Robotic surgery | Nature Reviews Bioengineering

Robotic surgery | Nature Reviews Bioengineering

Play all audios:

Loading...

ABSTRACT Robotic surgery has the potential to fundamentally change interventional medicine by combining the complementary strengths of humans and machines. This can enhance safety as robots


begin to intelligently interact with surgeons during training and to intra-operatively assist at varying levels of control and autonomy. In parallel, miniaturization is advancing the


frontiers of how deeply robots can reach into the human body, and ergonomic user interfaces are improving the ability of surgeons to direct them. Improvements in tissue modelling, real-time


feedback and delivery of diverse energy sources are key drivers of practical, intelligent human–machine collaborative systems. In this Review, we discuss the design and application of


robotic systems in surgical procedures, outlining key elements in computer-assisted robotic surgery. Surgical robots are categorized based on the level of control and autonomy as passive,


interactive, teleoperated and autonomous platforms. We conclude by discussing future milestones and current research frontiers in the engineering and clinical domain of surgical robotic


systems. KEY POINTS * Robotic modules, such as image-guidance systems, mechatronics, sensing and control intelligence, soft materials, and energy sources for tissue manipulation and


dissection, are constitutive elements of computer-assisted robotic platforms for surgery. * Interventional medical robots can be classified by the level of control and autonomy in passive,


interactive, teleoperated and autonomous platforms. * Surgical robots can address human limitations and improve the safety and quality of interventional clinical procedures as well as


support surgical training and education. * Human-centred robotic platforms integrate tissue modelling and real-time energy source interaction monitoring to personalize and improve


interventional outcomes. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE EVOLUTION OF ROBOTICS: RESEARCH AND APPLICATION PROGRESS OF DENTAL IMPLANT ROBOTIC SYSTEMS


Article Open access 08 April 2024 THE IDEAL FRAMEWORK FOR SURGICAL ROBOTICS: DEVELOPMENT, COMPARATIVE EVALUATION AND LONG-TERM MONITORING Article 19 January 2024 AUTONOMOUS SURGERY IN THE


ERA OF ROBOTIC UROLOGY: FRIEND OR FOE OF THE FUTURE SURGEON? Article 23 September 2020 REFERENCES * Taylor, R. H. & Stoianovici, D. Medical robotics in computer-integrated surgery. _IEEE


Trans. Robot. Autom._ 19, 765–781 (2003). Article  Google Scholar  * Dupont, P. E. et al. A decade retrospective of medical robotics research from 2010 to 2020. _Sci. Robot._ 6, eabi8017


(2021). Article  Google Scholar  * Gorini, A. & Pravettoni, G. P5 medicine: a plus for a personalized approach to oncology. _Nat. Rev. Clin. Oncol._ 8, 444 (2011). Article  Google


Scholar  * Xu, X., Lu, Y., Vogel-Heuser, B. & Wang, L. Industry 4.0 and Industry 5.0 — inception, conception and perception. _J. Manuf. Syst._ 61, 530–535 (2021). Article  Google Scholar


  * Rosen, J., Hannaford, B. & Satava, R. M. _Surgical Robotics: Systems Applications and Visions_ (Springer Science & Business Media, 2011). * Siciliano, B. & Khatib, O. in


_Springer Handbook of Robotics_ (ed Khatib, O.) 1–6 (Springer, 2016). * Lavallée, S., Bainville, E. & Bricault, I. An overview of computer-integrated surgery and therapy. _Crit. Rev.


Diagn. Imaging_ 41, 157–236 (2000). Article  Google Scholar  * Kwoh, Y. S., Hou, J., Jonckheere, E. A. & Hayati, S. A robot with improved absolute positioning accuracy for CT guided


stereotactic brain surgery. _IEEE Trans. Biomed. Eng._ 35, 153–160 (1988). Article  Google Scholar  * Liow, M. H. L., Chin, P. L., Pang, H. N., Tay, D. K.-J. & Yeo, S.-J. THINK surgical


TSolution-One®(Robodoc) total knee arthroplasty. _SICOT J._ 3, 63 (2017). Article  Google Scholar  * Adler, J. R. Jr et al. The Cyberknife: a frameless robotic system for radiosurgery.


_Stereotact. Funct. Neurosurg._ 69, 124–128 (1997). Article  Google Scholar  * Haidegger, T. Autonomy for surgical robots: concepts and paradigms. _IEEE Trans. Med. Robot. Bionics_ 1, 65–76


(2019). Article  Google Scholar  * Ebrahimi, N. et al. Magnetic actuation methods in bio/soft robotics. _Adv. Funct. Mater._ 31, 2005137 (2021). THIS REVIEW DISCUSSES MAGNETICALLY ACTUATED


SOFT ROBOTS, INCLUDING THEIR FABRICATION PROCESSES, ACTUATION METHODS AND BIOMEDICAL APPLICATIONS. Article  Google Scholar  * Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. &


Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. _Sci. Robot._ 2, eaam6431 (2017). Article  Google Scholar  * Sistrom, C. L. & McKay, N. L.


Costs, charges, and revenues for hospital diagnostic imaging procedures: differences by modality and hospital characteristics. _J. Am. Coll. Radiol._ 2, 511–519 (2005). Article  Google


Scholar  * Seah, J., Brady, Z., Ewert, K. & Law, M. Artificial intelligence in medical imaging: implications for patient radiation safety. _Br. J. Radiol._ 94, 20210406 (2021). Article 


Google Scholar  * Leibrandt, K., Marcus, H. J., Kwok, K.-W. & Yang, G.-Z. Implicit active constraints for a compliant surgical manipulator. In _2014 IEEE International Conference on


Robotics and Automation (ICRA)_ 276–283 (IEEE, 2014). * Kwok, W. E. Basic principles of and practical guide to clinical MRI radiofrequency coils. _RadioGraphics_ 42, 898–918 (2022). Article


  Google Scholar  * Chadebecq, F., Lovat, L. B. & Stoyanov, D. Artificial intelligence and automation in endoscopy and surgery. _Nat. Rev. Gastroenterol. Hepatol._ 20, 171–182 (2023).


Article  Google Scholar  * Yang, T. et al. A lumen-adapted navigation scheme with spatial awareness from monocular vision for autonomous robotic endoscopy. _Robot. Auton. Syst._ 165, 104444


(2023). Article  Google Scholar  * Brandao, P. et al. in _Medical Imaging 2017: Computer-Aided Diagnosis_ (eds Armato, S. G. III & Petrick, N. A.) 101–107 (SPIE, 2017). * Saeidi, H. et


al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. _Sci. Robot._ 7, eabj2908 (2022). Article  Google Scholar  * Ma, Y. et al. Shape-guided configuration-aware learning


for endoscopic-image-based pose estimation of flexible robotic instruments. In_ European Conference on Computer Vision (ECCV)_ 259–276 (Springer-Verlag, 2024). * Xu, H., Runciman, M.,


Cartucho, J., Xu, C. & Giannarou, S. Graph-based pose estimation of texture-less surgical tools for autonomous robot control. In _2023 IEEE International Conference on Robotics and


Automation (ICRA)_ 2731–2737 (IEEE, 2023). * Lu, J., Richter, F. & Yip, M. C. Pose estimation for robot manipulators via keypoint optimization and sim-to-real transfer. _IEEE Robot.


Autom. Lett._ 7, 4622–4629 (2022). Article  Google Scholar  * Tian, Y., Zhang, J., Yin, Z. & Dong, H. Robot structure prior guided temporal attention for camera-to-robot pose estimation


from image sequence. In _Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition_ 8917–8926 (IEEE, 2023). * Zhong, X. et al. G-SAM: a robust one-shot keypoint detection


framework for PnP based robot pose estimation. _J. Intell. Robotic Syst._ 109, 28 (2023). Article  Google Scholar  * Lu, J., Liu, F., Girerd, C. & Yip, M. C. Image-based pose estimation


and shape reconstruction for robot manipulators and soft, continuum robots via differentiable rendering. In _2023 IEEE International Conference on Robotics and Automation (ICRA)_ 560–567


(IEEE, 2023). * Lu, J., Richter, F., Lin, S. & Yip, M. C. Tracking snake-like robots in the wild using only a single camera. In _2024 IEEE International Conference on Robotics and


Automation (ICRA)_ 2660–2666 (IEEE, 2024). Article  Google Scholar  * Tanaka, K. et al. Continuum-body-pose estimation from partial sensor information using recurrent neural networks. _IEEE


Robot. Autom. Lett._ 7, 11244–11251 (2022). Article  Google Scholar  * Souipas, S., Nguyen, A., Laws, S. G., Davies, B. L. & Rodriguez y Baena, F. SimPS-net: simultaneous pose &


segmentation network of surgical tools. _IEEE Trans. Medical Robot. Bionics_ 5, 614–622 (2023). Article  Google Scholar  * Valassakis, E., Dreczkowski, K. & Johns, E. Learning


eye-in-hand camera calibration from a single image. In _Proc. 5th Conference on Robot Learning_ 1336–1346 (PMLR, 2022). * Yoshimura, M., Marinho, M. M., Harada, K. & Mitsuishi, M.


Single-shot pose estimation of surgical robot instruments’ shafts from monocular endoscopic images. In _2020 IEEE International Conference on Robotics and Automation (ICRA)_ 9960–9966 (IEEE,


2020). * Wang, Y. et al. Multimodal token fusion for vision transformers. In _Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition_ 12176–12185 (IEEE, 2022). *


Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. _IEEE Trans. Pattern Anal. Mach. Intell._ 45, 12113–12132 (2023). Article  Google Scholar  * Lin, M.-X.


et al. Single image 3D shape retrieval via cross-modal instance and category contrastive learning. In _Proc. IEEE/CVF International Conference on Computer Vision_ 11385–11395 (IEEE, 2021). *


Arsomngern, P., Nutanong, S. & Suwajanakorn, S. Learning geometric-aware properties in 2D representation using lightweight CAD models, or zero real 3D pairs. In _Proc.__ IEEE/CVF


Conference on Computer Vision and Pattern Recognition_ 21371–21381 (IEEE, 2023). * Webster, R. J. III & Jones, B. A. Design and kinematic modeling of constant curvature continuum robots:


a review. _Int. J. Robot. Res._ 29, 1661–1683 (2010). Article  Google Scholar  * Kazanzides, P. in _Robotics in Surgery: History, Current Future Applications_ (ed Faust, R. A.) Ch. 5 (Nova


Publishers, 2007). * Anderson, P. L., Lathrop, R. A. & Webster, R. J. III Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with


wrist-like tip articulation. _Expert Rev. Med. Devices_ 13, 661–672 (2016). Article  Google Scholar  * DiMaio, S., Hanuschik, M. & Kreaden, U. in _Surgical Robotics_ (eds Rosen, J.,


Hannaford, B. & Satava, R.) 199–217 (Springer, 2011). * Guthart, G. S. & Salisbury, J. K. The IntuitiveTM telesurgery system: overview and application. In _Proc. IEEE International


Conference on Robotics and Automation (ICRA)_ 618–621 (IEEE, 2000). * Harvey, L. et al. A novel robotic endoscopic device used for operative hysteroscopy. _J. Minim. Invasive Gynecol._ 27,


1631–1635 (2020). Article  Google Scholar  * Fan, C., Dodou, D. & Breedveld, P. Review of manual control methods for handheld maneuverable instruments. _Minim. Invasive Ther. Allied


Technol._ 22, 127–135 (2013). Article  Google Scholar  * Payne, C. J. & Yang, G.-Z. Hand-held medical robots. _Ann. Biomed. Eng._ 42, 1594–1605 (2014). THIS REVIEW HIGHLIGHTS THE


FUNCTIONAL TAXONOMY AND KEY EXAMPLES OF INTERACTIVE HAND-HELD (UNGROUNDED) ROBOTS IN MEDICAL APPLICATIONS. Article  Google Scholar  * Hendrick, R. J., Mitchell, C. R., Herrell, S. D. &


Webster, R. J. III Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. _Int. J. Robot. Res._ 34, 1559–1572 (2015). Article  Google Scholar  *


Burgner-Kahrs, J., Rucker, D. C. & Choset, H. Continuum robots for medical applications: a survey. _IEEE Trans. Robot._ 31, 1261–1280 (2015). Article  Google Scholar  * Freyaldenhoven,


S. T. & Tsukada, H. Robotics in the diagnosis and staging of lung cancer. _J. Surg. Oncol._ 127, 258–261 (2023). Article  Google Scholar  * Wegermann, Z. K., Swaminathan, R. V. &


Rao, S. V. Cath lab robotics: paradigm change in interventional cardiology? _Curr. Cardiol. Rep._ 21, 119 (2019). Article  Google Scholar  * Gafford, J. B. et al. A concentric tube robot


system for rigid bronchoscopy: a feasibility study on central airway obstruction removal. _Ann. Biomed. Eng._ 48, 181–191 (2020). Article  Google Scholar  * Rucker, D. C., Jones, B. A. &


Webster, R. J. III A geometrically exact model for externally loaded concentric-tube continuum robots. _IEEE Trans. Robot._ 26, 769–780 (2010). Article  Google Scholar  * Dupont, P. E.,


Lock, J., Itkowitz, B. & Butler, E. Design and control of concentric-tube robots. _IEEE Trans. Robot._ 26, 209–225 (2009). Article  Google Scholar  * Orekhov, A., Abah, C. & Simaan,


N. in _The Encyclopedia of Medical Robotics (In 4 Volumes)_ Vol. 1 203–243 (World Scientific, 2018). * Cianchetti, M., Laschi, C., Menciassi, A. & Dario, P. Biomedical applications of


soft robotics. _Nat. Rev. Mater._ 3, 143–153 (2018). THIS REVIEW DISCUSSES SOFT ROBOTS FOR BIOMEDICAL APPLICATIONS, HIGHLIGHTING SOFT AND ACTIVE MATERIALS AS WELL AS DIFFERENT ACTUATION


STRATEGIES. Article  Google Scholar  * Chiu, P. W. Y., Ho, K. Y. & Phee, S. J. Colonic endoscopic submucosal dissection using a novel robotic system (with video). _Gastrointest.


Endoscopy_ 93, 1172–1177 (2021). Article  Google Scholar  * Sorriento, A. et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities


and limitations. _IEEE Rev. Biomed. Eng._ 13, 212–232 (2019). THIS REVIEW EXAMINES LOCALIZERS (MAINLY OPTICAL AND ELECTROMAGNETIC TRACKERS) AND SURGICAL NAVIGATORS FOR BIOMEDICAL


APPLICATIONS. Article  Google Scholar  * Lefranc, M. & Peltier, J. Evaluation of the ROSA™ spine robot for minimally invasive surgical procedures. _Expert Rev. Med. Devices_ 13, 899–906


(2016). Article  Google Scholar  * Lonjon, N. et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. _Eur. Spine J._ 25, 947–955 (2016). Article


  Google Scholar  * Crawford, N., Johnson, N. & Theodore, N. Ensuring navigation integrity using robotics in spine surgery. _J. Robotic Surg._ 14, 177–183 (2020). Article  Google Scholar


  * Poulin, F. & Amiot, L.-P. Interference during the use of an electromagnetic tracking system under OR conditions. _J. Biomech._ 35, 733–737 (2002). Article  Google Scholar  * Guo, Z.


et al. Compact design of a hydraulic driving robot for intraoperative MRI-guided bilateral stereotactic neurosurgery. _IEEE Robot. Autom. Lett._ 3, 2515–2522 (2018). Article  Google Scholar


  * Bock, M. et al. MR‐guided intravascular procedures: real‐time parameter control and automated slice positioning with active tracking coils. _J. Magn. Reson. Imaging_ 19, 580–589 (2004).


Article  Google Scholar  * Rea, M. et al. System for 3-D real-time tracking of MRI-compatible devices by image processing. _IEEE/ASME Trans. Mechatron._ 13, 379–382 (2008). Article  Google


Scholar  * Eggers, H., Weiss, S., Boernert, P. & Boesiger, P. Image‐based tracking of optically detunable parallel resonant circuits. _Magn. Reson. Med._ 49, 1163–1174 (2003). Article 


Google Scholar  * Su, H. et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions. _Proc. IEEE Inst. Electr. Electron. Eng._ 110, 968–992


(2022). Article  Google Scholar  * Wang, X. et al. Experimental validation of robot-assisted cardiovascular catheterization: model-based versus model-free control. _Int. J. Comput. Assist.


Radiol. Surg._ 13, 797–804 (2018). Article  Google Scholar  * Kwok, K.-W., Wurdemann, H., Arezzo, A., Menciassi, A. & Althoefer, K. Soft robot-assisted minimally invasive surgery and


interventions: advances and outlook. _Proc. IEEE Inst. Electr. Electron. Eng._ 110, 871–892 (2022). Article  Google Scholar  * Wang, X. et al. Eye-in-hand visual servoing enhanced with


sparse strain measurement for soft continuum robots. _IEEE Robot. Autom. Lett._ 5, 2161–2168 (2020). Article  Google Scholar  * Dong, Z. et al. Shape tracking and feedback control of cardiac


catheter using MRI-guided robotic platform— validation with pulmonary vein isolation simulator in MRI. _IEEE Trans. Robot._ 38, 2781–2798 (2022). Article  Google Scholar  * Shi, C. et al.


Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. _IEEE Trans. Biomed. Eng._ 64, 1665–1678 (2016). Article  Google Scholar  * Gerboni, G., Diodato, A.,


Ciuti, G., Cianchetti, M. & Menciassi, A. Feedback control of soft robot actuators via commercial flex bend sensors. _IEEE/ASME Trans. Mechatron._ 22, 1881–1888 (2017). Article  Google


Scholar  * Chen, Z. et al. Data-driven methods applied to soft robot modeling and control: a review. _IEEE Transact. Automation Sci. Eng._ 22, 2241–2256 (2025). Article  Google Scholar  *


Fang, G. et al. Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery. _Sci. Robot._ 6, eabg5575 (2021). Article  Google Scholar  * Lee, K.-H. et al.


Nonparametric online learning control for soft continuum robot: an enabling technique for effective endoscopic navigation. _Soft Robot._ 4, 324–337 (2017). Article  Google Scholar  * Fang,


G. et al. Vision-based online learning kinematic control for soft robots using local Gaussian process regression. _IEEE Robot. Autom. Lett._ 4, 1194–1201 (2019). Article  Google Scholar  *


Wang, K. et al. A fast soft robotic laser sweeping system using data-driven modeling approach. _IEEE Trans. Robot._ 39, 3043–3058 (2023). Article  Google Scholar  * Wang, X. et al.


Learning-based visual-strain fusion for eye-in-hand continuum robot pose estimation and control. _IEEE Trans. Robot._ 39, 2448–2467 (2023). Article  Google Scholar  * Polydoros, A. S. &


Nalpantidis, L. Survey of model-based reinforcement learning: applications on robotics. _J. Intell. Robotic Syst._ 86, 153–173 (2017). Article  Google Scholar  * Jell, A. et al. Robotic


endoscope control-state of the art of voice control and other options for laparoscopic camera robot guidance. _Surg. Technol. Int._ 40, 17–24 (2022). Google Scholar  * Bapna, T., Valles, J.,


Leng, S., Pacilli, M. & Nataraja, R. M. Eye‐tracking in surgery: a systematic review. _ANZ J. Surg._ 93, 2600–2608 (2023). Article  Google Scholar  * Esfandiari, H. et al. Introducing a


brain-computer interface to facilitate intraoperative medical imaging control — a feasibility study. _BMC Musculoskelet. Disord._ 23, 701 (2022). Article  Google Scholar  * Bergholz, M.,


Ferle, M. & Weber, B. M. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis. _Sci. Rep._ 13, 19215 (2023). Article  Google Scholar  * Yang,


Z., Yang, H., Cao, Y., Cui, Y. & Zhang, L. Magnetically actuated continuum medical robots: a review. _Adv. Intell. Syst._ 2200416, 5 (2023). Google Scholar  * Ciuti, G., Menciassi, A.


& Dario, P. Capsule endoscopy: from current achievements to open challenges. _IEEE Rev. Biomed. Eng._ 4, 59–72 (2011). Article  Google Scholar  * Tillander, H. Magnetic guidance of a


catheter with articulated steel tip. _Acta Radiol._ 35, 62–64 (1951). Article  Google Scholar  * Verra, M. et al. Robotic-assisted colonoscopy platform with a magnetically-actuated


soft-tethered capsule. _Cancers_ 12, 2485 (2020). Article  Google Scholar  * Armacost, M. P. et al. Accurate and reproducible target navigation with the Stereotaxis Niobe® magnetic


navigation system. _J. Cardiovasc. Electrophysiol._ 18, S26–S31 (2007). Article  Google Scholar  * Filgueiras-Rama, D. et al. Remote magnetic navigation for accurate, real-time catheter


positioning and ablation in cardiac electrophysiology procedures. _J. Vis. Exp._ 21, e3658 (2013). Google Scholar  * Dong, Y. et al. Magnetic helical micro-/nanomachines: recent progress and


perspective. _Matter_ 5, 77–109 (2022). Article  Google Scholar  * Aziz, A. et al. Medical imaging of microrobots: toward in vivo applications. _ACS Nano_ 14, 10865–10893 (2020). Article 


Google Scholar  * Runciman, M., Darzi, A. & Mylonas, G. P. Soft robotics in minimally invasive surgery. _Soft Robot._ 6, 423–443 (2019). Article  Google Scholar  * Fu, H.-C. et al.


Interfacing soft and hard: a spring reinforced actuator. _Soft Robot._ 7, 44–58 (2020). Article  Google Scholar  * He, Z. et al. Design of a percutaneous MRI-guided needle robot with soft


fluid-driven actuator. _IEEE Robot. Autom. Lett._ 5, 2100–2107 (2020). Article  Google Scholar  * Rucker, D. C. & Webster, R. J. III Statics and dynamics of continuum robots with general


tendon routing and external loading. _IEEE Trans. Robot._ 27, 1033–1044 (2011). Article  Google Scholar  * Ciuti, G. et al. Frontiers of robotic colonoscopy: a comprehensive review of


robotic colonoscopes and technologies. _J. Clin. Med._ 9, 1648 (2020). Article  Google Scholar  * Marlicz, W. et al. Frontiers of robotic gastroscopy: a comprehensive review of robotic


gastroscopes and technologies. _Cancers_ 12, 2775 (2020). Article  Google Scholar  * Zhang, Y. & Lu, M. A review of recent advancements in soft and flexible robots for medical


applications. _Int. J. Med. Robot. Comput. Assist. Surg._ 16, e2096 (2020). Article  Google Scholar  * Wu, Z. et al. A robotic surgical tool with continuum wrist, kinematically optimized


curved stem, and collision avoidance kinematics for single port procedure. _Mech. Mach. Theory_ 173, 104863 (2022). Article  Google Scholar  * Wang, X. et al. in _Machine Learning, Medical


AI and Robotics: Translating Theory into the Clinic_ (eds Vardhanabhuti, V. et al.) 7.1–7.31 (IOP Publishing, 2023). * Bacchetti, A. et al. Optimization and fabrication of programmable


domains for soft magnetic robots: a review. _Front. Robot. AI_ 9, 1040984 (2022). Article  Google Scholar  * Mihcin, S. & Melzer, A. Principles of focused ultrasound. _Minim. Invasive


Ther. Allied Technol._ 27, 41–50 (2018). Article  Google Scholar  * Wu, A. Physics and dosimetry of the gamma knife. _Neurosurg. Clin. North Am._ 3, 35–50 (1992). Article  Google Scholar  *


Teh, B. S., Woo, S. Y. & Butler, E. B. Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. _Oncologist_ 4, 433–442 (1999). Article  Google


Scholar  * Jeraj, M. & Robar, V. Multileaf collimator in radiotherapy. _Radiol. Oncol_. 38, (2004). * Adler, J. R. Jr, Murphy, M. J., Chang, S. D. & Hancock, S. L. Image-guided


robotic radiosurgery. _Neurosurgery_ 44, 1299–1306 (1999). Google Scholar  * Tognarelli, S., Ciuti, G., Diodato, A., Cafarelli, A. & Menciassi, A. Robotic platform for high-intensity


focused ultrasound surgery under ultrasound tracking: the FUTURA platform. _J. Med. Robot. Res._ 2, 1740010 (2017). Article  Google Scholar  * Mariani, A., Morchi, L., Diodato, A.,


Tognarelli, S. & Menciassi, A. High-intensity focused ultrasound surgery based on KUKA robot: a computer-assisted platform for noninvasive surgical treatments on static and moving


organs. _IEEE Robot. Autom. Mag._ 30, 79–93 (2023). Article  Google Scholar  * Sotiras, A., Davatzikos, C. & Paragios, N. Deformable medical image registration: a survey. _IEEE Trans.


Med. Imaging_ 32, 1153–1190 (2013). Article  Google Scholar  * Yang, Y. & Wu, H. Deformable medical image registration based on CNN. _J. Xray Sci. Technol._ 31, 85–94 (2023). Google


Scholar  * Taylor, R. H., Menciassi, A., Fichtinger, G., Fiorini, P. & Dario, P. in _Springer Handbook of Robotics_ (ed Khatib, O.) 1657–1684 (Springer, 2016). THIS BOOK CHAPTER


DISCUSSES MEDICAL ROBOTICS AND COMPUTER-INTEGRATED SURGERY. * Yang, G.-Z. et al. Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. _Sci.


Robot._ 2, eaam8638 (2017). Article  Google Scholar  * Attanasio, A., Scaglioni, B., De Momi, E., Fiorini, P. & Valdastri, P. Autonomy in surgical robotics. _Annu. Rev. Control Robot.


Auton. Syst._ 4, 651–679 (2021). THIS REVIEW INVESTIGATES AUTOMATIC AND AUTONOMOUS BEHAVIOURS OF SURGICAL ROBOTS, DESCRIBING THEIR TAXONOMY AS LEVELS OF AUTONOMY AS WELL AS ENABLING


TECHNOLOGIES. Article  Google Scholar  * Lee, A., Baker, T. S., Bederson, J. B. & Rapoport, B. I. Levels of autonomy in FDA-cleared surgical robots: a systematic review. _npj Digital


Med._ 7, 103 (2024). Article  Google Scholar  * Rossi, V. J., Wells-Quinn, T. A. & Malham, G. M. Negotiating for new technologies: guidelines for the procurement of assistive


technologies in spinal surgery: a narrative review. _J. Spine Surg._ 8, 254 (2022). Article  Google Scholar  * Jakopec, M. et al. Preliminary results of an early clinical experience with the


AcrobotTM system for total knee replacement surgery. In _Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. Proceedings, Part I_ (eds Dohi, T. & Kikinis, R.)


256–263 (Springer, 2002). * Jakopec, M. et al. The first clinical application of a “hands-on” robotic knee surgery system. _Comput. Aided Surg._ 6, 329–339 (2001). Article  Google Scholar  *


Nd, I. R. et al. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. _Surg. Technol. Int._ 30, 365–372 (2017). Google Scholar  * Kayani, B., Konan, S.,


Tahmassebi, J., Pietrzak, J. & Haddad, F. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge


compared with conventional jig-based total knee arthroplasty: a prospective cohort study. _Bone Jt J._ 100, 930–937 (2018). Article  Google Scholar  * Kleeblad, L. J. et al. Midterm


survivorship and patient satisfaction of robotic-arm-assisted medial unicompartmental knee arthroplasty: a multicenter study. _J. Arthroplasty_ 33, 1719–1726 (2018). Article  Google Scholar


  * Taylor, R. et al. A steady-hand robotic system for microsurgical augmentation. _Int. J. Robot. Res._ 18, 1201–1210 (1999). Article  Google Scholar  * Ang, W. T., Riviere, C. N. &


Khosla, P. K. An active hand-held instrument for enhanced microsurgical accuracy. In _Medical Image Computing and Computer-Assisted Intervention — MICCAI 2000_ (eds Delp, S. L. et al.)


878–886 (Springer, 2000). * MacLachlan, R. A. et al. Micron: an actively stabilized handheld tool for microsurgery. _IEEE Trans. Robot._ 28, 195–212 (2012). Article  Google Scholar  *


Becker, B. C., MacLachlan, R. A., Lobes, L. A., Hager, G. D. & Riviere, C. N. Vision-based control of a handheld surgical micromanipulator with virtual fixtures. _IEEE Trans. Robot._ 29,


674–683 (2013). Article  Google Scholar  * Gonenc, B. et al. Preliminary evaluation of a micro-force sensing handheld robot for vitreoretinal surgery. In _2012_ _IEEE/RSJ International


Conference on Intelligent Robots and Systems_ 4125–4130 (IEEE, 2012). * Lonner, J. H. _Robotics in Knee and Hip Arthroplasty: Current Concepts, Techniques and Emerging Uses_ (Springer,


2019). * Lonner, J. H. Robotically assisted unicompartmental knee arthroplasty with a handheld image-free sculpting tool. _Oper. Tech. Orthop._ 25, 104–113 (2015). Article  Google Scholar  *


Ballantyne, G. H. Robotic surgery, telerobotic surgery, telepresence, and telementoring. _Surg. Endosc._ 16, 1389–1402 (2002). Article  Google Scholar  * Kommu, S. S., Rimington, P.,


Anderson, C. & Rané, A. Initial experience with the EndoAssist camera-holding robot in laparoscopic urological surgery. _J. Robotic Surg._ 1, 133–137 (2007). Article  Google Scholar  *


Ballester, P., Jain, Y., Haylett, K. R. & McCloy, R. F. Comparison of task performance of robotic camera holders EndoAssist and Aesop. _Int. Cong. Ser._ 1230, 1100–1103 (2011). Article 


Google Scholar  * Morelli, L. et al. Da Vinci single site© surgical platform in clinical practice: a systematic review. _Int. J. Med. Robot. Comput. Assist. Surg._ 12, 724–734 (2016).


Article  Google Scholar  * D’Ettorre, C. et al. Accelerating surgical robotics research: a review of 10 years with the da vinci research kit. _IEEE Robot. Autom. Mag._ 28, 56–78 (2021). THIS


REVIEW DISCUSSES THE DA VINCI RESEARCH KIT, HIGHLIGHTING RESEARCH EFFORTS AND MAJOR CHALLENGES. Article  Google Scholar  * Freschi, C. et al. Technical review of the da Vinci surgical


telemanipulator. _Int. J. Med. Robot. Comput. Assist. Surg._ 9, 396–406 (2013). Article  Google Scholar  * Longmore, S. K., Naik, G. & Gargiulo, G. D. Laparoscopic robotic surgery:


current perspective and future directions. _Robotics_ 9, 42 (2020). Article  Google Scholar  * Ngu, J. C.-Y., Lin, C. C.-W., Sia, C. J.-Y. & Teo, N.-Z. A narrative review of the


Medtronic Hugo RAS and technical comparison with the Intuitive da Vinci robotic surgical system. _J. Robotic Surg._ 18, 99 (2024). Article  Google Scholar  * Rusch, M. et al. Evaluation of


the MMI Symani® robotic microsurgical system for coronary-bypass anastomoses in a cadaveric porcine model. _J. Robotic Surg._ 18, 168 (2024). Article  Google Scholar  * Saeidi, H. et al.


Autonomous laparoscopic robotic suturing with a novel actuated suturing tool and 3D endoscope. In _2019 International Conference on Robotics and Automation (ICRA)_ 1541–1547 (IEEE, 2019). *


Li, Q. H. et al. The application accuracy of the NeuroMate robot — a quantitative comparison with frameless and frame-based surgical localization systems. _Comput. Aided Surg._ 7, 90–98


(2002). Article  Google Scholar  * Mittelstadt, B. et al. Development of a surgical robot for cementless total hip replacement. _Robotica_ 11, 553–560 (1993). Article  Google Scholar  *


Haidegger, T. & Rudas, I. J. in _Human-Computer Interaction: Concepts, Methodologies, Tools, and Applications_ 484–522 (IGI Global, 2016). * Biswas, P., Sikander, S. & Kulkarni, P.


Recent advances in robot-assisted surgical systems. _Biomed. Eng. Adv._ 6, 100109 (2023). Article  Google Scholar  * O’Connor, T. E. et al. Mazor X Stealth robotic technology: a technical


note. _World Neurosurg._ 145, 435–442 (2020). Article  Google Scholar  * Galetta, M. S., Leider, J. D., Divi, S. N., Goyal, D. K. & Schroeder, G. D. Robotics in spinal surgery. _Ann.


Transl. Med._ 7, S165 (2019). Article  Google Scholar  * Kito, S. in _Stereotactic Body Radiation Therapy: Principles and Practices_ (ed. Nagata, Y.) 255–262 (Springer, 2023). * Brandner, E.


D., Chetty, I. J., Giaddui, T. G., Xiao, Y. & Huq, M. S. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal


tumors: a review from NRG oncology. _Med. Phys._ 44, 2595–2612 (2017). Article  Google Scholar  * Julian, D. et al. A comparative analysis and guide to virtual reality robotic surgical


simulators. _Int. J. Med. Robot. Comput. Assist. Surg._ 14, e1874 (2018). Article  Google Scholar  * Mizota, T., Dodge, V. G. & Stefanidis, D. in _Fundamentals of General Surgery_ (ed.


Palazzo, F.) 215–225 (2018). * Smith, R., Patel, V. & Satava, R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14‐society consensus template of


outcomes measures and curriculum development. _Int. J. Med. Robot. Comput. Assist. Surg._ 10, 379–384 (2014). Article  Google Scholar  * Satava, R. M. et al. Proving the effectiveness of the


fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. _Ann. Surg._ 272, 384–392 (2020). Article  Google


Scholar  * Finocchiaro, M. et al. Training simulators for gastrointestinal endoscopy: current and future perspectives. _Cancers_ 13, 1427 (2021). Article  Google Scholar  * Finocchiaro, M.


et al. Physical simulator for colonoscopy: a modular design approach and clinical validation. _IEEE Access._ 11, 36945–36960 (2023). Article  Google Scholar  * A framework for the evaluation


of human machine interfaces of robot-assisted colonoscopy. _IEEE Trans. Biomed. Eng_. 71, 410–422 (2024). THIS ARTICLE REPORTS A VIRTUAL SIMULATOR AND MONITORING PLATFORM FOR THE TRAINING


AND ASSESSMENT OF CONTROL INTERFACES AS WELL AS STRATEGIES FOR TELEOPERATED OR AUTONOMOUS ROBOTIC ENDOSCOPES. * Hood, L. & Friend, S. H. Predictive, personalized, preventive,


participatory (P4) cancer medicine. _Nat. Rev. Clin. Oncol._ 8, 184–187 (2011). Article  Google Scholar  * Flores, M., Glusman, G., Brogaard, K., Price, N. D. & Hood, L. P4 medicine: how


systems medicine will transform the healthcare sector and society. _Pers. Med._ 10, 565–576 (2013). Article  Google Scholar  * Waelkens, P., van Oosterom, M. N., van den Berg, N. S., Navab,


N. & van Leeuwen, F. W. in _Radioguided Surgery: Current Applications and Innovative Directions in Clinical Practice_ (eds Herrmann, K. et al.) 57–73 (Springer, 2016). * Schleer, P.,


Drobinsky, S., de la Fuente, M. & Radermacher, K. Toward versatile cooperative surgical robotics: a review and future challenges. _Int. J. Comput. Assist. Radiol. Surg._ 14, 1673–1686


(2019). Article  Google Scholar  * Dimitrakakis, E. et al. Handheld robotic device for endoscopic neurosurgery: system integration and pre-clinical evaluation. _Front. Robot. AI_ 11, 1400017


(2024). Article  Google Scholar  * Okamura, A. M. Methods for haptic feedback in teleoperated robot‐assisted surgery. _Ind. Rob._ 31, 499–508 (2004). Article  Google Scholar  * Dagnino, G.


& Kundrat, D. Robot-assistive minimally invasive surgery: trends and future directions. _Int. J. Intell. Robot. Appl._ 8, 812–826 (2024). Article  Google Scholar  * Schmidt, A.,


Mohareri, O., DiMaio, S., Yip, M. C. & Salcudean, S. E. Tracking and mapping in medical computer vision: a review. _Med. Image Anal._ 94, 103131 (2024). Article  Google Scholar  *


Shatrov, J. & Parker, D. Computer and robotic-assisted total knee arthroplasty: a review of outcomes. _J. Exp. Orthop._ 7, 70 (2020). Article  Google Scholar  * Kim, J., Seol, Y., Jang,


H. S. & Kang, Y.-N. in _Ionizing Non-ionizing Radiation_ (ed Osibote, O. A.) Ch. 7 (InTech Open, 2020). * Gawande, A. Two hundred years of surgery REPLY. _N. Engl. J. Med._ 367, 479–479


(2012). Article  Google Scholar  * Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. _Br. J. Exp.


Pathol._ 10, 226 (1929). Google Scholar  * Bhatt, J. et al. Harold Horace Hopkins: a short biography. _BJU Int._ 106, 1425–1428 (2010). Article  Google Scholar  * Peter, S. D. S. &


Holcomb III, G. W. _History of Minimally Invasive Surgery_ 1–5 (Elsevier Health Sciences, 2008). * Vitiello, V., Lee, S. L., Cundy, T. P. & Yang, G. Z. Emerging robotic platforms for


minimally invasive surgery. _IEEE Rev. Biomed. Eng._ 6, 111–126 (2013). Article  Google Scholar  * Bergeles, C. & Yang, G. Z. From passive tool holders to microsurgeons: safer, smaller,


smarter surgical robots. _IEEE Trans. Biomed. Eng._ 61, 1565–1576 (2014). Article  Google Scholar  * Sittig, D. F., Ash, J. S. & Ledley, R. S. The story behind the development of the


first whole-body computerized tomography scanner as told by Robert S. Ledley. _J. Am. Med. Inf. Assoc._ 13, 465–469 (2006). Article  Google Scholar  * Fosch-Villaronga, E. _Robots,


Healthcare, and the Law: Regulating Automation in Personal Care_ 1st edn (Routledge, 2019). * Amram, D. Building up the “Accountable Ulysses” model. The impact of GDPR and national


implementations, ethics, and health-data research: comparative remarks. _Comput. Law Secur. Rev._ 37, 105413 (2020). Article  Google Scholar  * Yip, M. et al. Artificial intelligence meets


medical robotics. _Science_ 381, 141–146 (2023). Article  Google Scholar  * Wong, Y. T. et al. The study on artificial intelligence (AI) colonoscopy in affecting the rate of polyp detection


in colonoscopy: a single centre retrospective study. _Surg. Pract._ 26, 115–119 (2022). Article  Google Scholar  * Mayor, N., Coppola, A. S. & Challacombe, B. Past, present and future of


surgical robotics. _Trends Urol. Mens Health_ 13, 7–10 (2022). Article  Google Scholar  * Tranter-Entwistle, I., Eglinton, T., Hugh, T. J. & Connor, S. Use of prospective video analysis


to understand the impact of technical difficulty on operative process during laparoscopic cholecystectomy. _HPB_ 24, 2096–2103 (2022). Article  Google Scholar  * van Kolfschooten, H. &


van Oirschot, J. The EU artificial intelligence act (2024): implications for healthcare. _Health Policy_ 149, 105152 (2024). Article  Google Scholar  Download references ACKNOWLEDGEMENTS The


authors would like to thank X. Wang (Multi-scale Medical Robotics Center Limited, funded by the Innovation and Technology Commission via AIR@InnoHK cluster) for supporting the literature


review analysis and editing process of the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy Gastone Ciuti & 


Arianna Menciassi * Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy Gastone Ciuti & Arianna Menciassi * Interdisciplinary Research Center in Health


Science, Scuola Superiore Sant’Anna, Pisa, Italy Gastone Ciuti & Arianna Menciassi * Vanderbilt University, Nashville, TN, USA Robert J. Webster III * Department of Mechanical and


Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China Ka-Wai Kwok * Multi-Scale Medical Robotics Center (MRC) Ltd., Hong Kong, China Ka-Wai Kwok Authors * Gastone


Ciuti View author publications You can also search for this author inPubMed Google Scholar * Robert J. Webster III View author publications You can also search for this author inPubMed 


Google Scholar * Ka-Wai Kwok View author publications You can also search for this author inPubMed Google Scholar * Arianna Menciassi View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS G.C. conceived and organized the manuscript’s content together with A.M., in agreement and continuous interaction and discussions with R.J.W. III


and K-W.K. All authors equally contributed to writing, editing and revising the manuscript. CORRESPONDING AUTHOR Correspondence to Gastone Ciuti. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Bioengineering_ thanks Ajay Pandey, Hamed Saeidi and George Mylonas for their contribution to the


peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


RELATED LINKS INTERNATIONAL FEDERATION OF ROBOTICS (IFR): https://ifr.org/ RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to


this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the


terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ciuti, G., Webster, R.J., Kwok, KW. _et al._ Robotic surgery. _Nat Rev


Bioeng_ (2025). https://doi.org/10.1038/s44222-025-00294-6 Download citation * Accepted: 20 February 2025 * Published: 22 April 2025 * DOI: https://doi.org/10.1038/s44222-025-00294-6 SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative