Hydrogen generation from biomass by pyrolysis

Hydrogen generation from biomass by pyrolysis

Play all audios:

Loading...

ABSTRACT The growing environmental concerns associated with global warming along with the exponential rise in energy demand are boosting the production of clean energy. The combined process


of biomass pyrolysis and in-line catalytic steam reforming is a promising alternative for the selective production of hydrogen from renewable sources. This Primer provides a general overview


of the fundamental aspects that influence the hydrogen production potential of the process. Recent research studies and their main findings are highlighted. The current challenges and


limitations of the process and ways to optimize the biomass-derived products of steam reforming are discussed. Finally, we evaluate progress toward the industrial scalability of the process.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 1 digital issues and


online access to articles $119.00 per year only $119.00 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS A SHORT REVIEW ON GREEN H2 PRODUCTION BY AQUEOUS PHASE REFORMING OF BIOMASS DERIVATIVES Article Open access 02 July 2024 SOLAR-DRIVEN UPGRADING OF BIOMASS BY COUPLED


HYDROGENATION USING IN SITU (PHOTO)ELECTROCHEMICALLY GENERATED H2 Article Open access 27 September 2023 BIOLOGICAL FERMENTATION PILOT-SCALE SYSTEMS AND EVALUATION FOR COMMERCIAL VIABILITY


TOWARDS SUSTAINABLE BIOHYDROGEN PRODUCTION Article Open access 28 May 2024 REFERENCES * Hydrogen4EU report. Charting Pathways to Enable Netzero. _Deloitte Finance – IFPEN - SINTEF_


https://www.hydrogen4eu.com (2021). * IEA. The future of H2. _IEA_ https://www.iea.org/reports/the-future-of-hydrogen (2019). * Santamaria, L. et al. Progress on catalyst development for the


steam reforming of biomass and waste plastics pyrolysis volatiles: a review. _Energy Fuels_ 35, 17051–17084 (2021). Article  Google Scholar  * Dou, B. et al. Hydrogen production from the


thermochemical conversion of biomass: issues and challenges. _Sustain. Energy Fuels_ 3, 314–342 (2019). Article  Google Scholar  * Zhang, Y., Ji, Y. & Qian, H. Progress in thermodynamic


simulation and system optimization of pyrolysis and gasification of biomass. _Green. Chem. Eng._ 2, 266–283 (2021). Article  Google Scholar  * Bridgwater, A. V. Review of fast pyrolysis of


biomass and product upgrading. _Biomass Bioenergy_ 38, 68–94 (2012). Article  Google Scholar  * Valle, B., Remiro, A., García-Gómez, N., Gayubo, A. G. & Bilbao, J. Recent research


progress on bio-oil conversion into bio-fuels and raw chemicals: a review. _J. Chem. Technol. Biotechnol._ 94, 670–689 (2019). Article  Google Scholar  * Liu, W. J., Li, W. W., Jiang, H.


& Yu, H. Q. Fates of chemical elements in biomass during its pyrolysis. _Chem. Rev._ 117, 6367–6398 (2017). Article  Google Scholar  * Sharifzadeh, M. et al. The multi-scale challenges


of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. _Prog. Energy Combust. Sci._ 71, 1–80 (2019). Article  Google Scholar  * Fahmy, T.


Y. A., Fahmy, Y., Mobarak, F., El-Sakhawy, M. & Abou-Zeid, R. E. Biomass pyrolysis: past, present, and future. _Environ. Dev. Sustain._ 22, 17–32 (2020). Article  Google Scholar  *


Arregi, A., Amutio, M., Lopez, G., Bilbao, J. & Olazar, M. Evaluation of thermochemical routes for hydrogen production from biomass: a review. _Energy Conv. Manag._ 165, 696–719 (2018).


Article  Google Scholar  * Trane, R., Dahl, S., Skjøth-Rasmussen, M. S. & Jensen, A. D. Catalytic steam reforming of bio-oil. _Int. J. Hydrog. Energy_ 37, 6447–6472 (2012). Article 


Google Scholar  * Arregi, A. et al. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. _RSC Adv._ 6, 25975–25985 (2016). Article  ADS  Google Scholar


  * Chai, Y., Gao, N., Wang, M. & Wu, C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. _Chem. Eng. J._ 382, 122947 (2020).


Article  Google Scholar  * Yu, H., Liu, Y., Liu, J. & Chen, D. High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from


biomass pyrolysis. _Fuel_ 254, 115622 (2019). Article  Google Scholar  * Cao, J. P. et al. Preparation and characterization of nickel loaded on resin char as tar reforming catalyst for


biomass gasification. _J. Anal. Appl. Pyrolysis_ 127, 82–90 (2017). Article  Google Scholar  * Santamaria, L. et al. Influence of the support on Ni catalysts performance in the in-line steam


reforming of biomass fast pyrolysis derived volatiles. _Appl. Catal. B_ 229, 105–113 (2018). Article  Google Scholar  * Santamaria, L. et al. Stability of different Ni supported catalysts


in the in-line steam reforming of biomass fast pyrolysis volatiles. _Appl. Catal. B_ 242, 109–120 (2019). Article  Google Scholar  * Fernandez, E. et al. Role of temperature in the biomass


steam pyrolysis in a conical spouted bed reactor. _Energy_ 238, 122053 (2022). Article  Google Scholar  * Chen, J., Sun, J. & Wang, Y. Catalysts for steam reforming of bio-oil: a review.


_Ind. Eng. Chem. Res._ 56, 4627–4637 (2017). Article  Google Scholar  * Nabgan, W. et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview.


_Renew. Sustain. Energy Rev._ 79, 347–357 (2017). Article  Google Scholar  * Czernik, S., French, R., Feik, C. & Chornet, E. Hydrogen by catalytic steam reforming of liquid byproducts


from biomass thermoconversion processes. _Ind. Eng. Chem. Res._ 41, 4209–4215 (2002). Article  Google Scholar  * Pandey, B., Prajapati, Y. K. & Sheth, P. N. Recent progress in


thermochemical techniques to produce hydrogen gas from biomass: a state of the art review. _Int. J. Hydrog. Energy_ 44, 25384–25415 (2019). Article  Google Scholar  * Setiabudi, H. D., Aziz,


M. A. A., Abdullah, S., Teh, L. P. & Jusoh, R. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: a review. _Int. J. Hydrog. Energy_ 45,


18376–18397 (2020). Article  Google Scholar  * Al-Rahbi, A. S. & Williams, P. T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre


pyrolysis char. _Appl. Energy_ 190, 501–509 (2017). Article  Google Scholar  * Wang, F., Gao, N. & Quan, C. Effect of hot char and steam on products in waste tire pressurized pyrolysis


process. _Energy Conv. Manag._ 237, 114105 (2021). Article  Google Scholar  * Arregi, A. et al. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine


wood waste and HDPE mixtures. _Energy Conv. Manag._ 136, 192–201 (2017). Article  Google Scholar  * Kumagai, S. et al. Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the


pyrolysis–gasification of a biomass/plastic mixture. _J. Anal. Appl. Pyrolysis_ 113, 15–21 (2015). Article  Google Scholar  * Alvarez, J. et al. Hydrogen production from biomass and plastic


mixtures by pyrolysis-gasification. _Int. J. Hydrog. Energy_ 39, 10883–10891 (2014). Article  Google Scholar  * He, S., Xu, Y., Zhang, Y., Bell, S. & Wu, C. Waste plastics recycling for


producing high-value carbon nanotubes: investigation of the influence of manganese content in Fe-based catalysts. _J. Hazard. Mater._ 402, 123726 (2021). Article  Google Scholar  * Liu, X.,


He, S., Han, Z. & Wu, C. Investigation of spherical alumina supported catalyst for carbon nanotubes production from waste polyethylene. _Process. Saf. Environ. Prot._ 146, 201–207


(2021). Article  Google Scholar  * Zhang, S., Gao, N., Quan, C., Wang, F. & Wu, C. Autothermal CaO looping biomass gasification to increase process energy efficiency and reduce ash


sintering. _Fuel_ 277, 118199 (2020). Article  Google Scholar  * Chen, F. et al. Characteristics and catalytic properties of Ni/CaAlO_x_ catalyst for hydrogen-enriched syngas production from


pyrolysis-steam reforming of biomass sawdust. _Appl. Catal. B_ 183, 168–175 (2016). Article  Google Scholar  * Li, Z., Hu, X., Zhang, L., Liu, S. & Lu, G. Steam reforming of acetic acid


over Ni/ZrO2 catalysts: effects of nickel loading and particle size on product distribution and coke formation. _Appl. Catal. A_ 417–418, 281–289 (2012). Article  Google Scholar  * Li, D.,


Koike, M., Chen, J., Nakagawa, Y. & Tomishige, K. Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar. _Int.


J. Hydrog. Energy_ 39, 10959–10970 (2014). Article  Google Scholar  * Meier, D. et al. State-of-the-art of fast pyrolysis in IEA bioenergy member countries. _Renew. Sustain. Energy Rev._ 20,


619–641 (2013). Article  Google Scholar  * Xiao, X., Meng, X., Le, D. D. & Takarada, T. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric


investigations and performance optimization. _Bioresour. Technol._ 102, 1975–1981 (2011). Article  Google Scholar  * Fernandez-Akarregi, A. R., Makibar, J., Lopez, G., Amutio, M. &


Olazar, M. Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. _Fuel Process. Technol._ 112, 48–56 (2013). Article  Google Scholar  *


Gholizadeh, M. et al. Progress of the development of reactors for pyrolysis of municipal waste. _Sustain. Energy Fuels_ 4, 5885–5915 (2020). Article  Google Scholar  * Medrano, J. A., Oliva,


M., Ruiz, J., García, L. & Arauzo, J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed. _Energy_ 36, 2215–2224 (2011). Article 


Google Scholar  * Fernandez, E. et al. Assessment of product yields and catalyst deactivation in fixed and fluidized bed reactors in the steam reforming of biomass pyrolysis volatiles.


_Process. Saf. Environ. Prot._ 145, 52–62 (2021). Article  Google Scholar  * Ma, Z., Zhang, S.-, Xie, D.- & Yan, Y.- A novel integrated process for hydrogen production from biomass.


_Int. J. Hydrog. Energy_ 39, 1274–1279 (2014). Article  Google Scholar  * Efika, C. E., Wu, C. & Williams, P. T. Syngas production from pyrolysis–catalytic steam reforming of waste


biomass in a continuous screw kiln reactor. _J. Anal. Appl. Pyrolysis_ 95, 87–94 (2012). Article  Google Scholar  * Arregi, A. et al. Role of operating conditions in the catalyst


deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. _Fuel_ 216, 233–244 (2018). Article  Google Scholar  * Makibar, J., Fernandez-Akarregi, A. R., Amutio,


M., Lopez, G. & Olazar, M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. _Fuel Process. Technol._ 137, 283–289 (2015). Article 


Google Scholar  * Xiao, X. et al. Catalytic steam gasification of biomass in fluidized bed at low temperature: conversion from livestock manure compost to hydrogen-rich syngas. _Biomass


Bioenergy_ 34, 1505–1512 (2010). Article  Google Scholar  * Sun, L. et al. Chemical vapour deposition. _Nat. Rev. Methods Prim._ 1, 5 (2021). Article  Google Scholar  * Olaleye, A. K. et al.


Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system. _Fuel_ 137,


364–374 (2014). Article  Google Scholar  * Sánchez, J. L., Gonzalo, A., Gea, G., Bilbao, R. & Arauzo, J. Straw black liquor steam reforming in a fluidized bed reactor. Effect of


temperature and bed substitution at pilot scale. _Energy Fuels_ 19, 2140–2147 (2005). Article  Google Scholar  * Wang, F., Gao, N., Quan, C. & López, G. Investigation of hot char


catalytic role in the pyrolysis of waste tires in a two-step process. _J. Anal. Appl. Pyrolysis_ 146, 104770 (2020). Article  Google Scholar  * Bryden, K. M. & Hagge, M. J. Modeling the


combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. _Fuel_ 82, 1633–1644 (2003). Article  Google Scholar  * Chen, C., Jin, Y. & Chi, Y. Effects of


moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor. _J. Anal. Appl. Pyrolysis_ 110, 108–112 (2014). Article  Google Scholar  * Vassilev, S. V., Baxter, D.,


Andersen, L. K. & Vassileva, C. G. An overview of the chemical composition of biomass. _Fuel_ 89, 913–933 (2010). Article  Google Scholar  * Azizi, K. et al. On the pyrolysis of


different microalgae species in a conical spouted bed reactor: bio-fuel yields and characterization. _Bioresour. Technol._ 311, 123561 (2020). Article  Google Scholar  * Burton, A. & Wu,


H. Influence of biomass particle size on bed agglomeration during biomass pyrolysis in fluidised bed. _Proc. Combust. Inst._ 36, 2199–2205 (2017). Article  Google Scholar  * Waheed, Q. M.


K. & Williams, P. T. Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: rice husk, sugar cane bagasse, and wheat straw. _Energy Fuels_ 27, 6695–6704


(2013). Article  Google Scholar  * Shen, Y. et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. _Appl. Catal.


B_ 152–153, 140–151 (2014). Article  Google Scholar  * Guan, G., Kaewpanha, M., Hao, X. & Abudula, A. Catalytic steam reforming of biomass tar: prospects and challenges. _Renew. Sustain.


Energy Rev._ 58, 450–461 (2016). Article  Google Scholar  * Koike, M. et al. Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass


pyrolysis to synthesis gas. _Fuel_ 103, 122–129 (2013). Article  Google Scholar  * Xiao, X. et al. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded


brown coal char. _Fuel_ 103, 135–140 (2013). Article  Google Scholar  * Ochoa, A., Bilbao, J., Gayubo, A. G. & Castaño, P. Coke formation and deactivation during catalytic reforming of


biomass and waste pyrolysis products: a review. _Renew. Sustain. Energy Rev._ 119, 109600 (2020). Article  Google Scholar  * Shen, Y., Chen, M., Sun, T. & Jia, J. Catalytic reforming of


pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. _Fuel_ 159, 570–579 (2015). Article  Google Scholar  * Cao, J. P., Shi, P., Zhao, X. Y., Wei, X. Y. & Takarada, T.


Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst. _Fuel Process. Technol._ 123, 34–40 (2014).


Article  Google Scholar  * Chai, Y., Wang, M., Gao, N., Duan, Y. & Li, J. Experimental study on pyrolysis/gasification of biomass and plastics for H2 production under new dual-support


catalyst. _Chem. Eng. J._ 396, 125260 (2020). Article  Google Scholar  * Zou, J. et al. Hydrogen production from pyrolysis catalytic reforming of cellulose in the presence of K alkali metal.


_Int. J. Hydrog. Energy_ 41, 10598–10607 (2016). Article  Google Scholar  * Shen, Y., Areeprasert, C., Prabowo, B., Takahashi, F. & Yoshikawa, K. Metal nickel nanoparticles in situ


generated in rice husk char for catalytic reformation of tar and syngas from biomass pyrolytic gasification. _RSC Adv._ 4, 40651–40664 (2014). Article  ADS  Google Scholar  * Gao, N.,


Salisu, J., Quan, C. & Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review. _Renew. Sustain. Energy Rev._ 145, 111023 (2021).


Article  Google Scholar  * Zhang, B., Xiong, S., Xiao, B., Yu, D. & Jia, X. Mechanism of wet sewage sludge pyrolysis in a tubular furnace. _Int. J. Hydrog. Energy_ 36, 355–363 (2011).


Article  Google Scholar  * Gao, N., Chen, C., Magdziarz, A., Zhang, L. & Quan, C. Modeling and simulation of pine sawdust gasification considering gas mixture reflux. _J. Anal. Appl.


Pyrolysis_ 155, 105094 (2021). Article  Google Scholar  * Lopez, G. et al. Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. _Energy Conv.


Manag._ 214, 112889 (2020). Article  Google Scholar  * Luo, Z., Wang, S. & Cen, K. A model of wood flash pyrolysis in fluidized bed reactor. _Renew. Energy_ 30, 377–392 (2005). Article 


Google Scholar  * Faraji, M. & Saidi, M. Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: process


simulation and evaluation using Aspen Plus software. _Int. J. Hydrog. Energy_ 46, 18844–18856 (2021). Article  Google Scholar  * Vagia, E. C. & Lemonidou, A. A. Thermodynamic analysis of


hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. _Int. J. Hydrog. Energy_ 33, 2489–2500 (2008). Article  Google Scholar  * Montero, C.


et al. Thermodynamic comparison between bio-oil and ethanol steam reforming. _Int. J. Hydrog. Energy_ 40, 15963–15971 (2015). Article  Google Scholar  * Cortazar, M. et al. Analysis of


hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. _Fuel Process. Technol._ 225, 107044 (2022). Article  Google Scholar  * Akubo, K.,


Nahil, M. A. & Williams, P. T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. _J. Energy Inst._ 92,


1987–1996 (2019). Article  Google Scholar  * Waheed, Q. M. K., Wu, C. & Williams, P. T. Pyrolysis/reforming of rice husks with a Ni–dolomite catalyst: influence of process conditions on


syngas and hydrogen yield. _J. Energy Inst._ 89, 657–667 (2016). Article  Google Scholar  * Yao, D. et al. Hydrogen production from biomass gasification using biochar as a catalyst/support.


_Bioresour. Technol._ 216, 159–164 (2016). Article  Google Scholar  * Miyazawa, T. et al. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar


derived from the pyrolysis of wood biomass. _Catal. Today_ 115, 254–262 (2006). Article  Google Scholar  * Santamaria, L. et al. Effect of CeO2 and MgO promoters on the performance of a


Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. _Fuel Process. Technol._ 198, 106223 (2020). Article  Google Scholar  * Santamaria, L. et al. Effect of La2O3


promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. _Fuel_ 262, 116593 (2020). Article  Google Scholar  * Kimura, T. et al. Development of Ni


catalysts for tar removal by steam gasification of biomass. _Appl. Catal. B_ 68, 160–170 (2006). Article  Google Scholar  * Yao, D., Yang, H., Chen, H. & Williams, P. T.


Co-precipitation, impregnation and sol-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. _Appl. Catal. B_ 239, 565–577 (2018). Article  Google


Scholar  * Guan, G. et al. Catalytic steam reforming of biomass tar over iron- or nickel-based catalyst supported on calcined scallop shell. _Appl. Catal. B_ 115–116, 159–168 (2012). Article


  Google Scholar  * Yukesh Kannah, R. et al. Techno-economic assessment of various hydrogen production methods — a review. _Bioresour. Technol._ 319, 124175 (2021). Article  Google Scholar 


* Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U. & Dincer, I. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities. _Int. J. Hydrog.


Energy_ 46, 25385–25412 (2021). Article  Google Scholar  * Wagner, N. J., Coertzen, M., Matjie, R. H. & van Dyk, J. C. in _Applied Coal Petrology_ (eds Suárez-Ruiz, I. & Crelling, J.


C.) 119–144 (Elsevier, 2008). * Sanna, A. Advanced biofuels from thermochemical processing of sustainable biomass in Europe. _Bioenergy Res._ 7, 36–47 (2014). Article  ADS  Google Scholar 


* Yang, F., Meerman, J. C. & Faaij, A. P. C. Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. _Renew. Sustain. Energy Rev._


144, 111028 (2021). Article  Google Scholar  * Sansaniwal, S. K., Pal, K., Rosen, M. A. & Tyagi, S. K. Recent advances in the development of biomass gasification technology: a


comprehensive review. _Renew. Sustain. Energy Rev._ 72, 363–384 (2017). Article  Google Scholar  * Pfeifer, C., Koppatz, S. & Hofbauer, H. Steam gasification of various feedstocks at a


dual fluidised bed gasifier: impacts of operation conditions and bed materials. _Biomass Conv. Bioref._ 1, 39–53 (2011). Article  Google Scholar  * Mahinpey, N. & Gomez, A. Review of


gasification fundamentals and new findings: reactors, feedstock, and kinetic studies. _Chem. Eng. Sci._ 148, 14–31 (2016). Article  Google Scholar  * Heidenreich, S. & Foscolo, P. U. New


concepts in biomass gasification. _Prog. Energy Combust. Sci._ 46, 72–95 (2015). Article  Google Scholar  * Larsson, A. et al. Steam gasification of biomass — typical gas quality and


operational strategies derived from industrial-scale plants. _Fuel Process. Technol._ 212, 106609 (2021). Article  Google Scholar  * Cortazar, M. et al. Advantages of confining the fountain


in a conical spouted bed reactor for biomass steam gasification. _Energy_ 153, 455–463 (2018). Article  Google Scholar  * Sikarwar, V. S. et al. An overview of advances in biomass


gasification. _Energy Environ. Sci._ 9, 2939–2977 (2016). Article  Google Scholar  * Pio, D. T. & Tarelho, L. A. C. Industrial gasification systems (>3 MWth) for bioenergy in Europe:


current status and future perspectives. _Renew. Sustain. Energy Rev._ 145, 111108 (2021). Article  Google Scholar  * Valderrama Rios, M. L., González, A. M., Lora, E. E. S. & Almazán del


Olmo, O. A. Reduction of tar generated during biomass gasification: a review. _Biomass Bioenergy_ 108, 345–370 (2018). Article  Google Scholar  * Asadullah, M. Biomass gasification gas


cleaning for downstream applications: a comparative critical review. _Renew. Sustain. Energy Rev._ 40, 118–132 (2014). Article  Google Scholar  * Rapagnà, S. et al. Fe/olivine catalyst for


biomass steam gasification: preparation, characterization and testing at real process conditions. _Catal. Today_ 176, 163–168 (2011). Article  Google Scholar  * Cortazar, M. et al.


Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. _J. Ind. Eng. Chem._ 99, 364–379 (2021). Article  Google Scholar  * Tursun, Y.,


Xu, S., Abulikemu, A. & Dilinuer, T. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. _Bioresour. Technol._ 272, 241–248


(2019). Article  Google Scholar  * Bridgwater, T. Challenges and opportunities in fast pyrolysis of biomass: part I. _Johnson Matthey Technol. Rev._ 62, 118–130 (2018). Article  Google


Scholar  * Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. _Chem. Rev._ 106, 4044–4098 (2006). Article  Google


Scholar  * Amutio, M. et al. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. _Resour. Cons. Recycl._ 59, 23–31 (2012). Article  Google Scholar  * Yao, D. et


al. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts. _Int. J. Hydrog. Energy_ 39, 14642–14652 (2014). Article  Google


Scholar  * Hoang, A. T. et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. _Fuel Process. Technol._ 223, 106997 (2021).


Article  Google Scholar  * Pawar, A., Panwar, N. L. & Salvi, B. L. Comprehensive review on pyrolytic oil production, upgrading and its utilization. _J. Mater. Cycles Waste Manag._ 22,


1712–1722 (2020). Article  Google Scholar  * Kumar, R. & Strezov, V. Thermochemical production of bio-oil: a review of downstream processing technologies for bio-oil upgrading,


production of hydrogen and high value-added products. _Renew. Sustain. Energy Rev._ 135, 110152 (2021). Article  Google Scholar  * Adeniyi, A. G., Otoikhian, K. S. & Ighalo, J. O. Steam


reforming of biomass pyrolysis oil: a review. _Int. J. Chem. React. Eng._ 17, 20180328 (2019). Google Scholar  * Zhao, Z. et al. Hydrogen production from catalytic steam reforming of


bio-oils: a critical review. _Chem. Eng. Technol._ 43, 625–640 (2020). Article  Google Scholar  * Kang, K., Klinghoffer, N. B., ElGhamrawy, I. & Berruti, F. Thermochemical conversion of


agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products. _Renew. Sustain. Energy Rev._ 149, 111372 (2021). Article  Google Scholar  *


Park, Y. et al. Optimum operating conditions for a two-stage gasification process fueled by polypropylene by means of continuous reactor over ruthenium catalyst. _Fuel Process. Technol._ 91,


951–957 (2010). Article  ADS  Google Scholar  * Ye, M. et al. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41


supports. _Catal. Today_ 307, 154–161 (2018). Article  Google Scholar  * Santamaria, L. et al. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts.


_J. Ind. Eng. Chem._ 91, 167–181 (2020). Article  Google Scholar  * Santamaria, L. et al. Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass


pyrolysis. _J. Anal. Appl. Pyrolysis_ 136, 222–231 (2018). Article  Google Scholar  * Perego, C. & Villa, P. Catalyst preparation methods. _Catal. Today_ 34, 281–305 (1997). Article 


Google Scholar  * Li, X. et al. Investigation of coking behaviors of model compounds in bio-oil during steam reforming. _Fuel_ 265, 116961 (2020). Article  Google Scholar  * Remón, J.,


Broust, F., Volle, G., García, L. & Arauzo, J. Hydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process. _Int.


J. Hydrog. Energy_ 40, 5593–5608 (2015). Article  Google Scholar  * Jin, F. et al. Effect of calcium addition on Mg-AlO_x_ supported Ni catalysts for hydrogen production from


pyrolysis-gasification of biomass. _Catal. Today_ 309, 2–10 (2018). Article  Google Scholar  * Wu, C., Wang, Z., Dupont, V., Huang, J. & Williams, P. T. Nickel-catalysed


pyrolysis/gasification of biomass components. _J. Anal. Appl. Pyrolysis_ 99, 143–148 (2013). Article  Google Scholar  * Arregi, A. et al. Regenerability of a Ni catalyst in the catalytic


steam reforming of biomass pyrolysis volatiles. _J. Ind. Eng. Chem._ 68, 69–78 (2018). Article  Google Scholar  * Wang, L. et al. Catalytic performance and characterization of Ni-Fe


catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. _Appl. Catal. A_ 392, 248–255 (2011). Article  Google Scholar  * Ashok, J. et al. Recent progress in the


development of catalysts for steam reforming of biomass tar model reaction. _Fuel Process. Technol._ 199, 106252 (2020). Article  Google Scholar  * Zhang, Z., Liu, L., Shen, B. & Wu, C.


Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. _Renew. Sustain. Energy Rev._ 94, 1086–1109 (2018). Article


  Google Scholar  * Yung, M. M., Jablonski, W. S. & Magrini-Bair, K. A. Review of catalytic conditioning of biomass-derived syngas. _Energy Fuels_ 23, 1874–1887 (2009). Article  Google


Scholar  * Charisiou, N. D. et al. Glycerol steam reforming for hydrogen production over nickel supported on alumina, zirconia and silica catalysts. _Top. Catal._ 60, 1226–1250 (2017).


Article  Google Scholar  * Artetxe, M., Nahil, M. A., Olazar, M. & Williams, P. T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst. _Fuel_ 184, 629–636


(2016). Article  Google Scholar  * Remiro, A., Valle, B., Aguayo, A. T., Bilbao, J. & Gayubo, A. G. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the


steam reforming of bio-oil aqueous fraction. _Fuel Process. Technol._ 115, 222–232 (2013). Article  Google Scholar  * Garcia-Garcia, I. et al. Hydrogen production by steam reforming of


m-cresol, a bio-oil model compound, using catalysts supported on conventional and unconventional supports. _Int. J. Hydrog. Energy_ 40, 14445–14455 (2015). Article  Google Scholar  * Argyle,


M. D. & Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: a review. _Catalysts_ 5, 145–269 (2015). Article  Google Scholar  * Ochoa, A. et al. Coking and


sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles. _Appl. Catal. B_ 233, 289–300 (2018). Article  Google Scholar  * Fernandez, E. et al. In


line upgrading of biomass fast pyrolysis products using low-cost catalysts. _Fuel_ 296, 120682 (2021). Article  Google Scholar  * Wang, L. et al. Catalytic performance and characterization


of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar. _Appl. Catal. B_ 160–161, 701–715 (2014). Article  Google


Scholar  * Li, D. et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar. _ChemSusChem_ 7, 510–522 (2014). Article  Google


Scholar  * Wang, C. et al. Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming. _Energy_ 214, 118971


(2021). Article  Google Scholar  * Furusawa, T. et al. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production. _Fuel_ 103, 111–121


(2013). Article  Google Scholar  * Wagenaar, B. M., Prins, W. & van Swaaij, W. P. M. Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. _Chem.


Eng. Sci._ 49, 5109–5126 (1994). Article  Google Scholar  * Oasmaa, A., Lehto, J., Solantausta, Y. & Kallio, S. Historical review on VTT fast pyrolysis bio-oil production and upgrading.


_Energy Fuels_ 35, 5683–5695 (2021). Article  Google Scholar  * Trane-Restrup, R. & Jensen, A. D. Steam reforming of cyclic model compounds of bio-oil over Ni-based catalysts: product


distribution and carbon formation. _Appl. Catal. B_ 165, 117–127 (2015). Article  Google Scholar  * Lu, Q. et al. Coking behavior and syngas composition of the char supported Fe catalyst of


biomass pyrolysis volatiles reforming. _Fuel_ 298, 120830 (2021). Article  Google Scholar  * Li, X. et al. Effects of preparation method on the performance of Ni/Al2O3 catalysts for hydrogen


production by bio-oil steam reforming. _Appl. Biochem. Biotechnol._ 168, 10–20 (2012). Article  Google Scholar  * Remón, J., Medrano, J. A., Bimbela, F., García, L. & Arauzo, J.


Ni/Al–Mg–O solids modified with Co or Cu for the catalytic steam reforming of bio-oil. _Appl. Catal. B_ 132–133, 433–444 (2013). Article  Google Scholar  Download references ACKNOWLEDGEMENTS


This work was carried out with the financial support of grants RTI2018-101678-B-I00, RTI2018-098283-J-I00 and PID2019-107357RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF: A


way of making Europe” and the grants IT1218-19 and KK-2020/00107 funded by the Basque government. This project has received funding from the European Union’s Horizon 2020 research and


innovation programme under the Marie Skłodowska-Curie grant agreement 823745. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemical Engineering, University of the Basque


Country UPV/EHU, Bilbao, Spain Gartzen Lopez & Laura Santamaria * IKERBASQUE, Basque Foundation for Science, Bilbao, Spain Gartzen Lopez * School of Chemical Engineering, Aristotle


University of Thessaloniki, Thessaloniki, Greece Angeliki Lemonidou * School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, UK Shuming Zhang & Chunfei Wu *


School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China Ayesha T. Sipra & Ningbo Gao Authors * Gartzen Lopez View author publications You can also search for this


author inPubMed Google Scholar * Laura Santamaria View author publications You can also search for this author inPubMed Google Scholar * Angeliki Lemonidou View author publications You can


also search for this author inPubMed Google Scholar * Shuming Zhang View author publications You can also search for this author inPubMed Google Scholar * Chunfei Wu View author publications


You can also search for this author inPubMed Google Scholar * Ayesha T. Sipra View author publications You can also search for this author inPubMed Google Scholar * Ningbo Gao View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Introduction (A.L.); Experimentation (S.Z. and C.W.); Results (A.T.S. and N.G.); Applications (G.L. and


L.S.); Reproducibility and data deposition (G.L. and L.S.); Limitations and optimizations (G.L. and L.S.); Outlook (G.L. and L.S.); Overview of the Primer (G.L.). CORRESPONDING AUTHOR


Correspondence to Gartzen Lopez. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Methods Primers_


thanks Jing-Pei Cao and Herma Setiabudi for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * Steam gasification High-temperature thermochemical


process in which a carbonaceous material is converted into synthesis gas (a gaseous mixture of hydrogen and carbon oxide) using steam as the oxidizing agent. * Flash pyrolysis Thermochemical


process in which the feedstock is rapidly heated up to moderate temperatures (400–550 °C) in the absence of air, devolatilizes and produces a liquid (the target product), gases and char. *


Steam reforming Thermochemical process for hydrogen production in which a carbonaceous feedstock reacts with water steam at temperatures of 450–800 °C in the presence of a suitable catalyst.


* Fixed-bed reactors Tubular reactor filled with feedstock and/or catalyst, in which the reactants flow through the bed to be converted into products. * Fluidized-bed reactors Type of


chemical reactor in which a solid material (usually a catalyst) is suspended by the upward flow of a fluid. * Screw-kiln reactor Type of reactor in which a screw conveyor is used to perform


chemical reactions under controlled temperature and residence time conditions. * Spouted-bed reactors Type of fluidized-bed reactor that uses a single gas inlet nozzle instead of a


distributor plate. * K-type thermocouple Type of electronic temperature sensor containing Chromel and Alumel conductors, used for monitoring high temperatures. * Cyclone Device for the


removal of particles from the fluid stream, consisting of a chamber that creates a spiral vortex whose rotational effects plus gravity are used to separate mixtures of solids and fluids. *


Venturi scrubber Gas–solid separation device in which a liquid auxiliary stream is finely pulverized using a venturi to ensure efficient particle collection. * Syngas Fuel gas mixture


produced from feedstock hydrocarbon, composed of hydrogen (H2) and carbon monoxide (CO) as primary components and carbon dioxide (CO2) and methane (CH4) as the remaining compounds. RIGHTS


AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lopez, G., Santamaria, L., Lemonidou, A. _et al._ Hydrogen generation from biomass by pyrolysis. _Nat Rev


Methods Primers_ 2, 20 (2022). https://doi.org/10.1038/s43586-022-00097-8 Download citation * Accepted: 21 January 2022 * Published: 24 March 2022 * DOI:


https://doi.org/10.1038/s43586-022-00097-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative