerozoic orogenic systems revealed by hafnium


isotope data. _Nat. Geosci._ 4, 333–337 (2011). Article  Google Scholar  * Murphy, J. B. & Nance, R. D. Speculations on the mechanisms for the formation and breakup of supercontinents.


_Geosci. Front._ 4, 185–194 (2013). Article  Google Scholar  * Bradley, D. C. Passive margins through earth history. _Earth Sci. Rev._ 91, 1–26 (2008). Article  Google Scholar  * Condie, K.


C. & Aster, R. C. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. _Precambrian Res._ 180, 227–236 (2010). Article  Google


Scholar  * El Dien, H. G., Doucet, L. S. & Li, Z. X. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. _Nat. Commun._ 10, 5270 (2019).


Article  Google Scholar  * Spencer, C. J., Roberts, N. M. W. & Santosh, M. Growth, destruction, and preservation of Earth’s continental crust. _Earth Sci. Rev._ 172, 87–106 (2017).


Article  Google Scholar  * Valley, J. W. et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. _Contrib. Mineral. Petrol._ 150, 561–580 (2005). Article 


Google Scholar  * Spencer, C. J. et al. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. _Geochem. Cosmochem. Acta_ 257, 16–25 (2019). Article  Google


Scholar  * Jensen, G. Closed-form estimation of multiple change-point models. _PeerJ PrePrints_ https://doi.org/10.7287/peerj.preprints.90v3 (2013). Article  Google Scholar  * Barnosky, A.


D. et al. Approaching a state shift in Earth’s biosphere. _Nature_ 486, 52–58 (2012). Article  Google Scholar  * Lenardic, A. The diversity of tectonic modes and thoughts about transitions


between them. _Philos. Trans. R. Soc. A Math. Phys. Eng. Sci._ 376, 20170416 (2018). Article  Google Scholar  * Bauer, A. M. et al. Hafnium isotopes in zircons document the gradual onset of


mobile-lid tectonics. _Geochem. Perspect. Lett._ 14, 1–6 (2020). Article  Google Scholar  * Spencer, C. J., Murphy, J. B., Kirkland, C. L., Liu, Y. & Mitchell, R. N. A Palaeoproterozoic


tectono-magmatic lull as a potential trigger for the supercontinent cycle. _Nat. Geosci._ 11, 97–101 (2018). FINDS WIDESPREAD AND DIVERSE EVIDENCE FOR A TECTONOMAGMATIC LULL AT CA. 2.3 GA


THAT PLAYED A CRITICAL ROLE IN TRIGGERING INITIATION OF THE SUBSEQUENT MODERN AGE OF SUPERCONTINENTS. Article  Google Scholar  * McNamara, A. K. & Zhong, S. Thermochemical structures


beneath Africa and the Pacific Ocean. _Nature_ 437, 1136–1139 (2005). Article  Google Scholar  * Davaille, A. & Romanowicz, B. Deflating the LLSVPs: Bundles of mantle thermochemical


plumes rather than thick stagnant “piles”. _Tectonics_ 39, e2020TC006265 (2020). Article  Google Scholar  * Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean


at the base of the Earth’s mantle. _Nature_ 450, 866–869 (2007). Article  Google Scholar  * Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of


the silicate Earth. _Science_ 309, 576–581 (2005). Article  Google Scholar  * Upadhyay, D., Scherer, E. E. & Mezger, K. 142Nd evidence for an enriched Hadean reservoir in cratonic roots.


_Nature_ 459, 1118–1121 (2009). Article  Google Scholar  * Roth, A. S. G., Scherer, E. E., Maden, C., Mezger, K. & Bourdon, B. Revisiting the 142Nd deficits in the 1.48 Ga Khariar


alkaline rocks, India. _Chem. Geol._ 386, 238–248 (2014). Article  Google Scholar  * Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood


basalts. _Science_ 352, 809–812 (2016). Article  Google Scholar  * Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. _Science_ 356, 66–69 (2017). Article  Google


Scholar  * Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. _Nat. Geosci._ 10,


236–240 (2017). Article  Google Scholar  * Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. _Earth Planet. Sci. Lett._ 484, 184–191 (2018). Article  Google


Scholar  * Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. _Earth Planet. Sci.


Lett._ 377–378, 324–335 (2013). Article  Google Scholar  * Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the


mantle from the Hadean to the present. _Proc. Natl Acad. Sci. USA_ 117, 14738–14744 (2020). Article  Google Scholar  * Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen


in Earth’s early ocean and atmosphere. _Nature_ 506, 307–315 (2014). Article  Google Scholar  * Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern


hydrologic cycle 2.5 billion years ago. _Nature_ 557, 545–548 (2018). Article  Google Scholar  * Nicoli, G., Moyen, J.-F. & Stevens, G. Diversity of burial rates in convergent settings


decreased as Earth aged. _Sci. Rep._ 6, 26359 (2016). Article  Google Scholar  * Knoll, A. H. & Nowak, M. A. The timetable of evolution. _Sci. Adv._ 3, e1603076 (2017). Article  Google


Scholar  * Hazen, R. M. et al. Mineral evolution. _Am. Mineral._ 93, 1693–1720 (2008). Article  Google Scholar  * Lepot, K. et al. Iron minerals within specific microfossil morphospecies of


the 1.88 Ga Gunflint Formation. _Nat. Commun._ 8, 14890 (2017). Article  Google Scholar  * Eriksson, K. A. & Simpson, E. L. Controls on spatial and temporal distribution of Precambrian


eolianites. _Sediment. Geol._ 120, 275–294 (1998). Article  Google Scholar  * Rodriguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to recent


aeolian sand systems and their sedimentary record: Current understanding and future prospects. _Sedimentology_ 61, 1487–1534 (2014). Article  Google Scholar  * Merdith, A. S., Williams, S.


E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. _Glob. Planet. Change_ 173, 1–14 (2019). Article  Google Scholar  *


Zhang, N. & Zhong, S. Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. _Earth Planet. Sci.


Lett._ 306, 205–216 (2011). Article  Google Scholar  * Zhang, S.-H., Zhao, Y., Li, X.-H., Ernst, R. E. & Yang, Z.-Y. The 1.33–1.30 Ga Yanliao large igneous province in the North China


Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. _Earth Planet. Sci. Lett._ 465, 112–125 (2017). Article 


Google Scholar  * Domeier, M. & Torsvik, T. H. Full-plate modelling in pre-Jurassic time. _Geol. Mag._ 152, 261–280 (2019). Article  Google Scholar  * Rogers, J. J. W. & Santosh, M.


Configuration of Columbia, a Mesoproterozoic supercontinent. _Gondwana Res._ 5, 5–22 (2002). Article  Google Scholar  * Evans, D. A. D. Proterozoic low orbital obliquity and axial-dipolar


geomagnetic field from evaporite palaeolatitudes. _Nature_ 444, 51–55 (2006). Article  Google Scholar  * Panzik, J. & Evans, D. A. Assessing the GAD hypothesis with paleomagnetic data


from large dike swarms. _Earth Planet. Sci. Lett._ 406, 134–141 (2014). Article  Google Scholar  * Evans, D. A. D. & Pisarevsky, S. in _When Did Plate Tectonics Begin on Planet Earth?:


Geological Society of America Special Paper 440_ (eds Condie, K. C. & Pease, V.) 249-263 (Geological Society of America, 2008). * Bercovici, D., Tackley, P. J. & Ricard, Y. in


_Treatise on Geophysics_ 2nd edn Vol. 7 Mantle Dynamics (ed. Bercovici, D.) (Elsevier, 2015). * Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. _Rev. Geophysics_


46, RG2007 (2008). Article  Google Scholar  * Steinberger, B. & Torsvik, T. H. Toward an explanation for the present and past locations of the poles. _Geochem. Geophys. Geosystems_ 11,


Q06W06 (2010). Article  Google Scholar  * Steinberger, B., Schmeling, H. & Marquart, G. Large-scale lithospheric stress field and topography induced by global mantle circulation. _Earth


Planet. Sci. Lett._ 186, 75–91 (2001). Article  Google Scholar  * Herzberg, C., Condie, K. C. & Korenaga, J. Thermal history of the Earth and its petrological expression. _Earth Planet.


Sci. Lett._ 292, 79–88 (2010). Article  Google Scholar  * Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.


_Nature_ 485, 490–493 (2012). Article  Google Scholar  * McLennan, S. M. in _Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy_ Vol. 21 (eds Lipin, B. R. & McKay,


G. A.) 169-200 (Mineralogical Society of America, 1989). * Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by


gravitational instabilities. _Nat. Geosci._ 7, 47–52 (2013). Article  Google Scholar  * Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable


continents did not form by subduction. _Nature_ 543, 239–242 (2017). Article  Google Scholar  * Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds


from subcontinental mantle. _Science_ 333, 434–436 (2011). Article  Google Scholar  Download references ACKNOWLEDGEMENTS Support for this work came from the National Natural Science


Foundation of China (grants 41888101 and 41890833 to R.N.M. and 41976066 to N.Z.), the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (grant


IGGCAS-201905 to R.N.M.), the Academy of Finland (grant 288277 to J.S.), the Centre of Excellence project 223272 through the Research Council of Norway and the innovation pool of the


Helmholtz Association through the ‘Advanced Earth System Modelling Capacity (ESM)’ activity (B.S.), and the Australian Research Council (grant FL150100133 to Z.-X.L.). This is a contribution


to International Geoscience Programme (IGCP) 648. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese


Academy of Sciences, Beijing, China Ross N. Mitchell * Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China Nan Zhang


* Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland Johanna Salminen * Earth Dynamics Research Group, School of Earth and Planetary Sciences, Curtin


University, Perth, Western Australia, Australia Yebo Liu & Zheng-Xiang Li * Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada


Christopher J. Spencer * Section 2.5 Geodynamic Modelling, GFZ German Research Centre for Geosciences, Potsdam, Germany Bernhard Steinberger * Centre for Earth Evolution and Dynamics,


University of Oslo, Oslo, Norway Bernhard Steinberger * Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada J. Brendan Murphy Authors * Ross N.


Mitchell View author publications You can also search for this author inPubMed Google Scholar * Nan Zhang View author publications You can also search for this author inPubMed Google Scholar


* Johanna Salminen View author publications You can also search for this author inPubMed Google Scholar * Yebo Liu View author publications You can also search for this author inPubMed 


Google Scholar * Christopher J. Spencer View author publications You can also search for this author inPubMed Google Scholar * Bernhard Steinberger View author publications You can also


search for this author inPubMed Google Scholar * J. Brendan Murphy View author publications You can also search for this author inPubMed Google Scholar * Zheng-Xiang Li View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS R.N.M. conceived the idea. N.Z. and B.S. conducted numerical modelling. J.S., Y.L. and Z.-X.L. made


palaeogeographic reconstructions. C.J.S. conducted geochemical analyses. J.B.M. coordinated the presentation of the various sections. All authors contributed to the manuscript preparation,


interpretation, discussion and writing, led by R.N.M. CORRESPONDING AUTHORS Correspondence to Ross N. Mitchell or Nan Zhang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Earth & Environment_ thanks T. Kusky, K. Condie and A. Merdith for their contribution to the peer


review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY TABLE 1 SUPPLEMENTARY DATA GLOSSARY * Large igneous provinces Extremely large (>105 km2 areal extent, >105 km3 volume) magmatic events of intrusives (sills, dykes) and


extrusives (lava flows, tephras) often attributed to mantle plumes. * Mantle plumes Buoyant hot mantle material that rises from the core–mantle boundary, owing to basal heating of the mantle


by the core. * Large low shear-wave velocity provinces Two low-seismic velocity structures in the lower mantle covering one fifth of the core-mantle boundary and up to several hundred km


tall. * True polar wander Rotation of solid Earth (mantle and crust) about the liquid outer core to align Earth’s maximum moment of inertia with the spin axis; also known as planetary


reorientation. * Degree 1 mantle flow One hemisphere of mantle upwelling and one hemisphere of mantle downwelling. * Degree 2 mantle flow Two antipodal mantle upwellings bisected by a


meridional girdle of mantle downwelling as the most likely degree 2 configuration for Earth’s mantle. * Orthoversion Model of supercontinent formation by closure of orthogonal seas (Arctic


and Caribbean seas and either the Indian Ocean or the Scotia Sea) ~90° away from the centre of the previous supercontinent. * Subduction girdle Circum-supercontinent subduction coupled with


degree 2 mantle downwelling, for example, the present-day ‘Ring of Fire’ of circum-Pacific subduction zones. * Megacontinent Geodynamic precursor to supercontinent formation that is large


(~70% the size of its supercontinent) and early (assembly ~200 Myr before supercontinent amalgamation). * Apparent polar wander Palaeomagnetically measured motion of a continent relative to


Earth’s time-averaged magnetic pole, and results from a combination of both plate motion and true polar wander. * Palaeomagnetism Study of rocks containing magnetic minerals that preserve


the orientation of the magnetic field and constrain the position of the continent with respect to the North Pole at that age. * Geocentric axial dipole Earth’s magnetic field is dominated by


a dipole at the surface that aligns with the spin axis when averaged over 1,000–10,000 years. * Geologic piercing points Geologic correlations used to test palaeogeographic reconstructions,


including orogenic sutures, conjugate rift margins, and magmatic intrusions and dyke swarms. * Magmatic barcodes Record of short-lived magmatic events on a continent or a craton that can be


compared with those of different fragments to test ancient palaeogeographic reconstructions. * Supercratons Assembly of Archaean cratons, where the landmasses were likely in small and


segregated clusters, which form an alternative hypothesis to an Archaean supercontinent. * Introversion Model of supercontinent formation by closure of the internal (Atlantic-like) ocean. *


Extroversion Model of supercontinent formation by closure of the external (Pacific-like) ocean. * Continental freeboard Mean height of the continental crust relative to mean sea level; also


referred to as continental emergence when positive in sign. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mitchell, R.N., Zhang, N., Salminen, J. _et


al._ The supercontinent cycle. _Nat Rev Earth Environ_ 2, 358–374 (2021). https://doi.org/10.1038/s43017-021-00160-0 Download citation * Accepted: 10 March 2021 * Published: 20 April 2021 *


Issue Date: May 2021 * DOI: https://doi.org/10.1038/s43017-021-00160-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative