Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers

Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers

Play all audios:

Loading...

ABSTRACT The peptide GsMTx4, isolated from the venom of the tarantula _Grammostola spatulata_, is a selective inhibitor of stretch-activated cation channels (SACs)1. The mechanism of


inhibition remains unknown; but both GsMTx4 and its enantiomer, enGsMTx4, modify the gating of SACs, thus violating a trademark of the traditional lock-and-key model of ligand–protein


interactions. Suspecting a bilayer-dependent mechanism, we examined the effect of GsMTx4 and enGsMTx4 on gramicidin A (gA) channel gating2. Both peptides are active, and the effect increases


with the degree of hydrophobic mismatch between bilayer thickness and channel length, meaning that GsMTx4 decreases the energy required to deform the boundary lipids adjacent to the


channel. GsMTx4 decreases inward SAC single-channel currents but has no effect on outward currents, suggesting it is located within a Debye length of the outer vestibule of the SACs, but


significantly farther from the inner vestibule. Likewise, GsMTx4 decreases gA single-channel currents. Our results suggest that modulation of membrane proteins by amphipathic


peptides—mechanopharmacology—involves not only the protein itself but also the surrounding lipids. The surprising efficacy of the d form of GsMTx4 peptide has important therapeutic


implications, because d peptides are not hydrolysed by endogenous proteases and may be administered orally. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MOLECULAR MECHANISM AND STRUCTURAL BASIS


OF SMALL-MOLECULE MODULATION OF THE GATING OF ACID-SENSING ION CHANNEL 1 Article Open access 09 February 2021 STRUCTURAL BASIS FOR EXCITATORY NEUROPEPTIDE SIGNALING Article Open access 09


February 2024 STRUCTURAL BASIS OF INHIBITION OF HUMAN NAV1.8 BY THE TARANTULA VENOM PEPTIDE PROTOXIN-I Article Open access 07 February 2025 REFERENCES * Suchyna, T. M. et al. Identification


of a peptide toxin from _Grammostola spatulata_ spider venom that blocks cation-selective stretch-activated channels. _J. Gen. Physiol._ 115, 583–598 (2000) Article  CAS  PubMed  PubMed


Central  Google Scholar  * Andersen, O. S. et al. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. _Methods


Enzymol._ 294, 208–224 (1999) Article  CAS  PubMed  Google Scholar  * Patel, A. J. et al. Inhalational anesthetics activate two-pore-domain background K+ channels. _Nature Neurosci._ 2,


422–426 (1999) Article  CAS  PubMed  Google Scholar  * Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. _Curr. Opin. Cell Biol._ 13, 422–427 (2001)


Article  CAS  PubMed  Google Scholar  * Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during


mechanosensitive channel gating. _Nature Struct. Biol._ 9, 696–703 (2002) Article  CAS  PubMed  Google Scholar  * Lundbæk, J. A. & Andersen, O. S. Lysophospholipids modulate channel


function by altering the mechanical properties of lipid bilayers. _J. Gen. Physiol._ 104, 645–673 (1994) Article  PubMed  Google Scholar  * Hwang, T. C., Koeppe, R. E. II & Andersen, O.


S. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. _Biochemistry_ 42, 13646–13658 (2003) Article


  CAS  PubMed  Google Scholar  * Goulian, M. et al. Gramicidin channel kinetics under tension. _Biophys. J._ 74, 328–337 (1998) Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Oswald, R. E., Suchyna, T. M., McFeeters, R., Gottlieb, P. & Sachs, F. Solution structure of peptide toxins that block mechanosensitive ion channels. _J. Biol. Chem._ 277, 34443–34450


(2002) Article  CAS  PubMed  Google Scholar  * Ostrow, K. L. et al. cDNA sequence and _in vitro_ folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. _Toxicon_ 42,


263–274 (2003) Article  CAS  PubMed  Google Scholar  * Markin, V. S. & Sachs, F. Thermodynamics of mechanosensitivity. _Physical Biol._ (in the press) * Suchyna, T. & Sachs, F.


Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. _Phys. Biol._ 1, 1–18 (2004) Article  ADS  CAS  PubMed  Google Scholar  * Ladokhin,


A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? _Anal. Biochem._ 285, 235–245 (2000) Article  CAS  PubMed 


Google Scholar  * White, S. H., Wimley, W. C., Ladokhin, A. S. & Hristova, K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. _Methods Enzymol._


295, 62–87 (1998) Article  CAS  PubMed  Google Scholar  * Kim, J., Mosior, M., Chung, L. A., Wu, H. & McLaughlin, S. Binding of peptides with basic residues to membranes containing


acidic phospholipids. _Biophys. J._ 60, 135–148 (1991) Article  CAS  PubMed  PubMed Central  Google Scholar  * Lundbæk, J. A. & Andersen, O. S. Spring constants for channel-induced lipid


bilayer deformations—estimates using gramicidin channels. _Biophys. J._ 76, 889–895 (1999) Article  PubMed  PubMed Central  Google Scholar  * O'Connell, A. M., Koeppe, R. E. II &


Andersen, O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. _Science_ 250, 1256–1259 (1990) Article  ADS  CAS  PubMed  Google Scholar  *


Elliott, J. R., Needham, D., Dilger, J. P. & Haydon, D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. _Biochim. Biophys. Acta_ 735, 95–103 (1983)


Article  CAS  PubMed  Google Scholar  * Huang, H. W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. _Biophys. J._ 50, 1061–1070 (1986) Article 


ADS  CAS  PubMed  PubMed Central  Google Scholar  * Koeppe, R. E. II et al. On the helix sense of gramicidin A single channels. _Proteins_ 12, 49–62 (1992) Article  CAS  PubMed  Google


Scholar  * Trudelle, Y. & Heitz, F. Synthesis and characterization of Tyr(Bzl)9,11,13,15 and Tyr9,11,13,15 gramicidin A. _Int. J. Pept. Protein Res._ 30, 163–169 (1987) Article  CAS 


PubMed  Google Scholar  * Lundbæk, J. A. et al. Regulation of sodium channel function by bilayer elasticity the importance of hydrophobic coupling: effects of micelle-forming amphiphiles and


cholesterol. _J. Gen. Physiol._ 123, 599–621 (2004) Article  PubMed  PubMed Central  Google Scholar  * Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation.


_Nature_ 409, 35–36 (2001) Article  ADS  CAS  PubMed  Google Scholar  * Lehtonen, J. Y. & Kinnunen, P. K. Phospholipase A2 as a mechanosensor. _Biophys. J._ 68, 1888–1894 (1995) Article


  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Gudi, S., Nolan, J. P. & Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid


composition. _Proc. Natl Acad. Sci. USA_ 95, 2515–2519 (1998) Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Laitko, U. & Morris, C. E. Membrane tension accelerates


rate-limiting voltage-dependent activation and slow inactivation steps in a _Shaker_ channel. _J. Gen. Physiol._ 123, 135–154 (2004) Article  PubMed  PubMed Central  Google Scholar  *


Greathouse, D. V., Koeppe, R. E. II, Providence, L. L., Shobana, S. & Andersen, O. S. Design and characterization of gramicidin channels. _Methods Enzymol._ 294, 525–550 (1999) Article 


CAS  PubMed  Google Scholar  * Andersen, O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. _Biophys. J._ 41, 119–133 (1983) Article  ADS


  CAS  PubMed  PubMed Central  Google Scholar  * Bett, G. C. & Sachs, F. Activation and inactivation of mechanosensitive currents in the chick heart. _J. Membr. Biol._ 173, 237–254


(2000) Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We would like to thank J. Niggel (SUNY) and A. Ladokhin (UC Irvine) for the fluorescence data, and M.


Teeling for the tissue culture. This work is supported by NIH grants to O.S.A. and F.S. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Physiology and Biophysics, SUNY at


Buffalo, Buffalo, New York, 14214, USA Thomas M. Suchyna, Frederick Sachs & Philip A. Gottlieb * Department of Physiology and Biophysics, Weill Medical College of Cornell University, New


York, New York, 10021, USA Sonya E. Tape & Olaf S. Andersen * Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, USA Roger E. Koeppe II


Authors * Thomas M. Suchyna View author publications You can also search for this author inPubMed Google Scholar * Sonya E. Tape View author publications You can also search for this author


inPubMed Google Scholar * Roger E. Koeppe II View author publications You can also search for this author inPubMed Google Scholar * Olaf S. Andersen View author publications You can also


search for this author inPubMed Google Scholar * Frederick Sachs View author publications You can also search for this author inPubMed Google Scholar * Philip A. Gottlieb View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Olaf S. Andersen. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


that they have no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Suchyna, T., Tape, S., Koeppe, R. _et al._


Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. _Nature_ 430, 235–240 (2004). https://doi.org/10.1038/nature02743 Download citation * Received:


09 April 2004 * Accepted: 03 June 2004 * Published: 08 July 2004 * Issue Date: 08 July 2004 * DOI: https://doi.org/10.1038/nature02743 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative