Targeted modulation of immune cells and tissues using engineered biomaterials

Targeted modulation of immune cells and tissues using engineered biomaterials

Play all audios:

Loading...

ABSTRACT Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote


specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving the safety and efficacy of vaccines


and immunotherapies. Here, we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and


immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases. KEY POINTS * In


immunotherapy, choosing the right target cell, tissue and treatment duration is essential to ensure effective immunomodulation while avoiding toxicity. * Biomaterial-mediated targeting of


immune cells in lymph nodes improves the potency and efficacy of vaccines by promoting immunity or tolerance. * Circulating migratory immune cells can be targeted to perform as living


chaperones to carry therapeutics into tissues. * Systemic administration or intratumoral injection of nanomaterials and therapeutic depots can selectively accumulate and target immune cells


in tumours. * Reducing biomaterial complexity is essential to facilitate clinical translation. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per


issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DESIGN OF THERAPEUTIC BIOMATERIALS TO


CONTROL INFLAMMATION Article 28 February 2022 BIOMATERIALS TO ENHANCE ADOPTIVE CELL THERAPY Article 26 January 2024 RESPONSIVE BIOMATERIALS: OPTIMIZING CONTROL OF CANCER IMMUNOTHERAPY


Article 22 December 2023 REFERENCES * Urquhart, L. Top companies and drugs by sales in 2021. _Nat. Rev. Drug Discov._ 21, 251 (2022). Article  Google Scholar  * Dougan, M., Luoma, A. M.,


Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. _Cell_ 184, 1575–1588 (2021). Article  Google Scholar  * Seung,


E. et al. A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells. _Nature_ 603, 328–334 (2022). Article  Google Scholar  * Muik, A. et al. Preclinical


characterization and phase I trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. _Cancer Discov._ 12, 1248–1265


(2022). Article  Google Scholar  * Neri, D. Antibody–cytokine fusions: versatile products for the modulation of anticancer immunity. _Cancer Immunol. Res._ 7, 348–354 (2019). Article  Google


Scholar  * Jones, D. S. II et al. Cell surface-tethered IL-12 repolarizes the tumor immune microenvironment to enhance the efficacy of adoptive T cell therapy. _Sci. Adv_. 8, eabi8075


(2022). * Ren, Z. et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. _J. Clin. Invest._ 132, e153604 (2022). Article 


Google Scholar  * Tzeng, A., Kwan, B. H., Opel, C. F., Navaratna, T. & Wittrup, K. D. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. _Proc. Natl


Acad. Sci. USA_ 112, 3320–3325 (2015). Article  Google Scholar  * Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. _Nat. Biotechnol._


25, 1159–1164 (2007). Article  Google Scholar  * McLennan, D. N., Porter, C. J. H. & Charman, S. A. Subcutaneous drug delivery and the role of the lymphatics. _Drug. Discov. Today


Technol._ 2, 89–96 (2005). Article  Google Scholar  * Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. _Nat. Rev. Mater._ 4, 415–428 (2019).


Article  Google Scholar  * Mehta, N. K. et al. Pharmacokinetic tuning of protein–antigen fusions enhances the immunogenicity of T-cell vaccines. _Nat. Biomed. Eng._ 4, 636–648 (2020).


Article  Google Scholar  * Kourtis, I. C. et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. _PLoS ONE_ 8, e61646


(2013). Article  Google Scholar  * Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. _Sci. Immunol._ 6, eabf1152 (2021).


Article  Google Scholar  * Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. _Proc.


Natl Acad. Sci. USA_ 109, 1080–1085 (2012). Article  Google Scholar  * Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. _Nature_ 592, 623–628


(2021). Article  Google Scholar  * Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. _Science_ 351, 1458–1463 (2016).


Article  Google Scholar  * Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. _Cell_ 183, 1367–1382 (2020).


Article  Google Scholar  * Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. _Cell_ 176,


1420–1431 (2019). Article  Google Scholar  * Walls, A. C. et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. _Cell_ 184,


5432–5447.e16 (2021). Article  Google Scholar  * Houser, K. V. et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. _Nat.


Med._ 28, 383–391 (2022). Article  Google Scholar  * Song, J. Y. et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: a


randomized, placebo-controlled, observer-blinded phase 1/2 trial. _EClinicalMedicine_ 51, 101569 (2022). Article  Google Scholar  * Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A.


& Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. _Nat. Mater._ 16, 489–496 (2016). Article  Google Scholar  * Karabin, N. B. et al. Sustained micellar


delivery via inducible transitions in nanostructure morphology. _Nat. Commun._ 9, 624 (2018). Article  Google Scholar  * Heath, P. T. et al. Safety and efficacy of NVX-CoV2373 Covid-19


vaccine. _N. Engl. J. Med._ 385, 1172–1183 (2021). Article  Google Scholar  * Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. _Nature_ 507, 519–522


(2014). Article  Google Scholar  * Moynihan, K. D. et al. Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability. _Cancer Immunol. Res._


6, 1025–1038 (2018). Article  Google Scholar  * Rakhra, K. et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. _Sci. Immunol._ 6,


eabd8003 (2021). Article  Google Scholar  * Vrieze, J. D. et al. Potent lymphatic translocation and spatial control over innate immune activation by polymer-lipid amphiphile conjugates of


small-molecule TLR7/8 agonists. _Angew. Chem. Int. Edn_ 58, 15390–15395 (2019). Article  Google Scholar  * Pant, S. et al. First-in-human phase 1 trial of ELI-002 immunotherapy as treatment


for subjects with Kirsten rat sarcoma (KRAS)-mutated pancreatic ductal adenocarcinoma and other solid tumors. _J. Clin. Oncol._ 40, TPS2701–TPS2701 (2022). Article  Google Scholar  * Cao, S.


et al. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4+ T cell activation and HIV-1 latency reversal. _Sci. Adv._ 5, eaav6322 (2019). Article  Google


Scholar  * Capini, C. et al. Antigen-specific suppression of inflammatory arthritis using liposomes. _J. Immunol._ 182, 3556–3565 (2009). Article  Google Scholar  * Zhou, K. et al. Targeting


peripheral immune organs with self‐assembling prodrug nanoparticles ameliorates allogeneic heart transplant rejection. _Am. J. Transpl._ 21, 3871–3882 (2021). Article  Google Scholar  *


Kishimoto, T. K. & Maldonado, R. A. Nanoparticles for the induction of antigen-specific immunological tolerance. _Front. Immunol._ 9, 230 (2018). Article  Google Scholar  * Maldonado, R.


A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. _Proc. Natl Acad. Sci. USA_ 112, E156–E165 (2015). Article  Google Scholar  * Ali,


O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. _Nat. Mater._ 8, 151–158 (2009). Article  Google Scholar  *


Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. _Sci. Transl Med._ 1, 8ra19 (2009). Article  Google


Scholar  * Shah, N. J. et al. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. _Nat. Biomed. Eng._ 4, 40–51 (2020). Article  Google


Scholar  * Kim, J. et al. Injectable, spontaneously assembling inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. _Nat. Biotechnol._ 33, 64–72 (2014). Article 


Google Scholar  * Super, M. et al. Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. _Nat. Biomed. Eng._ 6, 8–18


(2022). Article  Google Scholar  * Lee, J. A. et al. Recruitment of dendritic cells using ‘find-me’ signaling microparticles for personalized cancer immunotherapy. _Biomaterials_ 282, 121412


(2022). Article  Google Scholar  * Lewis, J. S. et al. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. _Clin.


Immunol._ 160, 90–102 (2015). Article  Google Scholar  * Allen, R., Chizari, S., Ma, J. A., Raychaudhuri, S. & Lewis, J. S. Combinatorial, microparticle-based delivery of immune


modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. _ACS Appl. Bio Mater._ 2, 2388–2404 (2019). Article  Google Scholar  * Cho,


J. J. et al. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune


encephalomyelitis. _Biomaterials_ 143, 79–92 (2017). Article  Google Scholar  * Gerner, M. Y., Casey, K. A., Kastenmuller, W. & Germain, R. N. Dendritic cell and antigen dispersal


landscapes regulate T cell immunity. _J. Exp. Med._ 214, 3105–3122 (2017). Article  Google Scholar  * Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T


cell-dendritic cell interactions. _Cell_ 162, 1322–1337 (2015). Article  Google Scholar  * Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present


them to antiviral B cells. _Nature_ 450, 110–114 (2007). Article  Google Scholar  * Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. I. & Shaw, S. Lymph-borne chemokines


and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node


cortex. _J. Exp. Med._ 192, 1425–1440 (2000). Article  Google Scholar  * Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in


the T cell area of the lymph node. _Immunity_ 22, 19–29 (2005). Article  Google Scholar  * Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node


follicles. _Immunity_ 30, 264–276 (2009). Article  Google Scholar  * Reynoso, G. V. et al. Lymph node conduits transport virions for rapid T cell activation. _Nat. Immunol._ 20, 602–612


(2019). Article  Google Scholar  * Kim, E. H. et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. _eLife_ 9,


e52687 (2020). Article  Google Scholar  * Detienne, S. et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. _Sci. Rep._ 6,


39475 (2016). Article  Google Scholar  * Zhang, Y.-N., Poon, W., Sefton, E. & Chan, W. C. W. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node


follicles for robust humoral immunity. _ACS Nano_ 14, 9478–9490 (2020). Article  Google Scholar  * Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. _Nat.


Nanotechnol._ 15, 491–499 (2020). Article  Google Scholar  * Hafiz, M. M. et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving


allogeneic islet cell transplantation. _Transplantation_ 80, 1718–1728 (2005). Article  Google Scholar  * Burke, J. A. et al. Subcutaneous nanotherapy repurposes the immunosuppressive


mechanism of rapamycin to enhance allogeneic islet graft viability. _Nat. Nanotechnol._ 17, 319–330 (2022). Article  Google Scholar  * Kenison, J. E. et al. Tolerogenic nanoparticles


suppress central nervous system inflammation. _Proc. Natl Acad. Sci. USA_ 117, 32017–32028 (2020). Article  Google Scholar  * Lynn, G. M. et al. Peptide–TLR-7/8a conjugate vaccines


chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. _Nat. Biotechnol._ 38, 320–332 (2020). Article  Google Scholar  * Wilson, D. S. et al.


Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. _Nat. Mater._ 18, 175–185 (2019). Article  Google Scholar  * Shae, D. et al.


Co-delivery of peptide neoantigens and stimulator of interferon genes (STING) agonists enhances response to cancer vaccines. _ACS Nano_ 14, 9904–9916 (2020). Article  Google Scholar  * Wang,


S. et al. Rational vaccinology with spherical nucleic acids. _Proc. Natl Acad. Sci. USA._ 116, 10473–10481 (2019). Article  Google Scholar  * Callmann, C. E. et al. Tumor cell lysate-loaded


immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. _Proc. Natl Acad. Sci. USA_ 117, 17543–17550 (2020). Article  Google Scholar  * Froimchuk, E.,


Oakes, R. S., Kapnick, S. M., Yanes, A. A. & Jewell, C. M. Biophysical properties of self-assembled immune signals impact signal processing and the nature of regulatory immune function.


_Nano Lett._ 21, 3762–3771 (2021). Article  Google Scholar  * Hess, K. L. et al. Engineering immunological tolerance using quantum dots to tune the density of self-antigen display. _Adv.


Funct. Mater._ 27, 1700290 (2017). Article  MathSciNet  Google Scholar  * Liang, Y., Zhang, T. & Tang, M. Toxicity of quantum dots on target organs and immune system. _J. Appl. Toxicol._


42, 17–40 (2022). Article  Google Scholar  * Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. _Science_ 363, 649–654


(2019). Article  Google Scholar  * Read, B. J. et al. Mannose-binding lectin and complement mediate follicular localization and enhanced immunogenicity of diverse protein nanoparticle


immunogens. _Cell Rep._ 38, 110217 (2022). Article  Google Scholar  * Venkatesan, P. Preliminary phase 1 results from an HIV vaccine candidate trial. _Lancet Microbe_ 2, e95 (2021). Article


  Google Scholar  * Zhang, Y.-N. et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. _Nano Lett._ 19, 7226–7235 (2019).


Article  Google Scholar  * Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. _Nat. Nanotechnol._ 15, 716–723 (2020). Article  Google


Scholar  * Xiao, P. et al. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. _Nano Lett._ 21, 2094–2103


(2021). Article  Google Scholar  * Ma, L. et al. Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. _Science_ 365, 162–168 (2019). Article 


Google Scholar  * Pennock, N. D., Kedl, J. D. & Kedl, R. M. T cell vaccinology: beyond the reflection of infectious responses. _TRENDS Immunol._ 37, 170–180 (2016). Article  Google


Scholar  * Ols, S. et al. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. _Cell Rep._ 30, 3964–3971 (2020). Article  Google Scholar  *


Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. _Adv. Drug. Deliv. Rev._ 130, 17–38 (2018). Article  Google Scholar  * Kranz, L. M. et al. Systemic


RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. _Nature_ 534, 396–401 (2016). Article  Google Scholar  * Beyaert, S., Machiels, J.-P. & Schmitz, S.


Vaccine-based immunotherapy for head and neck cancers. _Cancers_ 13, 6041 (2021). Article  Google Scholar  * Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated


melanoma. _Nature_ 585, 107–112 (2020). Article  Google Scholar  * Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. _Nat.


Immunol._ 52, 41–52 (2020). Google Scholar  * Creemers, J. H. A. et al. Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced


NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. _BMJ Open_ 11, e050725 (2021). Article  Google Scholar  * Kishimoto, T. K. et al. Improving


the efficacy and safety of biologic drugs with tolerogenic nanoparticles. _Nat. Nanotechnol._ 11, 890–899 (2016). Article  Google Scholar  * Sands, E. et al. Tolerogenic nanoparticles


mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. _Nat. Commun._ 13, 272 (2022). Article  Google Scholar  * Prasad, S. et al.


Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. _J. Autoimmun._ 89, 112–124 (2018). Article  Google Scholar  * Luo, X., Miller, S. D.


& Shea, L. D. Immune tolerance for autoimmune disease and cell transplantation. _Annu. Rev. Biomed. Eng._ 18, 181–205 (2016). Article  Google Scholar  * Leon, M. A. et al. Soluble


antigen arrays displaying mimotopes direct the response of diabetogenic T cells. _ACS Chem. Biol._ 14, 1436–1448 (2019). Article  Google Scholar  * Liu, Q. et al. Use of polymeric


nanoparticle platform targeting the liver to induce Treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. _ACS Nano_ 13, 4778–4794 (2019). Article 


Google Scholar  * Ishii, Y. et al. Alpha-galactosylceramide-driven immunotherapy for allergy. _Front. Biosci._ 13, 6214–6228 (2008). Article  Google Scholar  * Duramad, O., Laysang, A., Li,


J., Ishii, Y. & Namikawa, R. Pharmacologic expansion of donor-derived, naturally occurring CD4+ Foxp3+ regulatory T cells reduces acute graft-versus-host disease lethality without


abrogating the graft-versus-leukemia effect in murine models. _Biol. Blood Marrow Transplant._ 17, 1154–1168 (2011). Article  Google Scholar  * Chen, Y.-B. et al. Pharmacokinetics and safety


of KRN7000 following intravenous infusion of RGI-2001 in allogeneic transplant patients. _Blood_ 136, 15–16 (2020). Google Scholar  * Okhrimenko, A. et al. Human memory T cells from the


bone marrow are resting and maintain long-lasting systemic memory. _Proc. Natl Acad. Sci. USA_ 111, 9229–9234 (2014). Article  Google Scholar  * Mulder, W. J. M., Ochando, J., Joosten, L. A.


B., Fayad, Z. A. & Netea, M. G. Therapeutic targeting of trained immunity. _Nat. Rev. Drug Discov._ 18, 553–566 (2019). Article  Google Scholar  * Netea, M. G. et al. Trained immunity:


a program of innate immune memory in health and disease. _Science_ 352, aaf1098 (2016). Article  Google Scholar  * Netea, M. G. & van der Meer, J. W. M. Trained immunity: an ancient way


of remembering. _Cell Host Microbe_ 21, 297–300 (2017). Article  Google Scholar  * Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates


checkpoint inhibition. _Cell_ 183, 786–801 (2020). Article  Google Scholar  * Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies


in cancer and beyond. _Nat. Med._ 28, 678–689 (2022). Article  Google Scholar  * Ribas, A. T cells as the future of cancer therapy. _Cancer Discov._ 11, 798–800 (2021). Article  Google


Scholar  * Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. _Cancer Cell_ 38, 473–488 (2020). Article  Google Scholar  * Barros, L. R. C.


et al. Systematic review of available CAR-T cell trials around the world. _Cancers_ 14, 2667 (2022). Article  Google Scholar  * National Cancer Institute. CAR T cells: engineering patients’


immune cells to treat their cancers. _NCI_ https://www.cancer.gov/about-cancer/treatment/research/car-t-cells (2022). * Larson, R. C. & Maus, M. V. Recent advances and discoveries in the


mechanisms and functions of CAR T cells. _Nat. Rev. Cancer_ 21, 145–161 (2021). Article  Google Scholar  * Siriwon, N. et al. CAR–T cells surface-engineered with drug-encapsulated


nanoparticles can ameliorate intratumoral T-cell hypofunction. _Cancer Immunol. Res._ 6, 812–824 (2018). Article  Google Scholar  * Huang, B. et al. Active targeting of chemotherapy to


disseminated tumors using nanoparticle-carrying T cells. _Sci. Transl Med._ 7, 291ra94–291ra94 (2015). Article  Google Scholar  * Eskandari, S. K. et al. Regulatory T cells engineered with


TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. _Sci. Transl Med._ 12, eaaw4744 (2020). Article  Google Scholar  * Stephan, M. T., Moon, J. J.,


Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. _Nat. Med._ 16, 1035–1041 (2010). Article  Google Scholar  * Tang,


L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. _Nat. Biotechnol._ 36, 707–716 (2018). Article  Google Scholar  * Romee, R. et al.


First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. _Blood_ 131, 2515–2527 (2018). Article  Google Scholar  * Hamilton, E.


et al. 801 PRIMETM IL-15 (RPTR-147): preliminary clinical results and biomarker analysis from a first-in-human phase 1 study of IL-15 loaded peripherally-derived autologous T cell therapy


in solid tumor patients. _J. Immunother. Cancer_ 8, A850–A850 (2020). Google Scholar  * ShieldsIV, C. W. et al. Cellular backpacks for macrophage immunotherapy. _Sci. Adv._ 6, eaaz6579


(2020). Article  Google Scholar  * Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. _Proc. Natl Acad. Sci. USA._ 103, 4930–4934 (2006). Article  Google Scholar 


* Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. _Cell_ 74, 185–195 (1993). Article  Google Scholar  * Mora, J. R. et al. Selective


imprinting of gut-homing T cells by Peyer’s patch dendritic cells. _Nature_ 424, 88–93 (2003). Article  Google Scholar  * Cao, S., Jiang, Y., Zhang, H., Kondza, N. & Woodrow, K. A.


Core–shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. _Nanomed. Nanotechnol. Biol. Med._ 14, 2143–2153 (2018). Article  Google Scholar  *


Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. _Nat. Nanotechnol._ 16, 1030–1038 (2021). Article  Google Scholar  * Parayath, N. N., Parikh,


A. & Amiji, M. M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based


nanoparticles encapsulating microRNA-125b. _Nano Lett._ 18, 3571–3579 (2018). Article  Google Scholar  * Sofias, A. M. et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles


occurs via phagocyte hitchhiking. _ACS Nano_ 14, 7832–7846 (2020). Article  Google Scholar  * Hou, J. et al. Accessing neuroinflammation sites: monocyte/neutrophil-mediated drug delivery for


cerebral ischemia. _Sci. Adv._ 5, eaau8301 (2019). Article  Google Scholar  * Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. _Immunity_ 32, 568–580


(2010). Article  Google Scholar  * Singha, S. et al. Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. _Nat. Nanotechnol._ 12, 701–710


(2017). Article  Google Scholar  * Umeshappa, C. S. et al. Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. _Nat. Commun._ 10, 2150


(2019). Article  Google Scholar  * Rhodes, K. R. et al. Biodegradable cationic polymer blends for fabrication of enhanced artificial antigen presenting cells to treat melanoma. _ACS Appl.


Mater. Interf._ 13, 7913–7923 (2021). Article  Google Scholar  * Rhodes, K. R., Meyer, R. A., Wang, J., Tzeng, S. Y. & Green, J. J. Biomimetic tolerogenic artificial antigen presenting


cells for regulatory T cell induction. _Acta Biomater._ 112, 136–148 (2020). Article  Google Scholar  * Yip, A. & Webster, R. M. The market for chimeric antigen receptor T cell


therapies. _Nat. Rev. Drug Discov._ 17, 161–162 (2018). Article  Google Scholar  * Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells


eradicate tumor cells. _Oncoimmunology_ 8, e1671761 (2019). Article  Google Scholar  * Parayath, N. N. & Stephan, M. T. In situ programming of CAR T cells. _Annu. Rev. Biomed. Eng._ 23,


385–405 (2021). Article  Google Scholar  * Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. _Gene Ther._ 17, 295–304 (2010). Article  Google Scholar 


* Barnes, C., Scheideler, O. & Schaffer, D. Engineering the AAV capsid to evade immune responses. _Curr. Opin. Biotech._ 60, 99–103 (2019). Article  Google Scholar  * Hinderer, C. et al.


Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. _Hum. Gene Ther._ 29, 285–298


(2018). Article  Google Scholar  * Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. _Nat. Nanotechnol._ 12, 813–820 (2017). Article 


Google Scholar  * Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. _Science_ 375, 91–96 (2022). Article  Google Scholar  * Li, W. et al. Biomimetic nanoparticles


deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. _Nat. Commun._ 12, 7264 (2021). Article  Google Scholar  * Billingsley, M. M. et al.


Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. _Nano Lett._ 20, 1578–1589 (2020). Article  Google Scholar  * McKinlay, C. J., Benner, N. L., Haabeth,


O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. _Proc. Natl Acad. Sci. USA_


115, 201805358 (2018). Article  Google Scholar  * Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. _Nat. Biotechnol._ 40,


1250–1258 (2022). Article  Google Scholar  * Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. _Science_ 314, 1157–1160 (2006). Article  Google


Scholar  * Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. _Nat. Immunol._ 20, 97–108 (2018). Article  Google Scholar  *


Kiyono, H. & Fukuyama, S. NALT- versus PEYER’S-patch-mediated mucosal immunity. _Nat. Rev. Immunol._ 4, 699–710 (2004). Article  Google Scholar  * Bowen, A., Sweeney, E. E. &


Fernandes, R. Nanoparticle-based immunoengineered approaches for combating HIV. _Front. Immunol._ 11, 789 (2020). Article  Google Scholar  * Li, M. et al. Mucosal vaccines: strategies and


challenges. _Immunol. Lett._ 217, 116–125 (2019). Article  Google Scholar  * Iwasaki, A. Exploiting mucosal immunity for antiviral vaccines. _Annu. Rev. Immunol._ 34, 575–608 (2016). Article


  Google Scholar  * Sockolosky, J. T. & Szoka, F. C. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. _Adv. Drug Deliv. Rev._ 91, 109–124 (2015). Article 


Google Scholar  * Fieux, M. et al. FcRn as a transporter for nasal delivery of biologics: a systematic review. _Int. J. Mol. Sci._ 22, 6475 (2021). Article  Google Scholar  * Hartwell, B. L.


et al. Intranasal vaccination via lipid-conjugated immunogens promotes antigen persistence and transmucosal uptake to drive mucosal and systemic immunity. _Sci. Transl Med._ 14, eabn1413


(2022). Article  Google Scholar  * Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in


colitis. _Nat. Mater._ 19, 118–126 (2019). Article  Google Scholar  * Lázaro, Ide & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. _Nat. Mater._


20, 1469–1479 (2021). Article  Google Scholar  * Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. _Nat. Rev. Mater._ 1, 16014 (2016). Article  Google Scholar  * Barber, G. N.


STING: infection, inflammation and cancer. _Nat. Rev. Immunol._ 15, 760–770 (2015). Article  Google Scholar  * Dane, E. L. et al. STING agonist delivery by tumour-penetrating PEG-lipid


nanodiscs primes robust anticancer immunity. _Nat. Mater._ 21, 710–720 (2022). Article  Google Scholar  * Miller, I. C. et al. Enhanced intratumoural activity of CAR T cells engineered to


produce immunomodulators under photothermal control. _Nat. Biomed. Eng._ 5, 1348–1359 (2021). Article  Google Scholar  * Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties


of nano-sized particles and molecules as imaging agents: considerations and caveats. _Nanomedicine_ 3, 703–717 (2008). Article  Google Scholar  * Schmid, D. et al. T cell-targeting


nanoparticles focus delivery of immunotherapy to improve antitumor immunity. _Nat. Commun._ 8, 1747 (2017). Article  Google Scholar  * Turk, M. J., Waters, D. J. & Low, P. S.


Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. _Cancer Lett._ 213, 165–172 (2004). Article  Google Scholar  * Miller, M. A. et al.


Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. _Nat. Commun._ 6, 8692 (2015). Article  Google Scholar  * Dai, Q. et al. Quantifying the


ligand-coated nanoparticle delivery to cancer cells in solid tumors. _ACS Nano_ 12, 8423–8435 (2018). Article  Google Scholar  * Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles


promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. _Nat. Biomed. Eng._ 2, 578–588 (2018). Article  Google Scholar  * Kulkarni, A. et al. A designer


self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. _Nat. Biomed. Eng._ 2, 589–599 (2018). Article  Google Scholar  * Zhang, F. et al. Genetic


programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. _Nat. Commun._ 10, 3974 (2019). Article  Google Scholar  * Gustafson, H. H., Holt-Casper, D.,


Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. _Nano Today_ 10, 487–510 (2015). Article  Google Scholar  * Chen, D. et al. NIR-II fluorescence imaging


reveals bone marrow retention of small polymer nanoparticles. _Nano Lett._ 21, 798–805 (2021). Article  Google Scholar  * Sorensen, A. G. et al. A “vascular normalization index” as potential


mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. _Cancer Res._ 69, 5296–5300 (2009). Article  Google Scholar  * Dickson, P. V.


et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. _Clin.


Cancer Res._ 13, 3942–3950 (2007). Article  Google Scholar  * Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal


cancer. _Nat. Med._ 10, 145–147 (2004). Article  Google Scholar  * Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial


fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. _Am. J. Pathol._ 165, 35–52 (2004). Article  Google Scholar  * Goel, S., Wong, A. H.-K. & Jain, R.


K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. _Cold Spring Harb. Perspect. Med._ 2, a006486 (2012). Article  Google Scholar  * Tong, R. T. et


al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. _Cancer Res._


11, 3731–3736 (2004). Article  Google Scholar  * Boucher, Y. et al. Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer


patients. _npj Precis. Oncol._ 5, 62 (2021). Article  Google Scholar  * Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using


antiangiogenics: opportunities and challenges. _Nat. Rev. Clin. Oncol._ 15, 325–340 (2018). Article  Google Scholar  * Shigeta, K. et al. Regorafenib combined with PD1 blockade increases CD8


T-cell infiltration by inducing CXCL10 expression in hepatocellular carcinoma. _J. Immunother. Cancer_ 8, e001435 (2020). Article  Google Scholar  * Manning, E. A. et al. A vascular


endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. _Clin. Cancer Res._ 13, 3951–3959 (2007). Article  Google Scholar  * Yasuda, S.


et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti‐tumour effect in vivo. _Clin. Exp. Immunol._ 172,


500–506 (2013). Article  Google Scholar  * Li, B. et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting


cancer immunotherapy. _Clin. Cancer Res._ 12, 6808–6816 (2006). Article  Google Scholar  * Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors.


_J. Exp. Med._ 212, 139–148 (2015). Article  Google Scholar  * Allen, E. et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. _Sci. Transl


Med._ 9, eaak9679 (2017). Article  Google Scholar  * Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and


enhance immunotherapy. _Proc. Natl Acad. Sci. USA_ 109, 17561–17566 (2012). Article  Google Scholar  * Yang, R. K. et al. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor


effects that involve both activated T and NK cells as well as enhanced IC retention. _J. Immunol_. https://doi.org/10.4049/jimmunol.1200934 (2012). * Momin, N. et al. Maximizing response to


intratumoral immunotherapy in mice by tuning local retention. _Nat. Commun._ 13, 109 (2022). Article  Google Scholar  * Momin, N. et al. Anchoring of intratumorally administered cytokines to


collagen safely potentiates systemic cancer immunotherapy. _Sci. Transl Med._ 11, eaaw2614 (2019). Article  Google Scholar  * Ishihara, J. et al. Matrix-binding checkpoint immunotherapies


enhance antitumor efficacy and reduce adverse events. _Sci. Transl Med._ 9, eaan0401 (2017). Article  Google Scholar  * Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines


elicit potent and safer local and systemic anticancer immunity. _Nat. Biomed. Eng._ 6, 129–143 (2022). Article  Google Scholar  * Huang, Z. N., Callmann, C. E., Cole, L. E., Wang, S. &


Mirkin, C. A. Synergistic immunostimulation through the dual activation of toll-like receptor 3/9 with spherical nucleic acids. _ACS Nano_ 15, 13329–13338 (2021). Article  Google Scholar  *


O’Day, S. et al. 423 Safety and preliminary efficacy of intratumoral cavrotolimod (AST-008), a spherical nucleic acid TLR9 agonist, in combination with pembrolizumab in patients with


advanced solid tumors. _Regul. Young Invest. Award. Abstr_. https://doi.org/10.1136/jitc-2020-sitc2020.0423 (2020). * Exicure provides interim results from ongoing phase 1b/2 clinical trial


of cavrotolimod (AST-008). sec.report https://sec.report/Document/0001698530-21-000079/exhibit992pressrelease0805.htm (2021). * Wang, C., Fiering, S. N. & Steinmetz, N. F. Cowpea mosaic


virus promotes anti‐tumor activity and immune memory in a mouse ovarian tumor model. _Adv. Ther._ 2, 1900003 (2019). Article  Google Scholar  * Lizotte, P. H. et al. In situ vaccination with


cowpea mosaic virus nanoparticles suppresses metastatic cancer. _Nat. Nanotechnol._ 11, 295–303 (2016). Article  Google Scholar  * Nguyen, K. G. et al. Localized interleukin-12 for cancer


immunotherapy. _Front. Immunol._ 11, 575597 (2020). Article  Google Scholar  * Zaharoff, D. A., Hance, K. W., Rogers, C. J., Schlom, J. & Greiner, J. W. Intratumoral immunotherapy of


established solid tumors with chitosan/IL-12. _J. Immunother._ 33, 697–705 (2010). Article  Google Scholar  * Mills, B. N. et al. Stereotactic body radiation and interleukin-12 combination


therapy eradicates pancreatic tumors by repolarizing the immune microenvironment. _Cell Rep._ 29, 406–421 (2019). Article  Google Scholar  * Park, C. G. et al. Extended release of


perioperative immunotherapy prevents tumor recurrence and eliminates metastases. _Sci. Transl Med._ 10, eaar1916 (2018). Article  Google Scholar  * Chen, Q. et al. In situ sprayed


bioresponsive immunotherapeutic gel for post-surgical cancer treatment. _Nat. Nanotechnol._ 14, 89–97 (2018). Article  Google Scholar  * Stephan, S. B. et al. Biopolymer implants enhance the


efficacy of adoptive T cell therapy. _Nat. Biotechnol._ 33, 97–101 (2014). Article  Google Scholar  * Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing


CAR-T cells and anti-PDL1-conjugated platelets. _Nat. Biomed. Eng._ 5, 1038–1047 (2021). Article  Google Scholar  * Coon, M. E., Stephan, S. B., Gupta, V., Kealey, C. P. & Stephan, M. T.


Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. _Nat. Biomed. Eng._ 4, 195–206 (2020). Article  Google Scholar  * Shae, D. et al. Endosomolytic


polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. _Nat. Nanotechnol._ 14, 269–278 (2019). Article  Google Scholar  * Liu, Y. et al.


Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. _Nat. Nanotechnol._ 17, 206–216 (2022). Article 


Google Scholar  * Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. _Sci. Transl Med._ 11, eaat9143 (2019). Article  Google


Scholar  * Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. _Sci. Transl Med._ 13,


eabc7804 (2021). Article  Google Scholar  * Tzeng, S. Y. et al. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. _Proc. Natl Acad. Sci. USA_ 117, 4043–4052


(2020). Article  Google Scholar  * Patel, M. et al. 539 Phase 1 study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ, for intratumoral (ITu)


injection +/− durvalumab in advanced solid tumors and lymphoma. _J Immunother. Cancer_ 9, A569 (2021). Article  Google Scholar  * Myerson, J. W. et al. Supramolecular arrangement of protein


in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. _Nat. Nanotechnol._ 17, 86–97 (2022). Article  Google Scholar  * Robertson, J. D., Ward,


J. R., Avila-Olias, M., Battaglia, G. & Renshaw, S. A. Targeting neutrophilic inflammation using polymersome-mediated cellular delivery. _J. Immunol._ 198, 3596–3604 (2017). Article 


Google Scholar  * Sofias, A. M. et al. Cyclic arginine–glycine–aspartate‐decorated lipid nanoparticle targeting toward inflammatory lesions involves hitchhiking with phagocytes. _Adv. Sci._


8, 2100370 (2021). Article  Google Scholar  * Braza, M. S. et al. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. _Immunity_ 49,


819–828 (2018). Article  Google Scholar  * Park, J. et al. Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord


injury. _Proc. Natl Acad. Sci. USA_ 116, 14947–14954 (2019). Article  Google Scholar  * Li, Y. et al. Immunosuppressive PLGA TGF-β1 microparticles induce polyclonal and antigen-specific


regulatory T cells for local immunomodulation of allogeneic islet transplants. _Front. Immunol._ 12, 653088 (2021). Article  Google Scholar  * Fisher, J. D. et al. Treg-inducing


microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation. _Proc. Natl Acad. Sci. USA_ 116, 25784–25789 (2019). Article  Google Scholar  *


Hautz, T. et al. Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts. _Transpl. Int._ 27, 966–976 (2014). Article  Google Scholar  * Azzi,


J. et al. Targeted delivery of immunomodulators to lymph nodes. _Cell Rep._ 15, 1202–1213 (2016). Article  Google Scholar  * Bahmani, B. et al. Targeted delivery of immune therapeutics to


lymph nodes prolongs cardiac allograft survival. _J. Clin. Invest._ 128, 4770–4786 (2018). Article  Google Scholar  * Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+


T cells between tumor and lymphoid tissue. _J. Exp. Med._ 219, e20210749 (2022). Article  Google Scholar  * Torcellan, T. et al. In vivo photolabeling of tumor-infiltrating cells reveals


highly regulated egress of T-cell subsets from tumors. _Proc. Natl Acad. Sci. USA_ 114, 5677–5682 (2017). Article  Google Scholar  * Gearty, S. V. et al. An autoimmune stem-like CD8 T cell


population drives type 1 diabetes. _Nature_ 602, 156–161 (2022). Article  Google Scholar  * Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.


_Nature_ 537, 417–421 (2016). Article  Google Scholar  * Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune


response. _Sci. Immunol._ 6, eabg7836 (2021). Article  Google Scholar  * Schenkel, J. M. et al. Conventional type I dendric cells maintain a reservoir of proliferative tumor-antigen


specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. _Immunity_ 54, 2338–2353 (2021). Article  Google Scholar  * Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ D8+ T cells with


stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. _Immunity_ 50, 195–211 (2018). Article  Google Scholar  * Tahtinen, S. et al.


IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. _Nat. Immunol._ 23, 532–542 (2022). Article  Google Scholar  * Alameh, M.-G. et al. Lipid nanoparticles


enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. _Immunity_ 54, 2877–2892 (2021). Article  Google Scholar  * Li,


C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. _Nat. Immunol._ 23, 543–555 (2022). Article  Google Scholar  * Yang, X. et al. Lactate-modulated


immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. _Cancer Immunol. Res._ 8, 1440–1451 (2020). Article  Google Scholar  * Certo,


M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. _Nat. Rev. Immunol._ 21, 151–161 (2021).


Article  Google Scholar  * Sangsuwan, R. et al. Lactate exposure promotes immunosuppressive phenotypes in innate immune cells. _Cell Mol. Bioeng._ 13, 541–557 (2020). Article  MathSciNet 


Google Scholar  * Allen, R. P., Bolandparvaz, A., Ma, J. A., Manickam, V. A. & Lewis, J. S. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. _ACS


Biomater. Sci. Eng._ 4, 900–918 (2018). Article  Google Scholar  * Shimabukuro, T. T., Cole, M. & Su, J. R. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the


US—December 14, 2020-January 18, 2021. _JAMA_ 325, 1101–1102 (2021). Article  Google Scholar  * Szebeni, J. et al. Applying lessons learned from nanomedicines to understand rare


hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. _Nat. Nanotechnol._ 17, 337–346 (2022). Article  Google Scholar  * McKinlay, C. J. et al. Charge-altering releasable


transporters (CARTs) for the delivery and release of mRNA in living animals. _Proc. Natl Acad. Sci. USA._ 114, E448–E456 (2017). Article  Google Scholar  * Kowalski, P. S., Rudra, A., Miao,


L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. _Mol. Ther._ 27, 710–728 (2019). Article  Google Scholar  * Kong, N. et al.


Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. _Sci. Transl Med._ 11, eaaw1565 (2019). Article  Google Scholar


  * Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. _Nat. Biotechnol._ 29, 1005–1010 (2011). Article  Google Scholar  * Cheng, Q. et al. Selective organ


targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. _Nat. Nanotechnol._ 15, 313–320 (2020). Article  Google Scholar  * Hewitt, S. L. et al.


Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. _Clin. Cancer Res._ 26, 6284–6298 (2020). Article  Google Scholar  * Youngblood, B., Hale, J. S.


& Ahmed, R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. _Immunology_ 139, 277–284 (2013). Article  Google Scholar  * Gounari, F. &


Khazaie, K. TCF-1: a maverick in T cell development and function. _Nat. Immunol._ 23, 671–678 (2022). Article  Google Scholar  * Zhao, X., Shan, Q. & Xue, H.-H. TCF1 in T cell immunity:


a broadened frontier. _Nat. Rev. Immunol._ 22, 147–157 (2022). Article  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported in part by the Marble Center for


Nanomedicine, the Ragon Institute of MGH, MIT and Harvard, the NIH (awards CA247632, EB031082, U01-CA265706, AI147845, AI162307, AI161297 and CA235375 to D.J.I.) and the Mark Foundation for


Cancer Research. This material is based upon work supported in part by the US Army Research Office through the Institute for Soldier Nanotechnologies at MIT, under Cooperative Agreement


Number W911NF-18-2-0048. D.J.I. is an investigator of the Howard Hughes Medical Institute. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Koch Institute for Integrative Cancer Research,


Massachusetts Institute of Technology, Cambridge, MA, USA Parisa Yousefpour, Kaiyuan Ni & Darrell J. Irvine * Department of Biological Engineering, Massachusetts Institute of Technology,


Cambridge, MA, USA Darrell J. Irvine * Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Darrell J. Irvine * Ragon Institute of


Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA Darrell J. Irvine * Howard Hughes Medical Institute, Chevy Chase, MD, USA


Darrell J. Irvine Authors * Parisa Yousefpour View author publications You can also search for this author inPubMed Google Scholar * Kaiyuan Ni View author publications You can also search


for this author inPubMed Google Scholar * Darrell J. Irvine View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The manuscript was drafted and


revised by P.Y., K.N. and D.J.I. CORRESPONDING AUTHOR Correspondence to Darrell J. Irvine. ETHICS DECLARATIONS COMPETING INTERESTS D.J.I. is an inventor on patents related to albumin


hitchhiking (discussed under ‘Principles of lymph node targeting’), nanoparticle modification of T cells (discussed under ‘Backpacking’ cells’) and alum-binding cytokines (discussed under


‘Intratumoral delivery of biomaterials for immune cell targeting’). These patents have been licensed to Elicio Therapeutics, Repertoire Immune Medicines and Ankyra Therapeutics,


respectively, and D.J.I. holds equity in these companies. The remaining authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Bioengineering_ thanks the


anonymous reviewers for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a


publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing


agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Yousefpour, P., Ni, K. & Irvine, D.J. Targeted modulation of immune cells and tissues using


engineered biomaterials. _Nat Rev Bioeng_ 1, 107–124 (2023). https://doi.org/10.1038/s44222-022-00016-2 Download citation * Accepted: 28 November 2022 * Published: 30 January 2023 * Issue


Date: February 2023 * DOI: https://doi.org/10.1038/s44222-022-00016-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry,


a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative