Play all audios:
ABSTRACT In a majority of pathophysiological settings, cell death is not accidental — it is controlled by a complex molecular apparatus. Such a system operates like a computer: it receives
several inputs that inform on the current state of the cell and the extracellular microenvironment, integrates them and generates an output. Thus, depending on a network of signals generated
at specific subcellular sites, cells can respond to stress by attemptinwg to recover homeostasis or by activating molecular cascades that lead to cell death by apoptosis or necrosis. Here,
we discuss the mechanisms whereby cellular compartments — including the nucleus, mitochondria, plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosomes, cytoskeleton and cytosol —
sense homeostatic perturbations and translate them into a cell-death-initiating signal. Access through your institution Buy or subscribe This is a preview of subscription content, access via
your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy
this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *
Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A GUIDE TO CELL DEATH PATHWAYS Article 18 December 2023 THE
INTEGRATED STRESS RESPONSE ENGAGES A CELL-AUTONOMOUS, LIGAND-INDEPENDENT, DR5-DRIVEN APOPTOSIS SWITCH Article Open access 15 February 2025 ENTOSIS: THE CORE MECHANISM AND CROSSTALK WITH
OTHER CELL DEATH PROGRAMS Article Open access 02 April 2024 REFERENCES * Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on
Cell Death 2012. _Cell Death Differ._ 19, 107–120 (2012). Article CAS PubMed Google Scholar * Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature
Committee on Cell Death 2009. _Cell Death Differ._ 16, 3–11 (2009). CAS PubMed Google Scholar * Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P.
Regulated necrosis: the expanding network of non-apoptotic cell death pathways. _Nat. Rev. Mol. Cell Biol._ 15, 135–147 (2014). CAS PubMed Google Scholar * Elgendy, M., Sheridan, C.,
Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. _Mol. Cell_ 42, 23–35 (2011). CAS
PubMed Google Scholar * Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. _Physiol. Rev._ 87, 99–163 (2007). CAS PubMed Google Scholar *
Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. _Nat. Rev. Mol. Cell Biol._ 11, 621–632 (2010). CAS PubMed Google Scholar *
Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. _Nat. Rev. Cancer_ 12, 587–598 (2012). CAS PubMed Google
Scholar * Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. _Nat. Rev. Mol. Cell Biol._ 12, 385–392 (2011). CAS
PubMed Google Scholar * Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. _Trends Cell Biol._ 22, 97–106 (2012). CAS PubMed Google
Scholar * Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. _Science_ 303, 1010–1014 (2004). CAS PubMed Google Scholar
* Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. _Mol. Cell_ 11, 577–590 (2003). CAS PubMed Google Scholar * Vaseva, A. V. et al. p53 opens the mitochondrial
permeability transition pore to trigger necrosis. _Cell_ 149, 1536–1548 (2012). CAS PubMed PubMed Central Google Scholar * Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates
apoptosis and survival decisions. _Nature_ 458, 591–596 (2009). CAS PubMed PubMed Central Google Scholar * Chung, Y. M. et al. FOXO3 signalling links ATM to the p53 apoptotic pathway
following DNA damage. _Nat. Commun._ 3, 1000 (2012). PubMed Google Scholar * Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. _Genes Dev._ 13,
152–157 (1999). CAS PubMed PubMed Central Google Scholar * Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. _Cell_
133, 864–877 (2008). CAS PubMed PubMed Central Google Scholar * Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to
genotoxic stress. _Science_ 304, 843–846 (2004). CAS PubMed Google Scholar * Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before
mitochondrial permeabilization. _Science_ 297, 1352–1354 (2002). CAS PubMed Google Scholar * Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. _J. Cell Biol._
185, 291–303 (2009). CAS PubMed PubMed Central Google Scholar * Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-κB pathway.
_EMBO J._ 26, 197–208 (2007). CAS PubMed Google Scholar * Ando, K. et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. _Mol. Cell_
47, 681–693 (2012). CAS PubMed PubMed Central Google Scholar * Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. _Nat. Rev.
Cancer_ 10, 293–301 (2010). CAS PubMed PubMed Central Google Scholar * Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. _Nat. Rev.
Drug Discov._ 10, 221–237 (2011). CAS PubMed Google Scholar * Schutze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor
compartmentalization. _Nat. Rev. Mol. Cell Biol._ 9, 655–662 (2008). PubMed Google Scholar * Mehlen, P. & Bredesen, D. E. Dependence receptors: from basic research to drug development.
_Sci. Signal._ 4, mr2 (2011). PubMed Google Scholar * Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. _Nature_ 460, 1035–1039 (2009). CAS PubMed
PubMed Central Google Scholar * Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. _Nature_ 400, 886–891 (1999). CAS PubMed Google Scholar *
Chen, L. et al. CD95 promotes tumour growth. _Nature_ 465, 492–496 (2010). CAS PubMed PubMed Central Google Scholar * Bouwmeester, T. et al. A physical and functional map of the human
TNF-α/NF-κB signal transduction pathway. _Nat. Cell Biol._ 6, 97–105 (2004). CAS PubMed Google Scholar * Wang, L., Du, F. & Wang, X. TNF-αinduces two distinct caspase-8 activation
pathways. _Cell_ 133, 693–703 (2008). CAS PubMed Google Scholar * Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. _Nat.
Cell Biol._ 16, 55–65 (2014). CAS PubMed Google Scholar * Guenebeaud, C. et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase.
_Mol. Cell_ 40, 863–876 (2010). CAS PubMed Google Scholar * Mille, F. et al. The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. _Nat. Cell Biol._ 11,
739–746 (2009). CAS PubMed PubMed Central Google Scholar * Delloye-Bourgeois, C. et al. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. _PLoS
Biol._ 11, e1001623 (2013). PubMed PubMed Central Google Scholar * Notomi, S. et al. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7
in subretinal hemorrhage. _PLoS ONE_ 8, e53338 (2013). CAS PubMed PubMed Central Google Scholar * Agopyan, N., Head, J., Yu, S. & Simon, S. A. TRPV1 receptors mediate particulate
matter-induced apoptosis. _Am. J. Physiol. Lung Cell. Mol. Physiol._ 286, L563–572 (2004). CAS PubMed Google Scholar * Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S. &
Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. _J. Neurosci._ 23, 4798–4802 (2003). CAS PubMed PubMed Central Google Scholar * Staton, T. L. et al.
Dampening of death pathways by schnurri-2 is essential for T-cell development. _Nature_ 472, 105–109 (2011). CAS PubMed PubMed Central Google Scholar * Ahr, B., Robert-Hebmann, V.,
Devaux, C. & Biard-Piechaczyk, M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. _Retrovirology_ 1, 12 (2004). PubMed PubMed Central Google Scholar * Into, T. et
al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. _Cell. Microbiol._
6, 187–199 (2004). CAS PubMed Google Scholar * Voisin, T., El Firar, A., Rouyer-Fessard, C., Gratio, V. & Laburthe, M. A hallmark of immunoreceptor, the tyrosine-based inhibitory
motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. _FASEB J._ 22, 1993–2002 (2008). CAS PubMed Google Scholar * Lappano, R.
& Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. _Nat. Rev. Drug Discov._ 10, 47–60 (2011). CAS PubMed Google Scholar * Tait, S. W. et al.
Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. _Cell Rep._ 5, 878–885 (2013). CAS PubMed PubMed Central Google Scholar * Galluzzi, L., Kepp, O. &
Kroemer, G. Mitochondria: master regulators of danger signalling. _Nat. Rev. Mol. Cell Biol._ 13, 780–788 (2012). CAS PubMed Google Scholar * Weinmann, M. et al. Molecular ordering of
hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. _Oncogene_ 23, 3757–3769 (2004). CAS PubMed Google Scholar *
Sermeus, A. et al. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. _PLoS ONE_ 7, e47519 (2012). CAS PubMed PubMed Central Google Scholar
* Sherer, T. B. et al. Mechanism of toxicity in rotenone models of Parkinson's disease. _J. Neurosci._ 23, 10756–10764 (2003). CAS PubMed PubMed Central Google Scholar * Montero,
J., Dutta, C., van Bodegom, D., Weinstock, D. & Letai, A. p53 regulates a non-apoptotic death induced by ROS. _Cell Death Differ._ 20, 1465–1474 (2013). CAS PubMed PubMed Central
Google Scholar * Haynes, C. M. & Ron, D. The mitochondrial UPR - protecting organelle protein homeostasis. _J. Cell Sci._ 123, 3849–3855 (2010). CAS PubMed Google Scholar * Tabas, I.
& Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. _Nat. Cell Biol._ 13, 184–190 (2011). CAS PubMed PubMed Central Google Scholar * Nargund,
A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. _Science_ 337, 587–590 (2012).
CAS PubMed PubMed Central Google Scholar * Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. _Nat. Rev. Mol. Cell Biol._ 13,
607–625 (2012). CAS PubMed PubMed Central Google Scholar * Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human
melanoma cells. _J. Clin. Invest._ 119, 2399–2411 (2009). CAS PubMed PubMed Central Google Scholar * Ishibashi, O. et al. Short RNA duplexes elicit RIG-I-mediated apoptosis in a cell
type- and length-dependent manner. _Sci. Signal._ 4, ra74 (2011). PubMed Google Scholar * El Maadidi, S. et al. A novel mitochondrial MAVS/caspase-8 platform links RNA virus-induced innate
antiviral signaling to Bax/Bak-independent apoptosis. _J. Immunol._ 192, 1171–1183 (2014). CAS PubMed Google Scholar * Lei, Y. et al. MAVS-mediated apoptosis and its inhibition by viral
proteins. _PLoS ONE_ 4, e5466 (2009). PubMed PubMed Central Google Scholar * Brandizzi, F. & Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control. _Nat.
Rev. Mol. Cell Biol._ 14, 382–392 (2013). CAS PubMed PubMed Central Google Scholar * Lane, J. D. et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi
fragmentation during apoptosis. _J. Cell Biol._ 156, 495–509 (2002). CAS PubMed PubMed Central Google Scholar * Lafont, E. et al. Caspase-mediated inhibition of sphingomyelin synthesis
is involved in FasL-triggered cell death. _Cell Death Differ._ 17, 642–654 (2010). CAS PubMed Google Scholar * How, P. C. & Shields, D. Tethering function of the caspase cleavage
fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. _J. Biol. Chem._ 286, 8565–8576 (2011). CAS PubMed Google Scholar * Kepp, O. et al. Crosstalk between ER
stress and immunogenic cell death. _Cytokine Growth Factor Rev._ 24, 311–318 (2013). CAS PubMed Google Scholar * Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum
stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. _J. Biol. Chem._ 279, 45495–45502 (2004). CAS PubMed Google Scholar * Giorgi, C. et al. PML regulates
apoptosis at endoplasmic reticulum by modulating calcium release. _Science_ 330, 1247–1251 (2010). CAS PubMed PubMed Central Google Scholar * Puthalakath, H. et al. ER stress triggers
apoptosis by activating BH3-only protein Bim. _Cell_ 129, 1337–1349 (2007). CAS PubMed Google Scholar * Morishima, N., Nakanishi, K. & Nakano, A. Activating transcription factor-6
(ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. _J. Biol. Chem._ 286, 35227–35235 (2011). CAS
PubMed PubMed Central Google Scholar * Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. _Nature_ 403, 98–103 (2000). CAS
PubMed Google Scholar * Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. _Genes Dev._ 16,
1345–1355 (2002). CAS PubMed PubMed Central Google Scholar * Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2.
_Science_ 338, 818–822 (2012). CAS PubMed PubMed Central Google Scholar * Sandow, J. J. et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis.
_Cell Death Differ._ 21, 475–480 (2013). PubMed PubMed Central Google Scholar * Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction
with IRE1α. _Science_ 312, 572–576 (2006). CAS PubMed Google Scholar * Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. _Mol. Cell_ 33, 679–691
(2009). CAS PubMed PubMed Central Google Scholar * Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. _Science_ 307, 935–939 (2005). CAS
PubMed Google Scholar * Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. _Nat. Cell Biol._ 15, 481–490 (2013). CAS PubMed
PubMed Central Google Scholar * Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. _J.
Cell Biol._ 153, 1011–1022 (2001). CAS PubMed PubMed Central Google Scholar * Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. _Cell_ 138,
377–388 (2009). CAS PubMed PubMed Central Google Scholar * Austgen, K., Johnson, E. T., Park, T. J., Curran, T. & Oakes, S. A. The adaptor protein CRK is a pro-apoptotic transducer
of endoplasmic reticulum stress. _Nat. Cell Biol._ 14, 87–92 (2012). CAS Google Scholar * Kang, M. J., Chung, J. & Ryoo, H. D. CDK5 and MEKK1 mediate pro-apoptotic signalling following
endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. _Nat. Cell Biol._ 14, 409–415 (2012). CAS PubMed PubMed Central Google Scholar * Scorrano, L. et al.
BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. _Science_ 300, 135–139 (2003). CAS PubMed Google Scholar * Ishikawa, H. & Barber, G. N. STING is
an endoplasmic reticulum adaptor that facilitates innate immune signalling. _Nature_ 455, 674–678 (2008). CAS PubMed PubMed Central Google Scholar * Ishikawa, H., Ma, Z. & Barber, G.
N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. _Nature_ 461, 788–792 (2009). CAS PubMed PubMed Central Google Scholar * Petrasek, J. et al.
STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. _Proc. Natl_ _Acad. Sci. USA_ 110, 16544–16549 (2013). CAS Google Scholar
* Namba, T. et al. CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. _Cell Rep._ 5, 331–339 (2013). CAS PubMed
Google Scholar * De Maria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. _Science_ 277, 1652–1655 (1997). CAS PubMed Google Scholar * Cheng, J. P.
et al. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. _Cell Death Dis._ 1, e82 (2010). CAS PubMed PubMed Central Google Scholar *
Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. _Science_ 282, 290–293 (1998). CAS PubMed Google Scholar * Dumitru, R. et al. Human
embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. _Mol. Cell_ 46, 573–583 (2012). CAS PubMed PubMed Central Google Scholar * Tu,
S. et al. _In situ_ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. _Nat. Cell Biol._ 8, 72–77 (2006). CAS PubMed Google Scholar *
Tsai, F. M., Shyu, R. Y. & Jiang, S. Y. RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus. _Cell. Signal._ 19, 989–999 (2007). CAS PubMed Google
Scholar * Nogueira, E. et al. SOK1 translocates from the Golgi to the nucleus upon chemical anoxia and induces apoptotic cell death. _J. Biol. Chem._ 283, 16248–16258 (2008). CAS PubMed
PubMed Central Google Scholar * Zhou, J. et al. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. _Mol. Cell. Biol._ 29, 4167–4176
(2009). CAS PubMed PubMed Central Google Scholar * Aits, S. & Jaattela, M. Lysosomal cell death at a glance. _J. Cell Sci._ 126, 1905–1912 (2013). CAS PubMed Google Scholar *
Groth-Pedersen, L., Ostenfeld, M. S., Hoyer-Hansen, M., Nylandsted, J. & Jaattela, M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing
siramesine. _Cancer Res._ 67, 2217–2225 (2007). CAS PubMed Google Scholar * Zou, J. et al. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and
mediate dendritic cell necroptosis. _Immunity_ 38, 717–728 (2013). CAS PubMed Google Scholar * Hwang, J. J., Lee, S. J., Kim, T. Y., Cho, J. H. & Koh, J. Y. Zinc and
4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. _J. Neurosci._ 28, 3114–3122 (2008). CAS PubMed PubMed Central Google
Scholar * Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. _Cell_ 126, 121–134 (2006). CAS PubMed Google Scholar * Li, J. H. & Pober, J. S.
The cathepsin B death pathway contributes to TNF plus IFN-γ-mediated human endothelial injury. _J. Immunol._ 175, 1858–1866 (2005). CAS PubMed Google Scholar * Broker, L. E. et al.
Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. _Cancer Res._ 64, 27–30 (2004). PubMed Google Scholar *
Huang, W. C. et al. Glycogen synthase kinase-3β mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. _J. Pharmacol. Exp. Ther._ 329, 524–531 (2009). CAS PubMed
Google Scholar * Arnandis, T. et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. _Cell Death Differ._ 19, 1536–1548
(2012). CAS PubMed PubMed Central Google Scholar * Gyrd-Hansen, M. et al. Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. _Mol. Cell. Biol._ 26,
7880–7891 (2006). CAS PubMed PubMed Central Google Scholar * Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. _J. Exp. Med._
197, 1323–1334 (2003). CAS PubMed PubMed Central Google Scholar * Wille, A. et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung
epithelial cells. _Biol. Chem._ 385, 665–670 (2004). CAS PubMed Google Scholar * Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3
activation. _Cell Death Differ._ 11, 550–563 (2004). CAS PubMed Google Scholar * Droga-Mazovec, G. et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid
and antiapoptotic Bcl-2 homologues. _J. Biol. Chem._ 283, 19140–19150 (2008). CAS PubMed Google Scholar * Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments:
signatures of cell-death proteases in neurodegeneration. _Cell Commun. Signal._ 8, 31 (2010). CAS PubMed PubMed Central Google Scholar * Cuvillier, O. et al. Suppression of
ceramide-mediated programmed cell death by sphingosine-1-phosphate. _Nature_ 381, 800–803 (1996). CAS PubMed Google Scholar * Conus, S., Pop, C., Snipas, S. J., Salvesen, G. S. &
Simon, H. U. Cathepsin D primes caspase-8 activation by multiple intra-chain proteolysis. _J. Biol. Chem._ 287, 21142–21151 (2012). CAS PubMed PubMed Central Google Scholar * Kurz, T.,
Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. _FEBS J._ 273, 3106–3117 (2006). CAS PubMed Google Scholar *
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. _Cell_ 149, 1060–1072 (2012). CAS PubMed PubMed Central Google Scholar * Syntichaki, P., Xu, K.,
Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in _C. elegans_. _Nature_ 419, 939–944 (2002). CAS PubMed Google Scholar *
Wen, Y. D. et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. _Autophagy_ 4, 762–769 (2008). CAS
PubMed Google Scholar * Yamashima, T. et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. _Hippocampus_ 13,
791–800 (2003). CAS PubMed Google Scholar * Sahara, S. & Yamashima, T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. _Biochem. Biophys. Res. Commun._ 393,
806–811 (2010). CAS PubMed Google Scholar * Luke, C. J. et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. _Cell_ 130,
1108–1119 (2007). CAS PubMed PubMed Central Google Scholar * Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. _Nature_
463, 549–553 (2010). CAS PubMed Google Scholar * Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated
membrane proteins 1 and 2. _Cancer Res._ 68, 6623–6633 (2008). CAS PubMed Google Scholar * Appelqvist, H. et al. Attenuation of the lysosomal death pathway by lysosomal cholesterol
accumulation. _Am. J. Pathol._ 178, 629–639 (2011). CAS PubMed PubMed Central Google Scholar * Zhao, M., Eaton, J. W. & Brunk, U. T. Protection against oxidant-mediated lysosomal
rupture: a new anti-apoptotic activity of Bcl-2? _FEBS Lett._ 485, 104–108 (2000). CAS PubMed Google Scholar * Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane
permeabilization in neuronal injury. _Nat. Rev. Neurosci._ 10, 481–494 (2009). CAS PubMed Google Scholar * Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death _in vivo_.
_Nat. Cell Biol._ 13, 303–309 (2011). CAS PubMed Google Scholar * Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates.
_Cell Death Differ._ 10, 76–100 (2003). CAS PubMed Google Scholar * Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated
activation of PAK2. _Science_ 276, 1571–1574 (1997). CAS PubMed Google Scholar * Vilas, G. L. et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2
(PAK2) potentiates late apoptotic events. _Proc. Natl Acad. Sci. USA_ 103, 6542–6547 (2006). CAS PubMed PubMed Central Google Scholar * Moriceau, S. et al. Coronin-1 is associated with
neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. _J. Immunol._ 182, 7254–7263 (2009). CAS PubMed Google Scholar *
Rovini, A., Savry, A., Braguer, D. & Carre, M. Microtubule-targeted agents: when mitochondria become essential to chemotherapy. _Biochim. Biophys. Acta_ 1807, 679–688 (2011). CAS PubMed
Google Scholar * Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction
with the dynein motor complex. _Mol. Cell_ 3, 287–296 (1999). CAS PubMed Google Scholar * Puthalakath, H. et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the
myosin V actin motor complex, activated by anoikis. _Science_ 293, 1829–1832 (2001). CAS PubMed Google Scholar * Li, R., Moudgil, T., Ross, H. J. & Hu, H. M. Apoptosis of
non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. _Cell Death Differ._ 12, 292–303 (2005). CAS PubMed Google Scholar *
Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. _Proc. Natl Acad. Sci. USA_ 104, 3787–3792
(2007). CAS PubMed PubMed Central Google Scholar * Pinto, V. I., Senini, V. W., Wang, Y., Kazembe, M. P. & McCulloch, C. A. Filamin A protects cells against force-induced apoptosis
by stabilizing talin- and vinculin-containing cell adhesions. _FASEB J._ 28, 453–463 (2014). CAS PubMed Google Scholar * Raval, G. N. et al. Loss of expression of tropomyosin-1, a novel
class II tumor suppressor that induces anoikis, in primary breast tumors. _Oncogene_ 22, 6194–6203 (2003). CAS PubMed Google Scholar * Perez-Mancera, P. A. et al. The deubiquitinase USP9X
suppresses pancreatic ductal adenocarcinoma. _Nature_ 486, 266–270 (2012). CAS PubMed PubMed Central Google Scholar * Schwickart, M. et al. Deubiquitinase USP9X stabilizes MCL1 and
promotes tumour cell survival. _Nature_ 463, 103–107 (2010). CAS PubMed Google Scholar * Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces
Bax-dependent apoptosis. _Proc. Natl Acad. Sci. USA_ 100, 2432–2437 (2003). CAS PubMed PubMed Central Google Scholar * VanBrocklin, M. W., Verhaegen, M., Soengas, M. S. & Holmen, S.
L. Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. _Cancer Res._ 69, 1985–1994 (2009). CAS PubMed PubMed Central Google Scholar
* Kuo, W. C., Yang, K. T., Hsieh, S. L. & Lai, M. Z. Ezrin is a negative regulator of death receptor-induced apoptosis. _Oncogene_ 29, 1374–1383 (2010). CAS PubMed Google Scholar *
Kirschnek, S. et al. Phagocytosis-induced apoptosis in macrophages is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. _J. Immunol._ 174, 671–679
(2005). CAS PubMed Google Scholar * Giannakakou, P. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. _Nat. Cell Biol._ 2, 709–717 (2000).
CAS PubMed Google Scholar * Posey, S. C. & Bierer, B. E. Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. _J. Biol. Chem._ 274, 4259–4265
(1999). CAS PubMed Google Scholar * Chua, B. T. et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. _Nat. Cell Biol._ 5, 1083–1089 (2003). CAS PubMed
Google Scholar * Klamt, F. et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. _Nat. Cell Biol._ 11, 1241–1246 (2009). CAS PubMed PubMed
Central Google Scholar * Wabnitz, G. H. et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. _Cell Death Dis._
1, e58 (2010). CAS PubMed PubMed Central Google Scholar * Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. _Nat. Cell Biol._ 3, E255–263 (2001). CAS
PubMed Google Scholar * Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. _Cell_ 133, 486–497 (2008). CAS
PubMed Google Scholar * Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. _J. Biol. Chem._ 288, 31268–31279 (2013). CAS PubMed PubMed Central Google
Scholar * Noack, J. et al. TLR9 agonists induced cell death in Burkitt's lymphoma cells is variable and influenced by TLR9 polymorphism. _Cell Death Dis._ 3, e323 (2012). CAS PubMed
PubMed Central Google Scholar * Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and
apoptosis. _J. Biol. Chem._ 287, 12455–12468 (2012). CAS PubMed PubMed Central Google Scholar * Han, J. et al. A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation
between autophagy and apoptosis. _J. Biol. Chem._ 289, 6485–6497 (2013). PubMed PubMed Central Google Scholar * Jin, Z. et al. Cullin3-based polyubiquitination and p62-dependent
aggregation of caspase-8 mediate extrinsic apoptosis signaling. _Cell_ 137, 721–735 (2009). CAS PubMed Google Scholar * Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis:
controlled demolition at the cellular level. _Nat. Rev. Mol. Cell Biol._ 9, 231–241 (2008). CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS We apologise to the scientists
working in this area for being unable to cite here the huge amount of top-quality literature dealing with the organelle-specific initiation of cell death. Authors are supported by the Ligue
contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research;
Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European
Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine
(CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de
Recherche des Cordeliers, Paris, France Lorenzo Galluzzi, José Manuel Bravo-San Pedro & Guido Kroemer * Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France Lorenzo
Galluzzi & Guido Kroemer * Gustave Roussy Comprehensive Cancer Center, Villejuif, France Lorenzo Galluzzi & José Manuel Bravo-San Pedro * INSERM, U1138, Villejuif, France José Manuel
Bravo-San Pedro & Guido Kroemer * Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Guido Kroemer * Metabolomics and Cell Biology Platforms, Gustave Roussy
Comprehensive Cancer Center, Villejuif, France Guido Kroemer Authors * Lorenzo Galluzzi View author publications You can also search for this author inPubMed Google Scholar * José Manuel
Bravo-San Pedro View author publications You can also search for this author inPubMed Google Scholar * Guido Kroemer View author publications You can also search for this author inPubMed
Google Scholar CONTRIBUTIONS L.G. and J.M.B-S.P contributed equally to this work. L.G. and G.K. jointly supervised this work. CORRESPONDING AUTHORS Correspondence to Lorenzo Galluzzi or
Guido Kroemer. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS
ARTICLE Galluzzi, L., Bravo-San Pedro, J. & Kroemer, G. Organelle-specific initiation of cell death. _Nat Cell Biol_ 16, 728–736 (2014). https://doi.org/10.1038/ncb3005 Download citation
* Published: 01 August 2014 * Issue Date: August 2014 * DOI: https://doi.org/10.1038/ncb3005 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative