Burning and graphitization of optically levitated nanodiamonds in vacuum

Burning and graphitization of optically levitated nanodiamonds in vacuum

Play all audios:

Loading...

ABSTRACT A nitrogen-vacancy (NV−) centre in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic centre-of-mass superpositions and for


testing quantum gravity. Here, we study the behaviour of optically levitated nanodiamonds containing NV− centres at sub-atmospheric pressures and show that while they burn in air, this can


be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below ≈10 mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its


internal temperature (_T__i_) and find that it would be detrimental to the NV− centre’s spin coherence time. These values of _T__i_ make it clear that the diamond is not melting,


contradicting a recent suggestion. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size. SIMILAR


CONTENT BEING VIEWED BY OTHERS TEMPERATURE EVOLUTION OF DENSE GOLD AND DIAMOND HEATED BY ENERGETIC LASER-DRIVEN ALUMINUM IONS Article Open access 07 September 2022 GRAPHITE TO DIAMOND


TRANSITION INDUCED BY PHOTOELECTRIC ABSORPTION OF ULTRAVIOLET PHOTONS Article Open access 28 January 2021 INWARD MOTION OF DIAMOND NANOPARTICLES INSIDE AN IRON CRYSTAL Article Open access 31


May 2024 INTRODUCTION Even though diamond is thermodynamically metastable in ambient conditions, it has extremely high thermal conductivity, Young’s modulus, electrical resistivity,


chemical stability and optical transparency1,2,3,4. Nanodiamonds inherit most of these spectacular properties from their bulk counterparts and the inclusion of color centres such the NV−


centre has increased their realm of applications1,5. Proposed and demonstrated applications of diamond, nanodiamonds and nanodiamonds with NV− centres include tribology1,6, nanocomposites7,


UV detection in space applications8, magnetometry9, biological imaging10, quantum information processing11,12 and thermometry13. More recently nanodiamonds with NV− centres have been


suggested for testing quantum gravity14 and for demonstrating centre of mass (CM) superpositions of mesoscopic objects15,16. These superpositions and interferometry also point towards a


broader future application of levitated diamonds in sensing and gravitometry. In the scheme for testing quantum gravity, an NV− centre in a nanodiamond is exploited in a Ramsey-Borde


interferometer14 and, in the non-relativistic limit, the first order correction to the energy dispersion scales with the size of a nanodiamond. In the case of creating CM superpositions, the


NV− centre’s spin is utilized and the spatial separation of the superposed CM states depends on the size of a nanodiamond15,16. To prevent the adverse effects of motional decoherence, these


proposals14,15,16 have been conceptualized in high vacuum (10−6 mB). It is, however, well known that at atmospheric temperature and pressure graphite is the most stable form of carbon both


in the bulk as well as at the nanoscale (>5.2 nm)3,4,17,18,19 while diamond is stable between ≈1.9 nm and ≈5.2 nm17. Since the utility of diamond and diamond with various color centres


depends on its crystalline existence, it is imperative to study the behaviour of diamond in vacuum for scientific as well as for practical purposes. Furthermore, while the determination of


the size of nanoparticles using electron microscopy and dynamic light scattering are well established, their utility in levitated experiments is limited if not completely excluded. As a


result it seems reasonable to devise a way by which one can determine the size of an individual levitated object while performing the experiment. This is particularly useful in experiments


in which the size of a nanoparticle plays important roles. The significance of _in situ_ size determination is further emphasized by the polydisperse nature of nanoparticles. In this


article, we levitate high pressure high temperature (HPHT) synthesized nanodiamonds containing ≈500 NV− centres (ND-NV-100 nm, Adamas Nanotechnology, USA) using an optical tweezer and study


their behaviour under different levels of vacuum. We show that as the pressure of the trapping chamber is reduced, the internal temperature (_T__i_) of a trapped nanodiamond can reach ≈800 


K. Due to this elevated temperature levitated nanodiamonds burn in air. We also demonstrate that the burning of nanodiamond is preventable under a nitrogen environment down to 10 mB, but


beyond that, it graphitizes. The source of heating is believed to be the absorption of 1064 nm trapping laser light by the impurities in diamond and the amorphous carbon on the surface.


Lastly, exploiting the measured damping rate of a levitated object, we present a new way of determining its size _in situ_. EXPERIMENTAL SETUP Figure 1a shows a schematic of our experimental


setup where we use a 0.80 numerical aperture (NA) microscope objective to focus a 1064 nm laser beam into a diffraction limited spot. The force resulting from the electric field gradient


forms the basis of our dipole trap20. The balanced photodiode visible in Fig. 1a provides a voltage signal generated from the interference between the directly transmitted trapping laser


light and the oscillator’s position dependent scattered electromagnetic radiation20. Performing a Fourier transform on this voltage signal provides the measured spectral information as well


as the damping rate of a levitated nanoparticle. We use this spectral information and damping rate to retrieve _T__i_ and the size of a nanodiamond. In the regime where the oscillation


amplitude of a trapped particle is small, the trapping potential of an optical tweezer can be approximated as harmonic20. Under this condition, the motion of a levitated object can be


expressed as where _x_ is the displacement of a trapped particle from the centre of the trap along the _x_-axis. _M_ and γ_CM_, respectively, are the mass and the damping rate of a trapped


particle while is the trap frequency and κ is the spring constant of the trap20. _f_(_t_) is a Gaussian random force exerted by the gas molecules on a trapped particle with and , where


_k__B_ is the Boltzmann constant, _T__CM_ is the CM temperature of a trapped particle, and δ(_t_2 − _t_1) is the Dirac delta function20. Similar analyses for the remaining two axes are also


valid. After performing a Fourier transform and rearrangement, the power spectral density (PSD) of (1) can be written as We fit (2) with the experimental data. Figure 1b shows the PSDs


corresponding to the measured voltage signals from a levitated nanodiamond for different trapping powers along with the respective fits (solid lines) of equation (2) at 20 mB. For the


purpose of comparison, in Fig. 1b we have also included the relevant theoretical PSDs (dashed grey lines). In plotting the theoretical PSDs we have assumed that all parameters are identical


to the measured PSDs except _T__CM_ which has been taken equal to 300 K. Figure 1c demonstrates the measured damping rate as a function of pressure at a constant trapping power of 180 mW.


Later, we use this damping rate to find the size of a nanoparticle. LEVITATED NANODIAMONDS IN VACUUM To study the behaviour of diamond below atmospheric pressure, after levitating a


nanodiamond with the minimum possible trapping power (180 mW), we gradually take it to different levels of vacuum whilst continuously monitoring its scattering intensity (size) using a


camera. Figure 2a shows a typical plot of scattering intensity versus pressure (pink circles) from a levitated nanodiamond (for more data points see supplementary information Fig. S1). It


can be observed that as we evacuate the trapping chamber, the scattering intensity diminishes: a levitated nanodiamond shrinks in size as the pressure is reduced. We attribute this reduction


in size to the removal of physisorbed water and organic substances such as the carboxyl groups (nanodiamonds as obtained from the supplier are in water and are coated with carboxyl groups


for stabilization) present on the surface of nanodiamonds down to 20 mB where the temperature reaches ≈450 K (see Fig. 3). Physisorbed water and organic impurities normally disappear21 at or


below 473 K. This is further confirmed when we keep a levitated nanodiamond in a vacuum of less than 10 mB for an extended period of time (about an hour) and take it to back to atmospheric


pressure (red squares in Fig. 2a) and bring it down to the low pressures again. In the second round of evacuation, the scattering intensity remains constant down to 10 mB. This unaltered


scattering intensity in the second round of evacuation indicates the absence of substances which evaporate/burn at relatively lower temperatures. The reduction in size below 10 mB is


attributed to the burning of amorphous carbon or diamond. Amorphous carbon is generally found as an outer layer on the surface of nanodiamonds21,22,23. The burning temperature of amorphous


carbon21 at atmospheric pressure varies between 573–723 K while the oxidation temperature of nanodiamonds21,22,24 ranges from 723–769 K. Also, the exact oxidation temperature of nanodiamonds


depend on the surface quality, the crystallographic faces and the densities of impurities in nanodiamonds21,22,24. To confirm the presence of amorphous carbon as well as diamond in the


nanoparticles that we have used in our experiments, we performed Raman spectroscopy using a 785 nm laser. At this wavelength amorphous carbon is more sensitive than diamond25. Figure 2b


presents the relevant data. This figure clearly shows the presence of amorphous carbon and diamond peaked at ≈1400 cm−1 and at ≈1335 cm−1, respectively23,25,26,27. Given that amorphous


carbon is a strongly absorbing material28,29,30,31, trapping light (1064 nm) absorption and hence raised _T__i_ and consequent burning in an air environment is highly probable. This burning


of nanodiamond in air can potentially be a major hurdle in applications where vacuum is inevitable. Based on the idea that an oxygen-less environment may be a cure to this problem, we have


studied the behaviour of levitated nanodiamonds in a nitrogen environment. This is shown in Fig. 2a as blue crosses for a constant trapping power of 300 mW. It can be observed that at


pressures >10 mB the scattering intensity hence the size of a nanodiamond remains unchanged; even though temperature is quite high (see Fig. 3). This is due to the fact that for burning


to occur, a nanodiamond requires oxygen which is absent in a nitrogen rich environment. However, if the pressure is reduced below 10 mB, the scattering intensity of the nanodiamond gradually


diminishes. Given that there is almost no oxygen in the chamber and the reduced pressure means less cooling due to gas molecules and hence higher internal temperature, we believe this is


the onset of graphitization of the nanodiamond. At atmospheric pressure graphitization of nanodiamonds starts in the temperature range 943–1073 K and depends on the surface quality of


nanodiamonds24,26. Since we are operating at sub-atmospheric pressures, graphitization at a lower temperature is most likely to happen. Lastly, it is noteworthy that irrespective of an air


or a nitrogen environment, below 5 mB levitated nanodiamonds rapidly shrink in size and by ≈2 mB completely disappear from the trap. INTERNAL TEMPERATURE OF A LEVITATED NANODIAMOND Even


though the nanodiamonds that we use in our experiments contain NV− centres, most of them do not fluoresce upon levitation - consistent with the results of a previous study32 by Neukirch _et


al._ It has been shown that the resonant frequency of optically-detected magnetic resonance from the fluorescing levitated nanodiamonds can reveal the internal temperature32, but in this


article we instead use a Brownian motion based temperature determination technique developed by Millen _et al._ in ref. 33. According to this technique, the interaction between two thermal


baths - one consisting of the impinging gas molecules while the other is composed of the emerging gas molecules, is mediated by a levitated object whose internal temperature is higher than


that of the impinging gas molecules. The temperature of the impinging gas molecules is _T__imp_ while that of the emerging gas molecules is _T__em_. _T__CM_ can be expressed as , where


γ_imp_ and γ_em_ are the damping rates due to the impinging and emerging gas molecules, respectively33. Using this methodology and assuming a full accommodation (_T__i_ = _T__em_), in Fig. 3


we present _T__i_ obtained from the same nanodiamond used in Fig. 2 as a function of trapping power in air (blue circles) at 20 mB. In measuring _T__i_ we have assumed that a levitated


nanodiamond is at room temperature at ≈150 mB (see supplementary info Fig. S2). This assumption is also supported by the optically detected magnetic resonance based temperature measurements


performed on nanodiamonds by Hoang _et al._ using a similar setup to ours34. Also, since fitting uncertainties increase with the increasing pressure, _T__i_ has been plotted as a function of


trapping power at a constant pressure and it was measured during the 2_nd_ round of evacuation at which a levitated nanodiamond maintains its size. Constancy in size/mass is a requirement


of the PSD analysis. From Fig. 3 one can see that the internal temperature reaches ≈750 K at 380 mW of trapping power in air. This is well within the reported burning temperature of


amorphous carbon or diamond21,22,24. In Fig. 3 we have also included _T__i_s obtained from a levitated nanodiamond submerged in a nitrogen environment. In this case _T__i_ reaches


approximately 800 K at the maximum trapping power. At pressures below 20 mB, temperatures are expected to be higher given that the cooling due to gas molecules becomes less effective while


the absorption remains constant. It is noteworthy that the fluorescence from NV− centres in diamond decreases significantly at temperatures beyond 550 K and by 700 K it reduces to 20% of the


room temperature value13. Also, at _T__i_ = 700 K, NV− centre’s fluorescence lifetime and the contrast between electron spin resonances reduce below 20% of the room temperature value13. At


a temperature above 625 K, the spin coherence time of the NV− centre decreases as well13. Furthermore, the highest temperature that we have measured here, using trapping powers higher than


those have been used by Neukirch _et al._32, rules out the possibility of melting diamond as suggested in ref. 32. Diamond usually melts at temperatures ≥4000 K and requires pressure above


atmospheric pressure35. A slight difference between the temperatures at a constant power such as at 300 mW in Fig. 3 between different environments can be attributed to the variation in


surface qualities and the densities of impurities in different nanodiamonds24,36. Additionally, it has been demonstrated that bigger particles heat up rapidly compared to smaller particles


under the same experimental conditions33. As a result, variation in the internal temperatures is expected unless all the attributes of different particles are identical. However, due to the


inherent nature of levitated experiments, it is difficult to levitate particles with the same attributes in different runs of an experiment. This is further worsened by the polydispersity of


nanoparticles. For example, the average size of the nanodiamonds that we have used in our experiment is quoted to be 100 nm by the manufacturer. A representative scanning electron


microscope (SEM) image of this nanodiamond is shown in Fig. 4a. Nanodiamonds from a few tens of nanometers to a few hundred nanometers are visible. Consequently, trapping different sizes of


nanodiamonds in different runs of an experiment is possible. Nevertheless, to be consistent throughout the experiment, we levitate nanodiamonds of similar size by monitoring their scattering


intensities. Also, next we present a way of determining the size of an individual levitated object from the measured damping rate (γ_CM_) that it encounters while oscillating inside the


trap. For the purpose of following calculations, we assume that a levitated nanodiamond is of spherical shape. DETERMINATION OF THE SIZE OF A LEVITATED NANODIAMOND The effective damping rate


as shown in Fig. 1c can be expressed as γ_CM_ = γ_imp_ + γ_em_, where γ_imp_ and γ_em_ are the damping rates due to the impinging and emerging gas molecules, respectively33. γ_imp_ can be


written as while γ_em_ is related to γ_imp_ by , where _R_, _N_, _m_ and are the radius of a trapped particle, the number density of gas molecules at pressure _P_, molecular mass and the


mean thermal velocity of impinging gas molecules, respectively33. _N_ can further be expressed as _N_ = _N_0_P_/_P_0, where _N_0 is the number of gas molecules per cubic meter at atmospheric


conditions and _P_0 is the atmospheric pressure. On substitutions of various terms, one can express _R_ as where _M_ has been expressed as and ρ is the mass density of diamond. Given that


the levitated nanodiamonds burn, equation (3) gives the ultimate size of a nanodiamond for which we previously found temperatures. That is, it is the size of the nanodiamond after the first


round of evacuation. The actual size of a nanodiamond before burning can be found using scattering theory. The scattering intensity of a Rayleigh particle is given by , where and _I_ is the


intensity of the trapping light37. Provided that we know the scattering intensity (see Fig. 2b) at different pressures, we can find the actual size of a nanodiamond using equation (4): where


_R__p_ and are the radius and the scattering intensity of the particle at pressure _P_, respectively. As examples, using the model developed here, we estimate the sizes of the nanodiamonds


for which we have presented internal temperatures in Fig. 3. Using equations (3) and (4) and parameters _N_0 = 2.43 × 1025, _T__imp_ = 300 K, _T__em_ = 450 K, ρ = 3500 kg/_m_3, _m_ = 4.81 × 


10−26 kg, _P_ = 20 mB and γ_cm_ = 2.18 × 105 radian with the minimum trapping power of 180 mW, Fig. 4b shows the radius of the trapped nanodiamond at various pressures in air. It can be


observed that when the nanodiamond was initially trapped at atmospheric pressure, its diameter was ≈41 nm. Similarly, for the nitrogen case using the same parameters except γ_cm_ = 2.22 × 


105 radian and _T__i_ = 650 K, we get the ultimate diameter of the nanodiamond is ≈38 nm. Given the uncertainty in the shape of nanodiamonds as visible in Fig. 4a, the nanodiamonds that we


have used to find _T__i_s in air and nitrogen ambients are of similar size. This is also in good agreement with the technique (initial scattering intensities) that we have utilized to trap


similar size nanodiamonds in different runs of an experiment. Furthermore, even though the actual dimensions of a nanodiamond will be different from _R_ due to its asymmetric shape, the


estimated size provided by our model is well within the distribution visible in the SEM image (Fig. 4a). Lastly, we believe that the method developed here for the determination of size of an


individual particle can be used in any levitated experiment. CONCLUSIONS We have demonstrated that nanodiamonds burn in air while they graphitize in a nitrogen ambient by absorbing trapping


laser (1064 nm) light as the cooling due to gas molecules becomes less effective with decreasing pressure. We believe that amorphous carbon, a strongly absorbing material, present on the


surface of nanodiamonds is a key reason for this. We also think that purer nanodiamonds instead of the currently available HPHT synthesized nanodiamonds can be a cure to this problem. Our


Brownian motion based analysis has shown that the internal temperature of a levitated nanodiamond can reach up to 800 K. This rules out the possibility of melting diamond which requires35 a


temperature ≥4000 K. Lastly, exploiting the damping rate that a particle encounters while in motion, we have developed a new way of determining its size. We consider that this new technique


will be useful in present and future levitated experiments where the traditional electron microscopy and dynamic light scattering based size determinations are not suitable. METHODS


Nanodiamonds containing ≈500 NV− centres (ND-NV-100 nm) were bought from Adamas Nanotechnology Inc, USA. The average size of the nanodiamonds quoted by the manufacturer is 100 nm. To prevent


agglomeration we sonicate as received nanodiamonds for ≈10 minutes in an ultrasonic bath and then put them into a nebulizer and inject them into the trapping chamber. The trapping chamber


is continuously monitored by a CMOS camera (Thorlabs Inc). Once a nanodiamond is trapped, the trapping chamber is evacuated to study the behaviour of nanodiamonds in vacuum. Power spectral


density data were collected using a balanced photodiode (Thorlabs Inc) and a Picoscope oscilloscope (Pico Technology, UK). In the case of nanodiamonds immersed in nitrogen, the trapping


chamber was purged with nitrogen fifteen times. ADDITIONAL INFORMATION HOW TO CITE THIS ARTICLE: Rahman, A. T. M. A. _et al._ Burning and graphitization of optically levitated nanodiamonds


in vacuum. _Sci. Rep._6, 21633; doi: 10.1038/srep21633 (2016). REFERENCES * Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat.


Nano. 7, 11–23 (2012). Article  CAS  Google Scholar  * Khmelnitsky, R. A. & Gippius, A. A. Transformation of diamond to graphite under heat treatment at low pressure. Phase Transit. 87,


175–192 (2014). Article  CAS  Google Scholar  * Davies, G. & Evans, T. Graphitization of diamond at zero pressure and at a high pressure. P Roy. Soc. Lond. A Mat. 328, 413–427 (1972).


Article  ADS  CAS  Google Scholar  * Shenderova, O. A., Zhirnov, V. V. & Brenner, D. W. Carbon nanostructures. Crit. Rev. Solid State 27, 227–356 (2002). Article  CAS  Google Scholar  *


Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013). Article  ADS  CAS  Google Scholar  * Ivanov, M. G., Pavlyshko, S. V., Ivanov, D. M., Petrov,


I. & Shenderova, O. Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Technol. B 28, 869–877 (2010). Article  CAS  Google Scholar  * Behler, K. D. et


al. Nanodiamond-polymer composite fibers and coatings. ACS Nano 3, 363–369, PMID: 19236073. (2009) Article  CAS  Google Scholar  * Pace, E. & Sio, A. D. Diamond detectors for space


applications. Nucl. Instrum. Meth. A 514, 93–99 (2003). Article  ADS  CAS  Google Scholar  * Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys.


4, 810–816 (2008). Article  CAS  Google Scholar  * Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nat. Phys. 455, 648–651 (2008).


Article  CAS  Google Scholar  * Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007). Article  CAS  Google


Scholar  * Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789–793 (1999). Article 


CAS  Google Scholar  * Toyli, D. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012). Google Scholar  * Albrecht, A., Retzker,


A. & Plenio, M. B. Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers. Phys. Rev. A 90, 033834 (2014). Article  ADS  CAS  Google Scholar  * Scala, M.,


Kim, M. S., Morley, G. W., Barker, P. F. & Bose, S. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111, 180403 (2013).


Article  ADS  CAS  Google Scholar  * Yin, Z.-q., Li, T., Zhang, X. & Duan, L. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A


88, 033614 (2013). Article  ADS  CAS  Google Scholar  * Barnard, A. S., Russo, S. P. & Snook, I. K. Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes.


J Chem. Phys. 118, 5094–5097 (2003). Article  ADS  CAS  Google Scholar  * Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from _Ab Initio_ molecular dynamics. Phys. Rev. Lett. 95,


185701 (2005). Article  ADS  CAS  Google Scholar  * Bundy, F. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).


Article  CAS  Google Scholar  * Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603


(2012). Article  ADS  CAS  Google Scholar  * Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond


powders by selective oxidation in air. J Am. Chem. Soc. 128, 11635–11642 (2006). Article  CAS  Google Scholar  * Gaebel, T. et al. Size-reduction of nanodiamonds via air oxidation. Diam.


Relat. Mater. 21, 28–32 (2012). Article  ADS  CAS  Google Scholar  * Smith, B. R., Gruber, D. & Plakhotnik, T. The effects of surface oxidation on luminescence of nano diamonds. Diam.


Relat. Mater. 19, 314–318 (2010). Article  ADS  CAS  Google Scholar  * Xu, N., Chen, J. & Deng, S. Effect of heat treatment on the properties of nano-diamond under oxygen and argon


ambient. Diam. Relat. Mater. 11, 249–256 (2002). Article  ADS  CAS  Google Scholar  * Ferrari, A. C. & Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon


and nanodiamond. Philos. T. Roy. Soc. A 362, 2477–2512 (2004). Article  ADS  CAS  Google Scholar  * Chen, J., Deng, S. Z., Chen, J., Yu, Z. X. & Xu, N. S. Graphitization of nanodiamond


powder annealed in argon ambient. Appl. Phys. Lett. 74, 3651–3653 (1999). Article  ADS  CAS  Google Scholar  * Merkulov, V. I. et al. uv studies of tetrahedral bonding in diamondlike


amorphous carbon. Phys. Rev. Lett. 78, 4869–4872 (1997). Article  ADS  CAS  Google Scholar  * Nagano, A., Yoshitake, T., Hara, T. & Nagayama, K. Optical properties of


ultrananocrystalline diamond/amorphous carbon composite films prepared by pulsed laser deposition. Diam. Relat. Mater. 17, 1199–1202 (2008). Article  ADS  CAS  Google Scholar  * Stagg, B.


& Charalampopoulos, T. Refractive indices of pyrolytic graphite, amorphous carbon and flame soot in the temperature range 25 to 600 °C. Combust. Flame 94, 381–396 (1993). Article  CAS 


Google Scholar  * Maron, N. Optical properties of fine amorphous carbon grains in the infrared region. Astrophys. Space Sci. 172, 21–28 (1990). Article  ADS  CAS  Google Scholar  * Duley, W.


W. Refractive indices for amorphous carbon. Astrophys. J. 287, 694–696 (1984). Article  ADS  CAS  Google Scholar  * Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Vamivakas, N.


Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015). Article  ADS  CAS  Google Scholar  * Millen, J., Deesuwan, T., Barker, P. &


Anders, J. Nanoscale temperature measurements using non-equilibrium brownian dynamics of a levitated nanosphere. Nat. Nano. 9, 425–429 (2014). Article  CAS  Google Scholar  * Hoang, T. M.,


Ahn, J., Bang, J. & Li, T. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds. _arXiv:1510.06715_ (2015). * Eggert, J. H. et al. Melting temperature of


diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2010). Article  CAS  Google Scholar  * Qian, J., Pantea, C., Huang, J., Zerda, T. & Zhao, Y. Graphitization of diamond powders of


different sizes at high pressure–high temperature. Carbon 42, 2691–2697 (2004). Article  CAS  Google Scholar  * Bohren, C. F. & Huffman, D. R. Particles Small Compared with the


Wavelength 130–157 (Wiley-VCH Verlag GmbH, 2007). Download references ACKNOWLEDGEMENTS This work is supported by the U.K. Engineering and Physical Sciences Research Council through grants


EP/J014664/1 and EP/M003019/1 as well as EP/M013243/1 (the UK Quantum Technology Hub for Networked Quantum Information Technologies). G.W.M. is supported by the Royal Society. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, UK A. T. M. A. Rahman, S. Bose & P. F. Barker * Department


of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, UK A. T. M. A. Rahman, A. C. Frangeskou & G. W. Morley * QOLS, Blackett Laboratory, Imperial College London, SW7 2BW, UK M.


S. Kim Authors * A. T. M. A. Rahman View author publications You can also search for this author inPubMed Google Scholar * A. C. Frangeskou View author publications You can also search for


this author inPubMed Google Scholar * M. S. Kim View author publications You can also search for this author inPubMed Google Scholar * S. Bose View author publications You can also search


for this author inPubMed Google Scholar * G. W. Morley View author publications You can also search for this author inPubMed Google Scholar * P. F. Barker View author publications You can


also search for this author inPubMed Google Scholar CONTRIBUTIONS P.F.B. and G.W.M. conceived the experiment while A.T.M.A.R. and A.C.F. built the experiment. A.T.M.A.R. collected the data.


P.F.B. and A.T.M.A.R. analysed the data. A.T.M.A.R. and G.W.M. wrote the manuscript. All authors, A.T.M.A.R., A.C.F., M.S.K., S.B., G.W.M. and P.F.B., discussed the results and commented on


the manuscript. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. ELECTRONIC SUPPLEMENTARY MATERIAL SUPPLEMENTARY INFORMATION RIGHTS AND


PERMISSIONS This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s


Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the


license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Rahman, A., Frangeskou, A., Kim, M. _et al._ Burning and graphitization of optically levitated nanodiamonds in vacuum. _Sci Rep_ 6, 21633 (2016). https://doi.org/10.1038/srep21633 Download


citation * Received: 09 December 2015 * Accepted: 27 January 2016 * Published: 22 February 2016 * DOI: https://doi.org/10.1038/srep21633 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative