Organelle-specific initiation of cell death

Organelle-specific initiation of cell death

Play all audios:

Loading...

ABSTRACT In a majority of pathophysiological settings, cell death is not accidental — it is controlled by a complex molecular apparatus. Such a system operates like a computer: it receives


several inputs that inform on the current state of the cell and the extracellular microenvironment, integrates them and generates an output. Thus, depending on a network of signals generated


at specific subcellular sites, cells can respond to stress by attemptinwg to recover homeostasis or by activating molecular cascades that lead to cell death by apoptosis or necrosis. Here,


we discuss the mechanisms whereby cellular compartments — including the nucleus, mitochondria, plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosomes, cytoskeleton and cytosol —


sense homeostatic perturbations and translate them into a cell-death-initiating signal. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A GUIDE TO CELL DEATH PATHWAYS Article 18 December 2023 THE


INTEGRATED STRESS RESPONSE ENGAGES A CELL-AUTONOMOUS, LIGAND-INDEPENDENT, DR5-DRIVEN APOPTOSIS SWITCH Article Open access 15 February 2025 ENTOSIS: THE CORE MECHANISM AND CROSSTALK WITH


OTHER CELL DEATH PROGRAMS Article Open access 02 April 2024 REFERENCES * Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on


Cell Death 2012. _Cell Death Differ._ 19, 107–120 (2012). Article  CAS  PubMed  Google Scholar  * Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature


Committee on Cell Death 2009. _Cell Death Differ._ 16, 3–11 (2009). CAS  PubMed  Google Scholar  * Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P.


Regulated necrosis: the expanding network of non-apoptotic cell death pathways. _Nat. Rev. Mol. Cell Biol._ 15, 135–147 (2014). CAS  PubMed  Google Scholar  * Elgendy, M., Sheridan, C.,


Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. _Mol. Cell_ 42, 23–35 (2011). CAS 


PubMed  Google Scholar  * Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. _Physiol. Rev._ 87, 99–163 (2007). CAS  PubMed  Google Scholar  *


Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. _Nat. Rev. Mol. Cell Biol._ 11, 621–632 (2010). CAS  PubMed  Google Scholar  *


Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. _Nat. Rev. Cancer_ 12, 587–598 (2012). CAS  PubMed  Google


Scholar  * Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. _Nat. Rev. Mol. Cell Biol._ 12, 385–392 (2011). CAS 


PubMed  Google Scholar  * Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. _Trends Cell Biol._ 22, 97–106 (2012). CAS  PubMed  Google


Scholar  * Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. _Science_ 303, 1010–1014 (2004). CAS  PubMed  Google Scholar 


* Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. _Mol. Cell_ 11, 577–590 (2003). CAS  PubMed  Google Scholar  * Vaseva, A. V. et al. p53 opens the mitochondrial


permeability transition pore to trigger necrosis. _Cell_ 149, 1536–1548 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates


apoptosis and survival decisions. _Nature_ 458, 591–596 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Chung, Y. M. et al. FOXO3 signalling links ATM to the p53 apoptotic pathway


following DNA damage. _Nat. Commun._ 3, 1000 (2012). PubMed  Google Scholar  * Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. _Genes Dev._ 13,


152–157 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. _Cell_


133, 864–877 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to


genotoxic stress. _Science_ 304, 843–846 (2004). CAS  PubMed  Google Scholar  * Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before


mitochondrial permeabilization. _Science_ 297, 1352–1354 (2002). CAS  PubMed  Google Scholar  * Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. _J. Cell Biol._


185, 291–303 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-κB pathway.


_EMBO J._ 26, 197–208 (2007). CAS  PubMed  Google Scholar  * Ando, K. et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. _Mol. Cell_


47, 681–693 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. _Nat. Rev.


Cancer_ 10, 293–301 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. _Nat. Rev.


Drug Discov._ 10, 221–237 (2011). CAS  PubMed  Google Scholar  * Schutze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor


compartmentalization. _Nat. Rev. Mol. Cell Biol._ 9, 655–662 (2008). PubMed  Google Scholar  * Mehlen, P. & Bredesen, D. E. Dependence receptors: from basic research to drug development.


_Sci. Signal._ 4, mr2 (2011). PubMed  Google Scholar  * Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. _Nature_ 460, 1035–1039 (2009). CAS  PubMed 


PubMed Central  Google Scholar  * Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. _Nature_ 400, 886–891 (1999). CAS  PubMed  Google Scholar  *


Chen, L. et al. CD95 promotes tumour growth. _Nature_ 465, 492–496 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Bouwmeester, T. et al. A physical and functional map of the human


TNF-α/NF-κB signal transduction pathway. _Nat. Cell Biol._ 6, 97–105 (2004). CAS  PubMed  Google Scholar  * Wang, L., Du, F. & Wang, X. TNF-αinduces two distinct caspase-8 activation


pathways. _Cell_ 133, 693–703 (2008). CAS  PubMed  Google Scholar  * Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. _Nat.


Cell Biol._ 16, 55–65 (2014). CAS  PubMed  Google Scholar  * Guenebeaud, C. et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase.


_Mol. Cell_ 40, 863–876 (2010). CAS  PubMed  Google Scholar  * Mille, F. et al. The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. _Nat. Cell Biol._ 11,


739–746 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Delloye-Bourgeois, C. et al. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. _PLoS


Biol._ 11, e1001623 (2013). PubMed  PubMed Central  Google Scholar  * Notomi, S. et al. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7


in subretinal hemorrhage. _PLoS ONE_ 8, e53338 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Agopyan, N., Head, J., Yu, S. & Simon, S. A. TRPV1 receptors mediate particulate


matter-induced apoptosis. _Am. J. Physiol. Lung Cell. Mol. Physiol._ 286, L563–572 (2004). CAS  PubMed  Google Scholar  * Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S. &


Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. _J. Neurosci._ 23, 4798–4802 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Staton, T. L. et al.


Dampening of death pathways by schnurri-2 is essential for T-cell development. _Nature_ 472, 105–109 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ahr, B., Robert-Hebmann, V.,


Devaux, C. & Biard-Piechaczyk, M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. _Retrovirology_ 1, 12 (2004). PubMed  PubMed Central  Google Scholar  * Into, T. et


al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. _Cell. Microbiol._


6, 187–199 (2004). CAS  PubMed  Google Scholar  * Voisin, T., El Firar, A., Rouyer-Fessard, C., Gratio, V. & Laburthe, M. A hallmark of immunoreceptor, the tyrosine-based inhibitory


motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. _FASEB J._ 22, 1993–2002 (2008). CAS  PubMed  Google Scholar  * Lappano, R.


& Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. _Nat. Rev. Drug Discov._ 10, 47–60 (2011). CAS  PubMed  Google Scholar  * Tait, S. W. et al.


Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. _Cell Rep._ 5, 878–885 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Galluzzi, L., Kepp, O. &


Kroemer, G. Mitochondria: master regulators of danger signalling. _Nat. Rev. Mol. Cell Biol._ 13, 780–788 (2012). CAS  PubMed  Google Scholar  * Weinmann, M. et al. Molecular ordering of


hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. _Oncogene_ 23, 3757–3769 (2004). CAS  PubMed  Google Scholar  *


Sermeus, A. et al. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. _PLoS ONE_ 7, e47519 (2012). CAS  PubMed  PubMed Central  Google Scholar


  * Sherer, T. B. et al. Mechanism of toxicity in rotenone models of Parkinson's disease. _J. Neurosci._ 23, 10756–10764 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Montero,


J., Dutta, C., van Bodegom, D., Weinstock, D. & Letai, A. p53 regulates a non-apoptotic death induced by ROS. _Cell Death Differ._ 20, 1465–1474 (2013). CAS  PubMed  PubMed Central 


Google Scholar  * Haynes, C. M. & Ron, D. The mitochondrial UPR - protecting organelle protein homeostasis. _J. Cell Sci._ 123, 3849–3855 (2010). CAS  PubMed  Google Scholar  * Tabas, I.


& Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. _Nat. Cell Biol._ 13, 184–190 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Nargund,


A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. _Science_ 337, 587–590 (2012).


CAS  PubMed  PubMed Central  Google Scholar  * Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. _Nat. Rev. Mol. Cell Biol._ 13,


607–625 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human


melanoma cells. _J. Clin. Invest._ 119, 2399–2411 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Ishibashi, O. et al. Short RNA duplexes elicit RIG-I-mediated apoptosis in a cell


type- and length-dependent manner. _Sci. Signal._ 4, ra74 (2011). PubMed  Google Scholar  * El Maadidi, S. et al. A novel mitochondrial MAVS/caspase-8 platform links RNA virus-induced innate


antiviral signaling to Bax/Bak-independent apoptosis. _J. Immunol._ 192, 1171–1183 (2014). CAS  PubMed  Google Scholar  * Lei, Y. et al. MAVS-mediated apoptosis and its inhibition by viral


proteins. _PLoS ONE_ 4, e5466 (2009). PubMed  PubMed Central  Google Scholar  * Brandizzi, F. & Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control. _Nat.


Rev. Mol. Cell Biol._ 14, 382–392 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lane, J. D. et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi


fragmentation during apoptosis. _J. Cell Biol._ 156, 495–509 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Lafont, E. et al. Caspase-mediated inhibition of sphingomyelin synthesis


is involved in FasL-triggered cell death. _Cell Death Differ._ 17, 642–654 (2010). CAS  PubMed  Google Scholar  * How, P. C. & Shields, D. Tethering function of the caspase cleavage


fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. _J. Biol. Chem._ 286, 8565–8576 (2011). CAS  PubMed  Google Scholar  * Kepp, O. et al. Crosstalk between ER


stress and immunogenic cell death. _Cytokine Growth Factor Rev._ 24, 311–318 (2013). CAS  PubMed  Google Scholar  * Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum


stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. _J. Biol. Chem._ 279, 45495–45502 (2004). CAS  PubMed  Google Scholar  * Giorgi, C. et al. PML regulates


apoptosis at endoplasmic reticulum by modulating calcium release. _Science_ 330, 1247–1251 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Puthalakath, H. et al. ER stress triggers


apoptosis by activating BH3-only protein Bim. _Cell_ 129, 1337–1349 (2007). CAS  PubMed  Google Scholar  * Morishima, N., Nakanishi, K. & Nakano, A. Activating transcription factor-6


(ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. _J. Biol. Chem._ 286, 35227–35235 (2011). CAS 


PubMed  PubMed Central  Google Scholar  * Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. _Nature_ 403, 98–103 (2000). CAS


  PubMed  Google Scholar  * Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. _Genes Dev._ 16,


1345–1355 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2.


_Science_ 338, 818–822 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Sandow, J. J. et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis.


_Cell Death Differ._ 21, 475–480 (2013). PubMed  PubMed Central  Google Scholar  * Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction


with IRE1α. _Science_ 312, 572–576 (2006). CAS  PubMed  Google Scholar  * Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. _Mol. Cell_ 33, 679–691


(2009). CAS  PubMed  PubMed Central  Google Scholar  * Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. _Science_ 307, 935–939 (2005). CAS 


PubMed  Google Scholar  * Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. _Nat. Cell Biol._ 15, 481–490 (2013). CAS  PubMed 


PubMed Central  Google Scholar  * Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. _J.


Cell Biol._ 153, 1011–1022 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. _Cell_ 138,


377–388 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Austgen, K., Johnson, E. T., Park, T. J., Curran, T. & Oakes, S. A. The adaptor protein CRK is a pro-apoptotic transducer


of endoplasmic reticulum stress. _Nat. Cell Biol._ 14, 87–92 (2012). CAS  Google Scholar  * Kang, M. J., Chung, J. & Ryoo, H. D. CDK5 and MEKK1 mediate pro-apoptotic signalling following


endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. _Nat. Cell Biol._ 14, 409–415 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Scorrano, L. et al.


BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. _Science_ 300, 135–139 (2003). CAS  PubMed  Google Scholar  * Ishikawa, H. & Barber, G. N. STING is


an endoplasmic reticulum adaptor that facilitates innate immune signalling. _Nature_ 455, 674–678 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Ishikawa, H., Ma, Z. & Barber, G.


N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. _Nature_ 461, 788–792 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Petrasek, J. et al.


STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. _Proc. Natl_ _Acad. Sci. USA_ 110, 16544–16549 (2013). CAS  Google Scholar 


* Namba, T. et al. CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. _Cell Rep._ 5, 331–339 (2013). CAS  PubMed


  Google Scholar  * De Maria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. _Science_ 277, 1652–1655 (1997). CAS  PubMed  Google Scholar  * Cheng, J. P.


et al. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. _Cell Death Dis._ 1, e82 (2010). CAS  PubMed  PubMed Central  Google Scholar  *


Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. _Science_ 282, 290–293 (1998). CAS  PubMed  Google Scholar  * Dumitru, R. et al. Human


embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. _Mol. Cell_ 46, 573–583 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tu,


S. et al. _In situ_ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. _Nat. Cell Biol._ 8, 72–77 (2006). CAS  PubMed  Google Scholar  *


Tsai, F. M., Shyu, R. Y. & Jiang, S. Y. RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus. _Cell. Signal._ 19, 989–999 (2007). CAS  PubMed  Google


Scholar  * Nogueira, E. et al. SOK1 translocates from the Golgi to the nucleus upon chemical anoxia and induces apoptotic cell death. _J. Biol. Chem._ 283, 16248–16258 (2008). CAS  PubMed 


PubMed Central  Google Scholar  * Zhou, J. et al. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. _Mol. Cell. Biol._ 29, 4167–4176


(2009). CAS  PubMed  PubMed Central  Google Scholar  * Aits, S. & Jaattela, M. Lysosomal cell death at a glance. _J. Cell Sci._ 126, 1905–1912 (2013). CAS  PubMed  Google Scholar  *


Groth-Pedersen, L., Ostenfeld, M. S., Hoyer-Hansen, M., Nylandsted, J. & Jaattela, M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing


siramesine. _Cancer Res._ 67, 2217–2225 (2007). CAS  PubMed  Google Scholar  * Zou, J. et al. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and


mediate dendritic cell necroptosis. _Immunity_ 38, 717–728 (2013). CAS  PubMed  Google Scholar  * Hwang, J. J., Lee, S. J., Kim, T. Y., Cho, J. H. & Koh, J. Y. Zinc and


4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. _J. Neurosci._ 28, 3114–3122 (2008). CAS  PubMed  PubMed Central  Google


Scholar  * Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. _Cell_ 126, 121–134 (2006). CAS  PubMed  Google Scholar  * Li, J. H. & Pober, J. S.


The cathepsin B death pathway contributes to TNF plus IFN-γ-mediated human endothelial injury. _J. Immunol._ 175, 1858–1866 (2005). CAS  PubMed  Google Scholar  * Broker, L. E. et al.


Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. _Cancer Res._ 64, 27–30 (2004). PubMed  Google Scholar  *


Huang, W. C. et al. Glycogen synthase kinase-3β mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. _J. Pharmacol. Exp. Ther._ 329, 524–531 (2009). CAS  PubMed 


Google Scholar  * Arnandis, T. et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. _Cell Death Differ._ 19, 1536–1548


(2012). CAS  PubMed  PubMed Central  Google Scholar  * Gyrd-Hansen, M. et al. Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. _Mol. Cell. Biol._ 26,


7880–7891 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. _J. Exp. Med._


197, 1323–1334 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Wille, A. et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung


epithelial cells. _Biol. Chem._ 385, 665–670 (2004). CAS  PubMed  Google Scholar  * Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3


activation. _Cell Death Differ._ 11, 550–563 (2004). CAS  PubMed  Google Scholar  * Droga-Mazovec, G. et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid


and antiapoptotic Bcl-2 homologues. _J. Biol. Chem._ 283, 19140–19150 (2008). CAS  PubMed  Google Scholar  * Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments:


signatures of cell-death proteases in neurodegeneration. _Cell Commun. Signal._ 8, 31 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Cuvillier, O. et al. Suppression of


ceramide-mediated programmed cell death by sphingosine-1-phosphate. _Nature_ 381, 800–803 (1996). CAS  PubMed  Google Scholar  * Conus, S., Pop, C., Snipas, S. J., Salvesen, G. S. &


Simon, H. U. Cathepsin D primes caspase-8 activation by multiple intra-chain proteolysis. _J. Biol. Chem._ 287, 21142–21151 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Kurz, T.,


Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. _FEBS J._ 273, 3106–3117 (2006). CAS  PubMed  Google Scholar  *


Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. _Cell_ 149, 1060–1072 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Syntichaki, P., Xu, K.,


Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in _C. elegans_. _Nature_ 419, 939–944 (2002). CAS  PubMed  Google Scholar  *


Wen, Y. D. et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. _Autophagy_ 4, 762–769 (2008). CAS 


PubMed  Google Scholar  * Yamashima, T. et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. _Hippocampus_ 13,


791–800 (2003). CAS  PubMed  Google Scholar  * Sahara, S. & Yamashima, T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. _Biochem. Biophys. Res. Commun._ 393,


806–811 (2010). CAS  PubMed  Google Scholar  * Luke, C. J. et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. _Cell_ 130,


1108–1119 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. _Nature_


463, 549–553 (2010). CAS  PubMed  Google Scholar  * Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated


membrane proteins 1 and 2. _Cancer Res._ 68, 6623–6633 (2008). CAS  PubMed  Google Scholar  * Appelqvist, H. et al. Attenuation of the lysosomal death pathway by lysosomal cholesterol


accumulation. _Am. J. Pathol._ 178, 629–639 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Zhao, M., Eaton, J. W. & Brunk, U. T. Protection against oxidant-mediated lysosomal


rupture: a new anti-apoptotic activity of Bcl-2? _FEBS Lett._ 485, 104–108 (2000). CAS  PubMed  Google Scholar  * Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane


permeabilization in neuronal injury. _Nat. Rev. Neurosci._ 10, 481–494 (2009). CAS  PubMed  Google Scholar  * Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death _in vivo_.


_Nat. Cell Biol._ 13, 303–309 (2011). CAS  PubMed  Google Scholar  * Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates.


_Cell Death Differ._ 10, 76–100 (2003). CAS  PubMed  Google Scholar  * Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated


activation of PAK2. _Science_ 276, 1571–1574 (1997). CAS  PubMed  Google Scholar  * Vilas, G. L. et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2


(PAK2) potentiates late apoptotic events. _Proc. Natl Acad. Sci. USA_ 103, 6542–6547 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Moriceau, S. et al. Coronin-1 is associated with


neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. _J. Immunol._ 182, 7254–7263 (2009). CAS  PubMed  Google Scholar  *


Rovini, A., Savry, A., Braguer, D. & Carre, M. Microtubule-targeted agents: when mitochondria become essential to chemotherapy. _Biochim. Biophys. Acta_ 1807, 679–688 (2011). CAS  PubMed


  Google Scholar  * Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction


with the dynein motor complex. _Mol. Cell_ 3, 287–296 (1999). CAS  PubMed  Google Scholar  * Puthalakath, H. et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the


myosin V actin motor complex, activated by anoikis. _Science_ 293, 1829–1832 (2001). CAS  PubMed  Google Scholar  * Li, R., Moudgil, T., Ross, H. J. & Hu, H. M. Apoptosis of


non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. _Cell Death Differ._ 12, 292–303 (2005). CAS  PubMed  Google Scholar  *


Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. _Proc. Natl Acad. Sci. USA_ 104, 3787–3792


(2007). CAS  PubMed  PubMed Central  Google Scholar  * Pinto, V. I., Senini, V. W., Wang, Y., Kazembe, M. P. & McCulloch, C. A. Filamin A protects cells against force-induced apoptosis


by stabilizing talin- and vinculin-containing cell adhesions. _FASEB J._ 28, 453–463 (2014). CAS  PubMed  Google Scholar  * Raval, G. N. et al. Loss of expression of tropomyosin-1, a novel


class II tumor suppressor that induces anoikis, in primary breast tumors. _Oncogene_ 22, 6194–6203 (2003). CAS  PubMed  Google Scholar  * Perez-Mancera, P. A. et al. The deubiquitinase USP9X


suppresses pancreatic ductal adenocarcinoma. _Nature_ 486, 266–270 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Schwickart, M. et al. Deubiquitinase USP9X stabilizes MCL1 and


promotes tumour cell survival. _Nature_ 463, 103–107 (2010). CAS  PubMed  Google Scholar  * Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces


Bax-dependent apoptosis. _Proc. Natl Acad. Sci. USA_ 100, 2432–2437 (2003). CAS  PubMed  PubMed Central  Google Scholar  * VanBrocklin, M. W., Verhaegen, M., Soengas, M. S. & Holmen, S.


L. Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. _Cancer Res._ 69, 1985–1994 (2009). CAS  PubMed  PubMed Central  Google Scholar


  * Kuo, W. C., Yang, K. T., Hsieh, S. L. & Lai, M. Z. Ezrin is a negative regulator of death receptor-induced apoptosis. _Oncogene_ 29, 1374–1383 (2010). CAS  PubMed  Google Scholar  *


Kirschnek, S. et al. Phagocytosis-induced apoptosis in macrophages is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. _J. Immunol._ 174, 671–679


(2005). CAS  PubMed  Google Scholar  * Giannakakou, P. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. _Nat. Cell Biol._ 2, 709–717 (2000).


CAS  PubMed  Google Scholar  * Posey, S. C. & Bierer, B. E. Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. _J. Biol. Chem._ 274, 4259–4265


(1999). CAS  PubMed  Google Scholar  * Chua, B. T. et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. _Nat. Cell Biol._ 5, 1083–1089 (2003). CAS  PubMed 


Google Scholar  * Klamt, F. et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. _Nat. Cell Biol._ 11, 1241–1246 (2009). CAS  PubMed  PubMed


Central  Google Scholar  * Wabnitz, G. H. et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. _Cell Death Dis._


1, e58 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. _Nat. Cell Biol._ 3, E255–263 (2001). CAS


  PubMed  Google Scholar  * Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. _Cell_ 133, 486–497 (2008). CAS 


PubMed  Google Scholar  * Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. _J. Biol. Chem._ 288, 31268–31279 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Noack, J. et al. TLR9 agonists induced cell death in Burkitt's lymphoma cells is variable and influenced by TLR9 polymorphism. _Cell Death Dis._ 3, e323 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and


apoptosis. _J. Biol. Chem._ 287, 12455–12468 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Han, J. et al. A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation


between autophagy and apoptosis. _J. Biol. Chem._ 289, 6485–6497 (2013). PubMed  PubMed Central  Google Scholar  * Jin, Z. et al. Cullin3-based polyubiquitination and p62-dependent


aggregation of caspase-8 mediate extrinsic apoptosis signaling. _Cell_ 137, 721–735 (2009). CAS  PubMed  Google Scholar  * Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis:


controlled demolition at the cellular level. _Nat. Rev. Mol. Cell Biol._ 9, 231–241 (2008). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We apologise to the scientists


working in this area for being unable to cite here the huge amount of top-quality literature dealing with the organelle-specific initiation of cell death. Authors are supported by the Ligue


contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research;


Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European


Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine


(CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de


Recherche des Cordeliers, Paris, France Lorenzo Galluzzi, José Manuel Bravo-San Pedro & Guido Kroemer * Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France Lorenzo


Galluzzi & Guido Kroemer * Gustave Roussy Comprehensive Cancer Center, Villejuif, France Lorenzo Galluzzi & José Manuel Bravo-San Pedro * INSERM, U1138, Villejuif, France José Manuel


Bravo-San Pedro & Guido Kroemer * Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Guido Kroemer * Metabolomics and Cell Biology Platforms, Gustave Roussy


Comprehensive Cancer Center, Villejuif, France Guido Kroemer Authors * Lorenzo Galluzzi View author publications You can also search for this author inPubMed Google Scholar * José Manuel


Bravo-San Pedro View author publications You can also search for this author inPubMed Google Scholar * Guido Kroemer View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS L.G. and J.M.B-S.P contributed equally to this work. L.G. and G.K. jointly supervised this work. CORRESPONDING AUTHORS Correspondence to Lorenzo Galluzzi or


Guido Kroemer. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Galluzzi, L., Bravo-San Pedro, J. & Kroemer, G. Organelle-specific initiation of cell death. _Nat Cell Biol_ 16, 728–736 (2014). https://doi.org/10.1038/ncb3005 Download citation


* Published: 01 August 2014 * Issue Date: August 2014 * DOI: https://doi.org/10.1038/ncb3005 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative