Corticosteroid effects on blood gene expression in duchenne muscular dystrophy

Corticosteroid effects on blood gene expression in duchenne muscular dystrophy

Play all audios:

Loading...

ABSTRACT Though Deflazacort and prednisone improve clinical endpoints in Duchenne muscular dystrophy (DMD) patients, Deflazacort produces fewer side effects. As mechanisms of improvement and


side effect differences remain unknown, we evaluated effects of corticosteroid administration on gene expression in blood of DMD patients. Whole blood was obtained from 14 children and


adolescents with DMD treated with corticosteroids (DMD-STEROID) and 20 DMD children and adolescents naïve to corticosteroids (DMD). The DMD-STEROID group was further subdivided into


Deflazacort and prednisone groups. Affymetrix U133 Plus 2.0 expression microarrays were used to evaluate mRNA expression. Expression of 524 probes changed with corticosteroids, including


genes in iron trafficking and the chondroitin sulfate biosynthesis pathway. Deflazacort compared with prednisone yielded 508 regulated probes, including many involved in adipose metabolism.


These genes and pathways help explain mechanisms of efficacy and side effects of corticosteroids, and could provide new treatment targets for DMD and other neuromuscular disorders. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal


Receive 6 print issues and online access $259.00 per year only $43.17 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may


be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS EVALUATION OF BLOOD GENE EXPRESSION LEVELS IN FACIOSCAPULOHUMERAL MUSCULAR DYSTROPHY PATIENTS Article Open access 16 October 2020 SERUM PROTEIN AND


IMAGING BIOMARKERS AFTER INTERMITTENT STEROID TREATMENT IN MUSCULAR DYSTROPHY Article Open access 20 November 2024 EFFECT OF ACUTE EXERCISE ON GENE EXPRESSION IN PERIPHERAL BLOOD MONONUCLEAR


CELLS OF PUBERTY CHILDREN Article Open access 14 November 2024 REFERENCES * Hoffman EP, Brown Jr RH, Kunkel LM . Dystrophin: the protein product of the Duchenne muscular dystrophy locus.


_Cell_ 1987; 51: 919–928. Article  CAS  PubMed  Google Scholar  * Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M _et al_. Interplay of IKK/NF-kappaB signaling in


macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. _J Clin Invest_ 2007; 117: 889–901. Article  CAS  PubMed  PubMed Central  Google Scholar  * Manzur AY,


Kuntzer T, Pike M, Swan A . Glucocorticoid corticosteroids for Duchenne muscular dystrophy. _Cochrane Database Syst Rev_ 2004, 1: CD003725. Google Scholar  * Griggs RC, Moxley III RT,


Mendell JR, Fenichel GM, Brooke MH, Pestronk A _et al_. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). _Neurology_ 1993; 43:


520–527. Article  CAS  PubMed  Google Scholar  * Haslett JN, Sanoudou D, Kho AT, Han M, Bennett RR, Kohane IS _et al_. Gene expression profiling of Duchenne muscular dystrophy skeletal


muscle. _Neurogenetics_ 2003; 4: 163–171. Article  CAS  PubMed  Google Scholar  * Raju R, Dalakas MC . Gene expression profile in the muscles of patients with inflammatory myopathies: effect


of therapy with IVIg and biological validation of clinically relevant genes. _Brain_ 2005; 128: 1887–1896. Article  PubMed  Google Scholar  * Wong B, Gilbert DL, Walker WL, Liao IH, Lit L,


Stamova B _et al_. Gene expression in blood of subjects with Duchenne muscular dystrophy. _Neurogenetics_ 2008. * Ward PP, Paz E, Conneely OM . Multifunctional roles of lactoferrin: a


critical overview. _Cell Mol Life Sci_ 2005; 62: 2540–2548. Article  CAS  PubMed  Google Scholar  * Baynes RD, Bezwoda WR, Khan Q, Mansoor N . Plasma lactoferrin content: differential effect


of steroid administration and infective illnesses: lack of effect of ambient temperature at which specimens are collected. _Scand J Haematol_ 1986; 37: 353–359. CAS  PubMed  Google Scholar


  * Ratledge C . Iron metabolism and infection. _Food Nutr Bull_ 2007; 28: S515–S523. Article  PubMed  Google Scholar  * Borregaard N, Cowland JB . Neutrophil gelatinase-associated


lipocalin, a siderophore-binding eukaryotic protein. _Biometals_ 2006; 19: 211–215. Article  CAS  PubMed  Google Scholar  * Mori K, Nakao K . Neutrophil gelatinase-associated lipocalin as


the real-time indicator of active kidney damage. _Kidney Int_ 2007; 71: 967–970. Article  CAS  PubMed  Google Scholar  * Nicholson H, Anderson BF, Bland T, Shewry SC, Tweedie JW, Baker EN .


Mutagenesis of the histidine ligand in human lactoferrin: iron binding properties and crystal structure of the histidine-253-->methionine mutant. _Biochemistry_ 1997; 36: 341–346.


Article  CAS  PubMed  Google Scholar  * Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D _et al_. An iron delivery pathway mediated by a lipocalin. _Mol Cell_ 2002; 10: 1045–1056. Article 


CAS  PubMed  Google Scholar  * Liu QS, Nilsen-Hamilton M, Xiong SD . Synergistic regulation of the acute phase protein SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines. _Sheng Li


Xue Bao_ 2003; 55: 525–529. CAS  PubMed  Google Scholar  * Garay-Rojas E, Harper M, Hraba-Renevey S, Kress M . An apparent autocrine mechanism amplifies the dexamethasone- and retinoic


acid-induced expression of mouse lipocalin-encoding gene 24p3. _Gene_ 1996; 170: 173–180. Article  CAS  PubMed  Google Scholar  * Schaer DJ, Alayash AI, Buehler PW . Gating the radical


hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. _Antioxid Redox Signal_ 2007; 9: 991–999. Article  CAS  PubMed  Google Scholar  * Martinez-Subiela S,


Ginel PJ, Ceron JJ . Effects of different glucocorticoid treatments on serum acute phase proteins in dogs. _Vet Rec_ 2004; 154: 814–817. Article  CAS  PubMed  Google Scholar  * Ting ST,


Earley B, Crowe MA . Effect of cortisol infusion patterns and castration on metabolic and immunological indices of stress response in cattle. _Domest Anim Endocrinol_ 2004; 26: 329–349.


Article  CAS  PubMed  Google Scholar  * Yamazaki H, Ohta K, Tsukiji H, Toma T, Hashida Y, Ishizaki A _et al_. Corticosteroid enhances heme oxygenase-1 production by circulating monocytes by


up-regulating hemoglobin scavenger receptor and amplifying the receptor-mediated uptake of hemoglobin-haptoglobin complex. _Biochem Biophys Res Commun_ 2007; 358: 506–512. Article  CAS 


PubMed  Google Scholar  * Schaer DJ, Boretti FS, Schoedon G, Schaffner A . Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of


glucocorticoids. _Br J Haematol_ 2002; 119: 239–243. Article  CAS  PubMed  Google Scholar  * Sokolov AV, Pulina MO, Ageeva KV, Runova OL, Zakharova ET, Vasil'ev VB . Identification of


leukocyte cationic proteins that interact with ceruloplasmin. _Biochemistry (Mosc)_ 2007; 72: 872–877. Article  CAS  Google Scholar  * Healy J, Tipton K . Ceruloplasmin and what it might do.


_J Neural Transm_ 2007; 114: 777–781. Article  CAS  PubMed  Google Scholar  * Bornman L, Rossouw H, Gericke GS, Polla BS . Effects of iron deprivation on the pathology and stress protein


expression in murine X-linked muscular dystrophy. _Biochem Pharmacol_ 1998; 56: 751–757. Article  CAS  PubMed  Google Scholar  * Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan


E . Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. _J Cell Mol Med_ 2006; 10: 758–769. Article 


CAS  PubMed  Google Scholar  * Hutchison CJ, Yasin R . Altered secretion of chondroitin sulfate proteoglycan in Duchenne muscular dystrophy cultures. _J Neurol Sci_ 1987; 79: 77–81. Article


  CAS  PubMed  Google Scholar  * Fisher I, Abraham D, Bouri K, Hoffman EP, Muntoni F, Morgan J . Prednisolone-induced changes in dystrophic skeletal muscle. _FASEB J_ 2005; 19: 834–836.


Article  CAS  PubMed  Google Scholar  * Baughman G, Wiederrecht GJ, Chang F, Martin MM, Bourgeois S . Tissue distribution and abundance of human FKBP51, and FK506-binding protein that can


mediate calcineurin inhibition. _Biochem Biophys Res Commun_ 1997; 232: 437–443. Article  CAS  PubMed  Google Scholar  * Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T


_et al_. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. _Proc Natl Acad Sci USA_ 2001; 98: 13108–13113. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Subramaniam M, Hawse JR, Johnsen SA, Spelsberg TC . Role of TIEG1 in biological processes and disease states. _J Cell Biochem_ 2007; 102: 539–548.


Article  CAS  PubMed  Google Scholar  * Yeamans C, Wang D, Paz-Priel I, Torbett BE, Tenen DG, Friedman AD . C/EBPalpha binds and activates the PU.1 distal enhancer to induce monocyte lineage


commitment. _Blood_ 2007; 110: 3136–3142. Article  CAS  PubMed  PubMed Central  Google Scholar  * Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S _et al_. The Ikaros gene is


required for the development of all lymphoid lineages. _Cell_ 1994; 79: 143–156. Article  CAS  PubMed  Google Scholar  * Redonnet A, Bonilla S, Noel-Suberville C, Pallet V, Dabadie H, Gin H


_et al_. Relationship between peroxisome proliferator-activated receptor gamma and retinoic acid receptor alpha gene expression in obese human adipose tissue. _Int J Obes Relat Metab Disord_


2002; 26: 920–927. Article  CAS  PubMed  Google Scholar  * Xue JC, Schwarz EJ, Chawla A, Lazar MA . Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after


induction of PPARgamma. _Mol Cell Biol_ 1996; 16: 1567–1575. Article  CAS  PubMed  PubMed Central  Google Scholar  * Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CB _et al_.


c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. _J Clin Invest_ 2004; 114: 1326–1333. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Zhang Y, Schmidt RJ, Foxworthy P, Emkey R, Oler JK, Large TH _et al_. Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. _Biochem


Biophys Res Commun_ 2005; 334: 729–732. Article  CAS  PubMed  Google Scholar  * Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL _et al_. Activation of GPR43 in adipocytes leads to


inhibition of lipolysis and suppression of plasma free fatty acids. _Endocrinology_ 2008. * Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley BW _et al_. SRC-1 and TIF2


control energy balance between white and brown adipose tissues. _Cell_ 2002; 111: 931–941. Article  CAS  PubMed  Google Scholar  * Strandberg L, Mellstrom D, Ljunggren O, Grundberg E,


Karlsson MK, Holmberg AH _et al_. IL6 and IL1B polymorphisms are associated with fat mass in older men: the MrOS Study Sweden. _Obesity (Silver Spring)_ 2008; 16: 710–713. Article  CAS 


Google Scholar  * Thach DC, Lin B, Walter E, Kruzelock R, Rowley RK, Tibbetts C _et al_. Assessment of two methods for handling blood in collection tubes with RNA stabilizing agent for


surveillance of gene expression profiles with high density microarrays. _J Immunol Methods_ 2003; 283: 269–279. Article  CAS  PubMed  Google Scholar  * Tibshirani R, Hastie T, Narasimhan B,


Chu G . Diagnosis of multiple cancer types by shrunken centroids of gene expression. _Proc Natl Acad Sci USA_ 2002; 99: 6567–6572. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC _et al_. DAVID: database for annotation, visualization, and integrated discovery. _Genome Biol_ 2003; 4: P3. Article  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS We thank the nurses and study coordinators who helped with these studies at Cincinnati Children's Hospital Medical Center. We also


thank the Affymetrix cores for processing the samples. This study was supported by NIH/NINDS Grants (NS043252 and NS056302, FRS), support from Cincinnati Children's Hospital Medical


Center (BW), and support from the M.I.N.D. Institute at the University of California at Davis (FRS, LL, IL, WW, MA). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Neurology,


MIND Institute, University of California at Davis, Sacramento, CA, USA L Lit, F R Sharp, M Apperson, D Z Liu, W L Walker, I Liao, H Xu & B P Ander * Department of Pediatric Neurology,


Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA B Wong Authors * L Lit View author publications You can also search for this author


inPubMed Google Scholar * F R Sharp View author publications You can also search for this author inPubMed Google Scholar * M Apperson View author publications You can also search for this


author inPubMed Google Scholar * D Z Liu View author publications You can also search for this author inPubMed Google Scholar * W L Walker View author publications You can also search for


this author inPubMed Google Scholar * I Liao View author publications You can also search for this author inPubMed Google Scholar * H Xu View author publications You can also search for this


author inPubMed Google Scholar * B P Ander View author publications You can also search for this author inPubMed Google Scholar * B Wong View author publications You can also search for


this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to L Lit. ADDITIONAL INFORMATION Supplementary Information accompanies the paper on the The Pharmacogenomics Journal


website (http://www.nature.com/tpj) SUPPLEMENTARY INFORMATION SUPPLEMENTARY TABLE S-1 (XLS 320 KB) SUPPLEMENTARY FIGURE S-1 (JPG 73 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Lit, L., Sharp, F., Apperson, M. _et al._ Corticosteroid effects on blood gene expression in Duchenne muscular dystrophy. _Pharmacogenomics J_ 9, 411–418


(2009). https://doi.org/10.1038/tpj.2009.22 Download citation * Received: 12 December 2008 * Revised: 03 April 2009 * Accepted: 14 April 2009 * Published: 02 June 2009 * Issue Date: December


2009 * DOI: https://doi.org/10.1038/tpj.2009.22 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * Duchenne muscular dystrophy * corticosteroid *


prednisone * microarray * gene expression