Pu. 1 cooperates with irf4 and irf8 to suppress pre-b-cell leukemia

Pu. 1 cooperates with irf4 and irf8 to suppress pre-b-cell leukemia

Play all audios:

Loading...

ABSTRACT The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon


consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow


B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the


pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell


acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by


PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell


development and to prevent pre-B-ALL formation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IRF4 MODULATES THE RESPONSE TO BCR ACTIVATION IN CHRONIC LYMPHOCYTIC LEUKEMIA REGULATING


IKAROS AND SYK Article 23 February 2021 INHIBITION OF INFLAMMATORY SIGNALING IN _PAX5_ MUTANT CELLS MITIGATES B-CELL LEUKEMOGENESIS Article Open access 05 November 2020 UPF1 PLAYS CRITICAL


ROLES IN EARLY B CELL DEVELOPMENT Article Open access 09 July 2024 REFERENCES * Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML . PU1 recruits a second nuclear


factor to a site important for immunoglobulin kappa 3' enhancer activity. _Mol Cell Biol_ 1992; 12: 368–378. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kanno Y, Levi B-Z,


Tamura T, Ozato K . Immune cell-specific amplification of interferon signaling by the IRF-4/8-PU.1 complex. _J Interferon Cytokine Res_ 2005; 25: 770–779. Article  CAS  PubMed  Google


Scholar  * Eisenbeis CF, Singh H, Storb U . Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. _Genes Dev_ 1995; 9: 1377–1387. Article  CAS 


PubMed  Google Scholar  * Eisenbeis CF, Singh H, Storb U . PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer. _Mol


Cell Biol_ 1993; 13: 6452–6461. Article  CAS  PubMed  PubMed Central  Google Scholar  * Brass AL, Zhu AQ, Singh H . Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting


function _in vivo_ using fused dimers. _EMBO J_ 1999; 18: 977–991. Article  CAS  PubMed  PubMed Central  Google Scholar  * Brass AL, Kehrli E, Eisenbeis CF, Storb U, Singh H . Pip, a


lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. _Genes Dev_ 1996; 10: 2335–2347. Article 


CAS  PubMed  Google Scholar  * Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R, Brink R _et al_. Transcriptional regulation of germinal center B and plasma cell fates by


dynamical control of IRF4. _Immunity_ 2013; 38: 918–929. Article  CAS  PubMed  PubMed Central  Google Scholar  * Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P _et al_. Simple


combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. _Mol Cell_ 2010; 38: 576–589. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. _Science_ 1994;


265: 1573–1577. Article  CAS  PubMed  Google Scholar  * Scott EW, Fisher RC, Olson MC, Kehrli EW, Simon MC, Singh H . PU.1 functions in a cell-autonomous manner to control the


differentiation of multipotential lymphoid-myeloid progenitors. _Immunity_ 1997; 6: 437–447. Article  CAS  PubMed  Google Scholar  * Polli M, Dakic A, Light A, Wu L, Tarlinton D, Nutt S .


The development of functional B lymphocytes in conditional PU.1 knock-out mice. _Blood_ 2005; 106: 2083–2090. Article  CAS  PubMed  Google Scholar  * Ye M, Ermakova O, Graf T . PU.1 is not


strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. _J Exp Med_ 2005; 202: 1411–1422. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sokalski


KM, Li SKH, Welch I, Cadieux-Pitre H-AT, Gruca MR, Dekoter RP . Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic


leukemia. _Blood_ 2011; 118: 1–33. Article  Google Scholar  * Johnson K, Hashimshony T, Sawai CM, Pongubala JM, Skok JA, Aifantis I _et al_. Regulation of immunoglobulin light-chain


recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. _Immunity_ 2008; 28: 335–345. Article  CAS  PubMed  Google Scholar  * Lu R, Medina KL, Lancki


DW, Singh H . IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. _Genes Dev_ 2003; 17: 1703–1708. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma S, Pathak


S, Trinh L, Lu R . Interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B-cell receptor and promote cell-cycle withdrawal in pre-B-cell


development. _Blood_ 2008; 111: 1396–1403. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma S, Turetsky A, Trinh L, Lu R . IFN regulatory factor 4 and 8 promote Ig light chain


kappa locus activation in pre-B cell development. _J Immunol_ 2006; 177: 7898–7904. Article  CAS  PubMed  Google Scholar  * Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL _et al_.


PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. _Blood_ 2004; 104: 3437–3444. Article  CAS  PubMed  Google Scholar  *


Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F _et al_. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene.


_Cell_ 1996; 87: 307–317. Article  CAS  PubMed  Google Scholar  * Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S . Inactivation of PU.1 in adult mice leads to the development of


myeloid leukemia. _Proc Natl Acad Sci USA_ 2006; 103: 1486–1491. Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenbauer F, Koschmieder S, Steidl U, Tenen DG . Effect of


transcription-factor concentrations on leukemic stem cells. _Blood_ 2005; 106: 1519–1524. Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenbauer F, Wagner K, Kutok JL, Iwasaki H,


Le Beau MM, Okuno Y _et al_. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. _Nat Genet_ 2004; 36: 624–630. Article  CAS  PubMed  Google


Scholar  * Scheller M, Schonheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A . Cross talk between Wnt/beta-catenin and Irf8 in leukemia progression and drug resistance. _J Exp Med_


2013; 210: 2239–2256. Article  CAS  PubMed  PubMed Central  Google Scholar  * Steidl U, Steidl C, Ebralidze A, Chapuy B, Han HJ, Will B _et al_. A distal single nucleotide polymorphism


alters long-range regulation of the PU.1 gene in acute myeloid leukemia. _J Clin Invest_ 2007; 117: 2611–2620. Article  CAS  PubMed  PubMed Central  Google Scholar  * Mullighan CG, Zhang J,


Kasper LH, Lerach S, Payne-Turner D, Phillips LA _et al_. CREBBP mutations in relapsed acute lymphoblastic leukaemia. _Nature_ 2011; 471: 235–239. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M _et al_. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from


the Children's Oncology Group. _Blood_ 2011; 118: 3080–3087. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bouamar H, Abbas S, Lin AP, Wang L, Jiang D, Holder KN _et al_. A


capture-sequencing strategy identifies IRF8, EBF1, and APRIL as novel IGH fusion partners in B-cell lymphoma. _Blood_ 2013; 122: 726–733. Article  CAS  PubMed  PubMed Central  Google Scholar


  * Niebuhr B, Kriebitzsch N, Fischer M, Behrens K, Gunther T, Alawi M _et al_. Runx1 is essential at two stages of early murine B-cell development. _Blood_ 2013; 122: 413–423. Article  CAS


  PubMed  Google Scholar  * Shukla V, Ma S, Hardy RR, Joshi SS, Lu R . A role for IRF4 in the development of CLL. _Blood_ 2013; 122: 2848–2855. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Shaffer AL, Emre NC, Romesser PB, Staudt LM . IRF4: Immunity. Malignancy! Therapy? _Clin Cancer Res_ 2009; 15: 2954–2961. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Adamaki M, Lambrou GI, Athanasiadou A, Tzanoudaki M, Vlahopoulos S, Moschovi M . Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. _PLoS One_ 2013; 8: e72326.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Acquaviva J, Chen X, Ren R . IRF-4 functions as a tumor suppressor in early B-cell development. _Blood_ 2008; 112: 3798–3806. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Pathak S, Ma S, Trinh L, Eudy J, Wagner KU, Joshi SS _et al_. IRF4 is a suppressor of c-Myc induced B cell leukemia. _PLoS One_ 2011; 6:


e22628. Article  CAS  PubMed  PubMed Central  Google Scholar  * Jo SH, Schatz JH, Acquaviva J, Singh H, Ren R . Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and


lymphoid tumorigenesis. _Blood_ 2010; 116: 2759–2767. Article  CAS  PubMed  PubMed Central  Google Scholar  * Xu LS, Sokalski KM, Hotke K, Christie DA, Zarnett O, Piskorz J _et al_.


Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia. _J Immunol_ 2012; 189: 3347–3354. Article  CAS  PubMed  Google Scholar  *


Carotta S, Willis SN, Hasbold J, Inouye M, Pang SH, Emslie D _et al_. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. _J Exp Med_ 2014; 211:


2169–2181. Article  PubMed  PubMed Central  Google Scholar  * Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL . PU.1 regulates the commitment of adult hematopoietic progenitors and


restricts granulopoiesis. _J Exp Med_ 2005; 201: 1487–1502. Article  CAS  PubMed  PubMed Central  Google Scholar  * Mittrücker HW, Matsuyama T, Grossman A, Kündig TM, Potter J, Shahinian A


_et al_. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. _Science_ 1997; 275: 540–543. Article  PubMed  Google Scholar  * Hobeika E, Thiemann S,


Storch B, Jumaa H, Nielsen PJ, Pelanda R _et al_. Testing gene function early in the B cell lineage in mb1-cre mice. _Proc Natl Acad Sci USA_ 2006; 103: 13789–13794. Article  CAS  PubMed 


PubMed Central  Google Scholar  * DeKoter RP, Lee HJ, Singh H . PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. _Immunity_ 2002; 16: 297–309. Article  CAS 


PubMed  Google Scholar  * Anderson KL, Nelson SL, Perkin HB, Smith KA, Klemsz MJ, Torbett BE . PU.1 is a lineage-specific regulator of tyrosine phosphatase CD45. _J Biol Chem_ 2001; 276:


7637–7642. Article  CAS  PubMed  Google Scholar  * Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD _et al_. Genome-wide analysis of genetic alterations in acute


lymphoblastic leukaemia. _Nature_ 2007; 446: 758–764. Article  CAS  PubMed  Google Scholar  * Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C, Tagoh H _et al_. Stepwise activation


of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. _Immunity_ 2009; 30: 508–520. Article  CAS  PubMed  Google Scholar  * Minegishi Y, Rohrer J,


Coustan-Smith E, Lederman HM, Pappu R, Campana D _et al_. An essential role for BLNK in human B cell development. _Science_ 1999; 286: 1954–1957. Article  CAS  PubMed  Google Scholar  *


Pappu R, Cheng AM, Li B, Gong Q, Chiu C, Griffin N _et al_. Requirement for B cell linker protein (BLNK) in B cell development. _Science_ 1999; 286: 1949–1954. Article  CAS  PubMed  Google


Scholar  * Jumaa H, Wollscheid B, Mitterer M, Wienands J, Reth M, Nielsen PJ . Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65.


_Immunity_ 1999; 11: 547–554. Article  CAS  PubMed  Google Scholar  * Jumaa H, Bossaller L, Portugal K, Storch B, Lotz M, Flemming A _et al_. Deficiency of the adaptor SLP-65 in pre-B-cell


acute lymphoblastic leukaemia. _Nature_ 2003; 423: 452–456. Article  CAS  PubMed  Google Scholar  * Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M _et al_. Selective defects


in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. _Immunity_ 1996; 5: 537–549. Article  CAS  PubMed  Google Scholar  * Ma S, Pathak S, Mandal M,


Trinh L, Clark MR, Lu R . Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. _Mol Cell Biol_ 2010; 30: 4149–4158. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Heizmann B, Kastner P, Chan S . Ikaros is absolutely required for pre-B cell differentiation by attenuating IL-7 signals. _J Exp Med_ 2013; 210: 2823–2832. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Joshi I, Yoshida T, Jena N, Qi X, Zhang J, Van Etten RA _et al_. Loss of Ikaros DNA-binding function confers integrin-dependent survival on


pre-B cells and progression to acute lymphoblastic leukemia. _Nat Immunol_ 2014; 15: 294–304. Article  CAS  PubMed  PubMed Central  Google Scholar  * Schwickert TA, Tagoh H, Gultekin S,


Dakic A, Axelsson E, Minnich M _et al_. Stage-specific control of early B cell development by the transcription factor Ikaros. _Nat Immunol_ 2014; 15: 283–293. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Mullighan C, Downing J . Ikaros and acute leukemia. _Leuk Lymphoma_ 2008; 49: 847–849. Article  PubMed  Google Scholar  * Mullighan CG, Su X, Zhang J, Radtke I,


Phillips LAA, Miller CB _et al_. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. _N Engl J Med_ 2009; 360: 470–480. Article  CAS  PubMed  PubMed Central  Google Scholar  *


DeKoter R, Singh H . Regulation of B lymphocyte and macrophage development by graded expression of PU.1. _Science_ 2000; 288: 1439–1441. Article  CAS  PubMed  Google Scholar  * Rosenbauer F,


Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL _et al_. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. _Nat Genet_ 2006; 38:


27–37. Article  CAS  PubMed  Google Scholar  * Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M . Transcription factor Pax5 activates the chromatin of key genes


involved in B cell signaling, adhesion, migration, and immune function. _Immunity_ 2007; 27: 49–63. Article  CAS  PubMed  Google Scholar  * Greig KT, de Graaf CA, Murphy JM, Carpinelli MR,


Pang SH, Frampton J _et al_. Critical roles for c-Myb in lymphoid priming and early B-cell development. _Blood_ 2010; 115: 2796–2805. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ferreiros-Vidal I, Carroll T, Taylor B, Terry A, Liang Z, Bruno L _et al_. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and


pre-B-cell differentiation. _Blood_ 2013; 121: 1769–1782. Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank M Reth and T Mak for mice, J Leahy for animal


husbandry and the institute flow cytometry facility for excellent technical assistance. We thank Markus Jaritz for bioinformatic analysis. This work was supported by program and project


grants (APP1054925 to SLN and 637345 to SC) and fellowships (APP1058238 to SLN) from the National Health and Medical Research Council (NHRMC) of Australia. SHMP was supported by the


Leukaemia Foundation of Australia and SC by an NHMRC Career Development Fellowship. Research of the Busslinger group was supported by Boehringer Ingelheim and an ERC Advanced Grant


(291740-LymphoControl). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIIS. AUTHOR INFORMATION Author


notes * R A Dickins Present address: 5Current address: Monash University, Australian Center for Blood Diseases, The Alfred, Commercial Road, Melbourne, Victoria 3004, Australia, * S Carotta


Present address: 6Current address: Boehringer Ingelheim RCV, New Therapeutic Drug Concepts, Dr Boehringer Gasse 5-11, Vienna A-1121, Austria, AUTHORS AND AFFILIATIONS * Molecular Immunology


Department, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia S H M Pang, P Gangatirkar, Z Zheng, R A Dickins, L M Corcoran, N D Huntington, S L Nutt 


& S Carotta * Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia S H M Pang, P Gangatirkar, R A Dickins, L M Corcoran, N D Huntington, S L Nutt & 


S Carotta * The Institute of Molecular Pathology, Vienna, Austria M Minnich, A Ebert & M Busslinger * Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA G


Song & C G Mullighan Authors * S H M Pang View author publications You can also search for this author inPubMed Google Scholar * M Minnich View author publications You can also search


for this author inPubMed Google Scholar * P Gangatirkar View author publications You can also search for this author inPubMed Google Scholar * Z Zheng View author publications You can also


search for this author inPubMed Google Scholar * A Ebert View author publications You can also search for this author inPubMed Google Scholar * G Song View author publications You can also


search for this author inPubMed Google Scholar * R A Dickins View author publications You can also search for this author inPubMed Google Scholar * L M Corcoran View author publications You


can also search for this author inPubMed Google Scholar * C G Mullighan View author publications You can also search for this author inPubMed Google Scholar * M Busslinger View author


publications You can also search for this author inPubMed Google Scholar * N D Huntington View author publications You can also search for this author inPubMed Google Scholar * S L Nutt View


author publications You can also search for this author inPubMed Google Scholar * S Carotta View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHORS Correspondence to S L Nutt or S Carotta. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION Supplementary


Information accompanies this paper on the Leukemia website SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION (DOC 135 KB) SUPPLEMENTARY FIGURE 1 (JPG 476 KB) SUPPLEMENTARY FIGURE 2 (JPG


300 KB) SUPPLEMENTARY FIGURE 3 (JPG 285 KB) SUPPLEMENTARY FIGURE 4 (JPG 1081 KB) SUPPLEMENTARY FIGURE 5 (JPG 181 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Pang, S., Minnich, M., Gangatirkar, P. _et al._ PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. _Leukemia_ 30, 1375–1387 (2016).


https://doi.org/10.1038/leu.2016.27 Download citation * Received: 12 February 2015 * Revised: 14 November 2015 * Accepted: 08 January 2016 * Published: 02 March 2016 * Issue Date: June 2016


* DOI: https://doi.org/10.1038/leu.2016.27 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative