Play all audios:
ABSTRACT We examined prospectively the association between whole grain consumption and colorectal cancer risk in the population-based Swedish Mammography Cohort. A total of 61 433 women
completed a food-frequency questionnaire at baseline (1987–1990) and, through linkage with the Swedish Cancer Registry, 805 incident cases of colorectal cancer were identified during a mean
follow-up of 14.8 years. High consumption of whole grains was associated with a lower risk of colon cancer, but not of rectal cancer. The multivariate rate ratio (RR) of colon cancer for the
top category of whole grain consumption (⩾4.5 servings day−1) compared with the bottom category (<1.5 servings day−1) was 0.67 (95% confidence interval (CI), 0.47–0.96; _P_-value for
trend=0.06). The corresponding RR after excluding cases occurring within the first 2 years of follow-up was 0.65 (95% CI, 0.45–0.94; _P_-value for trend=0.04). Our findings suggest that high
consumption of whole grains may decrease the risk of colon cancer in women. SIMILAR CONTENT BEING VIEWED BY OTHERS DIET-WIDE ANALYSES FOR RISK OF COLORECTAL CANCER: PROSPECTIVE STUDY OF
12,251 INCIDENT CASES AMONG 542,778 WOMEN IN THE UK Article Open access 08 January 2025 DIETARY PATTERNS WITH COMBINED AND SITE-SPECIFIC CANCER INCIDENCE IN ALBERTA’S TOMORROW PROJECT COHORT
Article 24 June 2021 LEGUME INTAKE AND CANCER RISK IN A NETWORK OF CASE-CONTROL STUDIES Article 06 February 2024 MAIN About three decades ago, Burkitt (1971) put forth the hypothesis that
the refining of grains and the lack of dietary fibre in the diet may be implicated in colorectal carcinogenesis. In addition to being a concentrated source of dietary fibre and certain
vitamins and minerals, whole grains contain various phytochemicals that may have anticancer properties (Slavin et al, 1999). In a review and meta-analysis, nine out of 10 case–control
studies reported an inverse association between whole grain consumption and risk of colorectal cancer or adenoma; the summary odds ratio for the highest compared with the lowest category of
consumption was 0.79 (Jacobs et al, 1998). Two cohort studies conducted in the United States (McCullough et al, 2003) and Finland (Pietinen et al, 1999) reported no association between
overall whole grain consumption and risk of colorectal or colon cancer. However, in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study among Finnish male smokers, there was a
nonsignificant reduction in colorectal cancer risk associated with a high consumption of rye products (Pietinen et al, 1999). Given the paucity of prospective data on the association between
consumption of whole grains and colorectal cancer risk, we examined this relationship among 61 433 women in the population-based Swedish Mammography Cohort. This cohort of Swedish women
allowed us to assess consumption of hard whole grain rye bread – a concentrated source of rye fibre and related factors – in relation to colorectal cancer incidence. SUBJECTS AND METHODS
STUDY POPULATION The population-based Swedish Mammography Cohort was established between 1987 and 1990, when all women who were 40–76 years of age and resided in Uppsala or Västmanland
Counties in central Sweden received a mailed questionnaire regarding diet, weight, height, and education. Among 90 303 women in the source population, 66 651 (74%) responded to the
questionnaire. An expanded questionnaire that elicited information on lifestyle factors, medications, and smoking history was sent to participants in 1997. For this analysis, we excluded
women with missing date on the baseline questionnaire, women with an erroneous National Registration Number, and women who reported extreme total energy intakes (i.e., 3 standard deviations
from the mean value for log-transformed energy). In addition, we excluded women with a diagnosed cancer (other than nonmelanoma skin cancer) at baseline, leaving 61 433 women eligible for
this analysis. The investigation was approved by the Ethics Committees at the Uppsala University Hospital (Uppsala) and the Karolinska Institutet (Stockholm). DIETARY ASSESSMENT Dietary
information was derived from a 67-item food-frequency questionnaire administered at baseline. We asked participants to indicate their average consumption of each food item during the
previous 6 months. Participants could choose from eight frequency categories, ranging from never/seldom to four or more times per day. Whole grain foods included hard whole grain rye bread
(such as Wasa bread), soft whole grain bread, porridge, and cold breakfast cereals. Refined grains included soft white bread, pasta, rice, pancakes or waffles, and sweet buns or biscuits. We
computed nutrient intakes by multiplying the consumption frequency of each food item by the nutrient content of age-specific (<53, 53–65, ⩾66 years) portion sizes. Values for nutrients
in foods were obtained from the Swedish National Food Administration Database (Bergström et al, 1991). All nutrients and cereal fibre were energy-adjusted using the residual method (Willett
and Stampfer, 1986). In a validation study among 129 women randomly selected from the cohort, Spearman correlation coefficients between data from four 1–week diet records and the
food-frequency questionnaire were 0.5 for hard whole grain rye bread, 0.5 for soft whole grain bread, 0.6 for porridge, and 0.7 for cold breakfast cereals. CASE ASCERTAINMENT AND FOLLOW-UP
OF THE COHORT The National Swedish Cancer Registry provided data until 31 December 2002; additional information until end of follow-up (30 June 2004) was obtained from the Regional Cancer
Registry covering the study area. Follow-up for cancers through these registries is nearly 100% complete (Mattsson and Wallgren, 1984). Colon cancers were considered to be those located
above the peritoneal delineation of the abdominal cavity, and rectal cancers were those occurring below this delineation. Tumours originating from the caecum through splenic flexure were
considered proximal colon cancers, and those in the descending and sigmoid colon were considered distal colon cancers. We identified deaths in the cohort and the date when a participant
moved out from the study area by matching with the Swedish Death and Population Registers. STATISTICAL ANALYSIS For each participant, follow-up time accrued from the date of entry into the
cohort and ended at the date of a colorectal cancer diagnosis, the date of death, the date of leaving the study area, or 30 June 2004, whichever came first. Participants were grouped into
five roughly equal categories according to their frequency of whole grain consumption and into quintiles according to their cereal fibre intake. Rate ratios (RRs) of colorectal cancer for
each of the upper categories were calculated by dividing the incidence rates in these categories by the incidence rate in the lowest category. The proportional hazards assumptions were
satisfied, and we estimated the RRs with 95% confidence intervals (CIs) using Cox proportional hazards models (Cox and Oakes, 1984) stratified on age in months at baseline and the year of
entry into the cohort. In multivariate models, we simultaneously controlled for age, body mass index, education, and intakes of total energy, saturated fat, calcium, red meat, fruits, and
vegetables. In additional analyses, we used information from the 1997 questionnaire to further adjust for family history of colorectal cancer, cigarette smoking, physical activity, and use
of aspirin and multivitamin supplements. Tests for linear trend were conducted using the median value for each exposure category analysed as a continuous variable. All analyses were
conducted with SAS software (version 9.1; SAS Institute Inc., Cary, NC, USA), and all _P_-values were two sided. RESULTS At baseline in 1987–1990, the mean daily whole grain consumption was
2.6 servings. Whole grain consumption varied considerably, with median daily consumption in the top category being 5.0 servings compared with 1.1 servings in the bottom category (Table 1).
Women with a high consumption of whole grains were older, leaner, and more likely to have a postsecondary education. Greater consumption of whole grains was also associated with higher
consumption of fruits and vegetables, but with a lower intake of saturated fat. During a mean follow-up of 14.8 years (911 042 person-years), we ascertained 805 incident cases of colorectal
cancer, including 547 colon cancers (249 proximal colon, 170 distal colon, and 128 unspecified) and 252 rectal cancers; six cases were diagnosed with both colon and rectal cancer. We
observed an inverse association between consumption of whole grains and risk of colon cancer, but not of rectal cancer (Table 2). Compared with women in the lowest category of whole grain
consumption (<1.5 servings day−1), the age-adjusted RR of colon cancer for women in the highest category (⩾4.5 servings day−1) was 0.67 (95% CI, 0.49–0.91; _P_-value for trend=0.03). The
RR was virtually unchanged after further adjustment for education, body mass index, and intakes of total energy, saturated fat, calcium, red meat, fruits, and vegetables (RR, 0.67; 95% CI,
0.47–0.97). Additional controlling for alcohol consumption, family history of colorectal cancer, smoking, physical activity, and use of aspirin and multivitamins did not alter the findings
essentially (RR, 0.69; 95% CI, 0.48–0.99). We conducted further analyses after excluding cases that occurred during the first 2 years of follow-up (Table 2). The association of whole grain
consumption with colon cancer risk became slightly stronger; compared with women in the bottom category of whole grain consumption, those in the top category had a significant 35% lower
risk. High consumption of whole grains was associated with a lower risk of both proximal colon (RR, 0.69; 95% CI, 0.40–1.20) and distal colon cancer (RR, 0.54; 95% CI, 0.27–1.08). In
analyses of individual whole grain foods, only hard whole grain rye bread had a statistically significant inverse association with colon cancer risk. After excluding cases that occurred
within 2 years of follow-up, the multivariate RR of colon cancer for women who consumed two or more slices per day of hard whole grain bread compared with those who consumed less than four
slices per week was 0.74 (95% CI, 0.55–0.98; _P_-value for trend=0.02). Each daily increment of one slice of hard whole grain bread was associated with a 12% reduction in colon cancer risk
(multivariate RR, 0.88; 95% CI, 0.78–0.99). Refined grain consumption was not appreciably associated with risk of colon or rectal cancer. The multivariate RRs for the highest (⩾2.5 servings
day−1) compared with the lowest category (<0.5 servings day−1) of refined grain consumption were 1.29 (95% CI, 0.92–1.82) for colon cancer and 0.82 (95% CI, 0.48–1.40) for rectal cancer.
We also examined the association between cereal fibre intake and risk of colon cancer (Figure 1). After controlling for age, education, body mass index, and intakes of total energy,
saturated fat, calcium, red meat, fruits, and vegetables, women in the top quintile of cereal fibre intake had a 27% (RR, 0.77; 95% CI, 0.57–1.03) reduced risk of colon cancer compared with
those in the bottom quintile. Further adjustment for intakes of vitamin C, vitamin E, _β_-carotene, folate, vitamin B6, and magnesium did not materially change the results, although the
confidence interval widened (RR, 0.76; 95% CI, 0.53–1.08). There was no association of cereal fibre intake with rectal cancer risk (RR, 0.99; 95% CI, 0.64–1.53). To elucidate whether the
inverse relation between whole grain consumption and colon cancer risk could be attributed to cereal fibre, we included intakes of whole grains and cereal fibre simultaneously in a
multivariate model (adjusted for the same variables as in Table 2). In this model, the RR of colon cancer comparing the extreme categories of whole grain consumption was attenuated from 0.65
to 0.75 (95% CI, 0.49–1.15). DISCUSSION In this large population-based prospective cohort of women, a high consumption of whole grain foods was associated with a lower risk of colon cancer.
The decrease in risk was 35% when comparing the extreme categories of whole grain consumption, and this was reduced to 25% after additional adjustment for cereal fibre. This suggests that
the observed reduction in colon cancer risk associated with high consumption of whole grains may partly be attributed to cereal fibre but that other constituents may contribute to further
protection. There are several components of whole grains that may reduce the risk of colon cancer, including various vitamins (especially B-vitamins) and minerals (e.g. magnesium and zinc),
phenolic compounds, antinutrients (e.g. phytic acid, tannins, and enzyme inhibitors), and phyto-oestrogens (Slavin et al, 1999). Whole grains are also a rich source of dietary fibre,
resistant starch, and oligosaccharides that can influence the gut environment. Insoluble fibre in grains increases the bulk of luminal contents, thereby diluting potential carcinogens and
promoters in the colon and decreasing transit time, and, consequently, reduces the exposure of the colonic epithelium to harmful compounds (Slavin et al, 1999). Although an inverse
association between dietary fibre intake and colon cancer risk has been observed in a number of case–control studies (Kushi et al, 1999), large cohort studies have provided inconclusive
findings. While no association between dietary fibre and colorectal cancer risk was observed in cohort studies in the United States (Giovannucci et al, 1994; Steinmetz et al, 1994; Fuchs et
al, 1999), the European Prospective Investigation into Cancer and Nutrition (EPIC) (Bingham et al, 2003) among over 500 000 participants from 10 European countries reported significant
inverse associations between intake of fibre from cereals and fruits and risk of colon cancer. A high intake of cereal fibre was also associated with a significant lower risk of colon
adenomas in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial (Peters et al, 2003). The EPIC and PLCO studies observed no association between dietary fibre intake and
risk of rectal cancer, which is consistent with our results. Our findings for consumption of hard whole grain rye bread, a rich source of rye fibre, are consistent with those reported by
Pietinen et al (1999) in Finland. In that Finnish cohort with 185 colorectal cancer cases among male smokers, the risk of colorectal cancer was 30% lower among men in the highest quartile of
rye product consumption compared with those in the lowest quartile, but the findings were not significant (Pietinen et al, 1999). Rye bran is a rich source of lignans (Adlercreutz, 2002).
Animal studies have suggested that rye bran and lignans may reduce colon carcinogenesis (Davies et al, 1999; Mutanen et al, 2000; Adlercreutz, 2002). It has been shown that rye bran more
effectively suppresses colon carcinogenesis than wheat and oat bran (Mutanen et al, 2000). Our study has the advantage of a large population-based sample size, a large number of colorectal
cancer cases, and a virtually complete ascertainment of cancer cases (Mattsson and Wallgren, 1984). The prospective nature of our study precluded potential recall and selection biases, which
could be an issue in case–control studies. There are also potential limitations of our findings. It is likely that some measurement error existed in our estimation of whole grain
consumption. However, measurement errors and resulting misclassification are likely to be unrelated to colorectal cancer in a prospective study, and would thus tend to weaken any association
between whole grain consumption and colon cancer risk rendering our risk estimates conservative. As in any observational study, our results could be influenced, at least in part, by
differences between participants in factors other than whole grain consumption. In general, women with a high consumption of whole grains consumed more fruits and vegetables, which may
reflect a generally healthy lifestyle. Nevertheless, the observed inverse association between whole grain consumption and colon cancer remained essentially unchanged in multivariate models
that accounted for other dietary and lifestyle factors, which argues against the possibility of residual confounding from these factors. In conclusion, results from this large prospective
population-based cohort of women provide support that high consumption of whole grain foods, particularly hard whole grain rye bread, may reduce the risk of colon cancer. This finding is
consistent with the dietary recommendations to increase whole grains consumption. CHANGE HISTORY * _ 16 NOVEMBER 2011 This paper was modified 12 months after initial publication to switch to
Creative Commons licence terms, as noted at publication _ REFERENCES * Adlercreutz H (2002) Phyto-oestrogens and cancer. _Lancet Oncol_ 3: 364–373 Article Google Scholar * Bergström L,
Kylberg E, Hagman U, Erikson H, Bruce Å (1991) The food composition database KOST: the National Administration's information system for nutritive values of food. _Vår Föda_ 43: 439–447
Google Scholar * Bingham SA, Day NE, Luben R, Ferrari P, Slimani N (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into
Cancer and Nutrition (EPIC): an observational study. _Lancet_ 361: 1496–1501 Article Google Scholar * Burkitt DP (1971) Epidemiology of cancer of the colon and rectum. _Cancer_ 28: 3–13
Article CAS Google Scholar * Cox DR, Oakes D (1984) _Analysis of Survival Data_. London: Chapman & Hall Google Scholar * Davies MJ, Bowey EA, Adlercreutz H, Rowland IR, Rumsby PC
(1999) Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats. _Carcinogenesis_ 20: 927–931 Article CAS Google Scholar * Fuchs
CS, Giovannucci EL, Colditz GA, Hunter DJ, Stampfer MJ, Rosner B, Speizer FE, Willett WC (1999) Dietary fiber and the risk of colorectal cancer and adenoma in women. _N Engl J Med_ 340:
169–176 Article CAS Google Scholar * Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC (1994) Intake of fat, meat, and fiber in relation to risk of colon cancer in
men. _Cancer Res_ 54: 2390–2397 CAS PubMed Google Scholar * Jacobs Jr DR, Marquart L, Slavin J, Kushi LH (1998) Whole-grain intake and cancer: an expanded review and meta-analysis. _Nutr
Cancer_ 30: 85–96 Article Google Scholar * Kushi LH, Meyer KA, Jacobs Jr DR (1999) Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. _Am J Clin
Nutr_ 70: 451S–458S Article CAS Google Scholar * Mattsson B, Wallgren A (1984) Completeness of the Swedish Cancer Register. Non-notified cancer cases recorded on death certificates in
1978. _Acta Radiol Oncol_ 23: 305–313 Article CAS Google Scholar * McCullough ML, Robertson AS, Chao A, Jacobs EJ, Stampfer MJ, Jacobs DR, Diver WR, Calle EE, Thun MJ (2003) A prospective
study of whole grains, fruits, vegetables and colon cancer risk. _Cancer Causes Control_ 14: 959–970 Article Google Scholar * Mutanen M, Pajari AM, Oikarinen SI (2000) Beef induces and
rye bran prevents the formation of intestinal polyps in Apc(Min) mice: relation to beta-catenin and PKC isozymes. _Carcinogenesis_ 21: 1167–1173 Article CAS Google Scholar * Peters U,
Sinha R, Chatterjee N, Subar AF, Ziegler RG, Kulldorff M, Bresalier R, Weissfeld JL, Flood A, Schatzkin A, Hayes RB (2003) Dietary fibre and colorectal adenoma in a colorectal cancer early
detection programme. _Lancet_ 361: 1491–1495 Article Google Scholar * Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, Albanes D, Virtamo J (1999) Diet and risk of colorectal
cancer in a cohort of Finnish men. _Cancer Causes Control_ 10: 387–396 Article CAS Google Scholar * Slavin JL, Martini MC, Jacobs Jr DR, Marquart L (1999) Plausible mechanisms for the
protectiveness of whole grains. _Am J Clin Nutr_ 70: 459S–463S Article CAS Google Scholar * Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD (1994) Vegetables, fruit, and colon
cancer in the Iowa Women's Health Study. _Am J Epidemiol_ 139: 1–15 Article CAS Google Scholar * Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic
analyses. _Am J Epidemiol_ 124: 17–27 Article CAS Google Scholar Download references ACKNOWLEDGEMENTS This work was supported by research grants from the Swedish Cancer Foundation, the
Swedish Research Council/Longitudinal Studies, and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS
* Division of Nutritional Epidemiology, The National Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-17177, Sweden S C Larsson & A Wolk * Departments
of Nutrition and Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, 02115, MA, USA E Giovannucci * Department of Medicine, Channing Laboratory, Brigham and
Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, 02115, MA, USA E Giovannucci * Department of Surgery and Centre for Clinical Research, Central Hospital,
SE-72189 Västerås, Sweden L Bergkvist Authors * S C Larsson View author publications You can also search for this author inPubMed Google Scholar * E Giovannucci View author publications You
can also search for this author inPubMed Google Scholar * L Bergkvist View author publications You can also search for this author inPubMed Google Scholar * A Wolk View author publications
You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to S C Larsson. RIGHTS AND PERMISSIONS From twelve months after its original publication, this
work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Larsson, S., Giovannucci, E., Bergkvist, L. _et al._ Whole grain consumption
and risk of colorectal cancer: a population-based cohort of 60 000 women. _Br J Cancer_ 92, 1803–1807 (2005). https://doi.org/10.1038/sj.bjc.6602543 Download citation * Received: 12 January
2005 * Revised: 25 February 2005 * Accepted: 25 February 2005 * Published: 12 April 2005 * Issue Date: 09 May 2005 * DOI: https://doi.org/10.1038/sj.bjc.6602543 SHARE THIS ARTICLE Anyone you
share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the
Springer Nature SharedIt content-sharing initiative KEYWORDS * cohort studies * colon cancer * epidemiology * dietary fibre * rye * whole grains