Regulation of the oncoprotein smoothened by small molecules

Regulation of the oncoprotein smoothened by small molecules

Play all audios:

Loading...

ABSTRACT The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically,


many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like


protein Patched and the G protein–coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent


structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we


review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HEDGEHOG-INTERACTING PROTEIN IS A


MULTIMODAL ANTAGONIST OF HEDGEHOG SIGNALLING Article Open access 09 December 2021 STEROLS IN AN INTRAMOLECULAR CHANNEL OF SMOOTHENED MEDIATE HEDGEHOG SIGNALING Article 14 September 2020 A


PKA INHIBITOR MOTIF WITHIN SMOOTHENED CONTROLS HEDGEHOG SIGNAL TRANSDUCTION Article 06 October 2022 ACCESSION CODES ACCESSIONS PROTEIN DATA BANK * 4C7A * 4F0A * 4JKV * 4N4W * 4O9R * 4QIN


REFERENCES * Briscoe, J. & Therond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. _Nat. Rev. Mol. Cell Biol._ 14, 416–429 (2013). PubMed  Google


Scholar  * Amakye, D., Jagani, Z. & Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. _Nat. Med._ 19, 1410–1422 (2013). CAS  PubMed  Google Scholar  *


Stone, D.M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. _Nature_ 384, 129–134 (1996). CAS  PubMed  Google Scholar  * Izzi, L. et al. Boc and


Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. _Dev. Cell_ 20, 788–801 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. _Nature_ 418, 892–897 (2002). CAS  PubMed  Google Scholar  *


Niewiadomski, P. et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. _Cell Rep._ 6, 168–181 (2014). CAS  PubMed  Google Scholar  * Goetz,


S.C. & Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. _Nat. Rev. Genet._ 11, 331–344 (2010). CAS  PubMed  PubMed Central  Google Scholar  *


Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. _Science_ 317, 372–376 (2007). Article  CAS  PubMed  Google Scholar  * Corbit, K.C.


et al. Vertebrate Smoothened functions at the primary cilium. _Nature_ 437, 1018–1021 (2005). CAS  PubMed  Google Scholar  * Milenkovic, L., Scott, M.P. & Rohatgi, R. Lateral transport


of Smoothened from the plasma membrane to the membrane of the cilium. _J. Cell Biol._ 187, 365–374 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Seo, S. et al. A novel protein


LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. _PLoS Genet._ 7, e1002358 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Kovacs, J.J. et al. b-Arrestin–mediated


localization of smoothened to the primary cilium. _Science_ 320, 1777–1781 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Chen, Y. et al. Sonic Hedgehog dependent phosphorylation by


CK1a and GRK2 is required for ciliary accumulation and activation of smoothened. _PLoS Biol._ 9, e1001083 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ocbina, P.J. & Anderson,


K.V. Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. _Dev. Dyn._ 237, 2030–2038 (2008). PubMed  PubMed Central  Google Scholar  *


Keady, B.T. et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. _Dev. Cell_ 22, 940–951 (2012). CAS  PubMed  PubMed Central  Google Scholar 


* Myers, B.R. et al. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. _Dev. Cell_ 26, 346–357 (2013). CAS  PubMed  PubMed Central 


Google Scholar  * Fan, J., Liu, Y. & Jia, J. Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and


position-dependent manner. _Dev. Biol._ 366, 172–184 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Li, S., Ma, G., Wang, B. & Jiang, J. Hedgehog induces formation of


PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. _Sci. Signal._ 7, ra62 (2014). PubMed  PubMed Central  Google Scholar  * Zhao, Y., Tong, C. &


Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. _Nature_ 450, 252–258 (2007). CAS  PubMed  Google Scholar  * Riobo, N.A., Saucy, B., Dilizio, C. &


Manning, D.R. Activation of heterotrimeric G proteins by Smoothened. _Proc. Natl. Acad. Sci. USA_ 103, 12607–12612 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Mukhopadhyay, S.


& Rohatgi, R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. _Cell Dev. Biol._ 33, 63–72 (2014). CAS  Google Scholar  * Murone, M., Rosenthal, A. & de


Sauvage, F.J. Sonic hedgehog signaling by the patched–smoothened receptor complex. _Curr. Biol._ 9, 76–84 (1999). CAS  PubMed  Google Scholar  * Concordet, J.P. et al. Spatial regulation of


a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. _Development_ 122, 2835–2846 (1996). CAS  PubMed  Google Scholar


  * Epstein, D.J., Marti, E., Scott, M.P. & McMahon, A.P. Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway.


_Development_ 122, 2885–2894 (1996). CAS  PubMed  Google Scholar  * Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via


cAMP signaling. _Cell_ 152, 210–223 (2013). CAS  PubMed  Google Scholar  * Meloni, A.R. et al. Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. _Mol. Cell.


Biol._ 26, 7550–7560 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Nakano, Y. et al. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened


in _Drosophila_. _Mech. Dev._ 121, 507–518 (2004). Article  CAS  PubMed  Google Scholar  * He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the


cilium tip compartment. _Nat. Cell Biol._ 16, 663–672 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Chinchilla, P., Xiao, L., Kazanietz, M.G. & Riobo, N.A. Hedgehog proteins


activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. _Cell Cycle_ 9, 570–579 (2010). CAS  PubMed  Google Scholar  * Bijlsma, M.F., Damhofer, H.


& Roelink, H. Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. _Sci. Signal._ 5, ra60 (2012). PubMed  PubMed Central  Google Scholar  *


Teperino, R. et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. _Cell_ 151, 414–426 (2012). CAS  PubMed  Google Scholar  * de la Roche, M. et al.


Hedgehog signaling controls T cell killing at the immunological synapse. _Science_ 342, 1247–1250 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Polizio, A.H. et al. Heterotrimeric


Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. _J. Biol. Chem._ 286, 19589–19596 (2011). CAS  PubMed  PubMed Central  Google Scholar


  * Keeler, R.F. & Binns, W. Teratogenic compounds of _Veratrum californicum_ (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related


compounds from other sources. _Teratology_ 1, 5–10 (1968). CAS  PubMed  Google Scholar  * Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct


binding of cyclopamine to Smoothened. _Genes Dev._ 16, 2743–2748 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Dijkgraaf, G.J. et al. Small molecule inhibition of GDC-0449


refractory smoothened mutants and downstream mechanisms of drug resistance. _Cancer Res._ 71, 435–444 (2011). CAS  PubMed  Google Scholar  * Chen, J.K., Taipale, J., Young, K.E., Maiti, T.


& Beachy, P.A. Small molecule modulation of Smoothened activity. _Proc. Natl. Acad. Sci. USA_ 99, 14071–14076 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Cooper, M.K. et al. A


defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. _Nat. Genet._ 33, 508–513 (2003). CAS  PubMed  Google Scholar  * Reifenberger, J. et al. Somatic mutations


in the _PTCH_, _SMOH_, _SUFUH_ and _TP53_ genes in sporadic basal cell carcinomas. _Br. J. Dermatol._ 152, 43–51 (2005). CAS  PubMed  Google Scholar  * Reifenberger, J. et al. Missense


mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. _Cancer Res._ 58, 1798–1803 (1998). CAS  PubMed  Google


Scholar  * Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. _Nature_ 391, 90–92 (1998). CAS  PubMed  Google Scholar  * Kool, M. et al. Genome sequencing of


SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. _Cancer Cell_ 25, 393–405 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Low, J.A. & de Sauvage,


F.J. Clinical experience with Hedgehog pathway inhibitors. _J. Clin. Oncol._ 28, 5321–5326 (2010). CAS  PubMed  Google Scholar  * Dreno, B., Basset-Seguin, N., Caro, I., Yue, H. &


Schadendorf, D. Clinical benefit assessment of vismodegib therapy in patients with advanced Basal cell carcinoma. _Oncologist_ 19, 790–796 (2014). CAS  PubMed  PubMed Central  Google Scholar


  * Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. _Cancer Cell_ 17, 388–399 (2010). CAS  PubMed  PubMed Central  Google


Scholar  * Kim, D.J. et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. _J. Clin. Oncol._ 32, 745–751 (2014). CAS  PubMed  Google


Scholar  * Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. _Nature_ 497, 338–343 (2013). FIRST CRYSTAL STRUCTURE OF THE TRANSMEMBRANE CORE OF


SMOOTHENED. THE BOUND ANTAGONIST HIGHLIGHTS KEY RESIDUES INVOLVED IN INHIBITION OF SMO. CAS  PubMed  PubMed Central  Google Scholar  * Weierstall, U. et al. Lipidic cubic phase injector


facilitates membrane protein serial femtosecond crystallography. _Nat. Commun._ 5, 3309 (2014). PubMed  Google Scholar  * Wang, C. et al. Structural basis for Smoothened receptor modulation


and chemoresistance to anticancer drugs. _Nat. Commun._ 5, 4355 (2014). STRUCTURAL INSIGHTS INTO HOW SEVERAL SMALL-MOLECULE MODULATORS OF SMO INTERACT WITH THE TRANSMEMBRANE CORE. CAS 


PubMed  Google Scholar  * Ruat, M., Hoch, L., Faure, H. & Rognan, D. Targeting of Smoothened for therapeutic gain. _Trends Pharmacol. Sci._ 35, 237–246 (2014). CAS  PubMed  Google


Scholar  * Rominger, C.M. et al. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. _J. Pharmacol. Exp. Ther._ 329, 995–1005 (2009). CAS  PubMed  Google


Scholar  * Brastianos, P.K. et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. _Nat. Genet._ 45, 285–289 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Sweeney, R.T. et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. _Nat. Genet._ 46, 722–725 (2014). CAS  PubMed  PubMed Central  Google Scholar  *


Katritch, V., Cherezov, V. & Stevens, R.C. Structure-function of the G protein–coupled receptor superfamily. _Annu. Rev. Pharmacol. Toxicol._ 53, 531–556 (2013). CAS  PubMed  Google


Scholar  * Peluso, M.O. et al. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity. _PLoS ONE_ 9, e90534 (2014). PubMed  PubMed


Central  Google Scholar  * Rohatgi, R., Milenkovic, L., Corcoran, R.B. & Scott, M.P. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process.


_Proc. Natl. Acad. Sci. USA_ 106, 3196–3201 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Wilson, C.W., Chen, M.H. & Chuang, P.T. Smoothened adopts multiple active and inactive


conformations capable of trafficking to the primary cilium. _PLoS ONE_ 4, e5182 (2009). PubMed  PubMed Central  Google Scholar  * Rudin, C.M. et al. Treatment of medulloblastoma with


hedgehog pathway inhibitor GDC-0449. _N. Engl. J. Med._ 361, 1173–1178 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Chang, A.L., Atwood, S.X., Tartar, D.M. & Oro, A.E. Surgical


excision after neoadjuvant therapy with vismodegib for a locally advanced basal cell carcinoma and resistant basal carcinomas in Gorlin syndrome. _JAMA Dermatol._ 149, 639–641 (2013).


PubMed  PubMed Central  Google Scholar  * Clark, V.E. et al. Genomic analysis of non-_NF2_ meningiomas reveals mutations in _TRAF7_, _KLF4_, _AKT1_, and _SMO_. _Science_ 339, 1077–1080


(2013). CAS  PubMed  PubMed Central  Google Scholar  * Gether, U. et al. Structural instability of a constitutively active G protein–coupled receptor. Agonist-independent activation due to


conformational flexibility. _J. Biol. Chem._ 272, 2587–2590 (1997). CAS  PubMed  Google Scholar  * Nichols, A.S., Floyd, D.H., Bruinsma, S.P., Narzinski, K. & Baranski, T.J. Frizzled


receptors signal through G proteins. _Cell. Signal._ 25, 1468–1475 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Yauch, R.L. et al. Smoothened mutation confers resistance to a


Hedgehog pathway inhibitor in medulloblastoma. _Science_ 326, 572–574 (2009). THE FIRST REPORT OF ACQUIRED RESISTANCE TO A SMOOTHENED INHIBITOR IN THE CLINIC. CAS  PubMed  PubMed Central 


Google Scholar  * Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. _Sci. Transl. Med._ 2, 51ra70 (2010).


PubMed  PubMed Central  Google Scholar  * Corcoran, R.B. & Scott, M.P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. _Proc. Natl.


Acad. Sci. USA_ 103, 8408–8413 (2006). THE FIRST OBSERVATION THAT OXYSTEROLS CAN MODULATE HEDGEHOG SIGNALING THROUGH SMO. CAS  PubMed  PubMed Central  Google Scholar  * Dwyer, J.R. et al.


Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. _J. Biol. Chem._ 282, 8959–8968 (2007). CAS  PubMed  Google Scholar  * Nachtergaele, S. et


al. Oxysterols are allosteric activators of the oncoprotein Smoothened. _Nat. Chem. Biol._ 8, 211–220 (2012). FIRST REPORT OF A DIRECT INTERACTION OF SMO WITH OXYSTEROLS. DEVELOPMENT OF A


20(S)-YNE CONJUGATED BEADS. CAS  PubMed  PubMed Central  Google Scholar  * Cyster, J.G., Dang, E.V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. _Nat.


Rev. Immunol._ 14, 731–743 (2014). CAS  PubMed  Google Scholar  * Corman, A., DeBerardinis, A.M. & Hadden, M.K. Structure-activity relationships for side chain oxysterol agonists of the


Hedgehog signaling pathway. _ACS Med. Chem. Lett._ 3, 828–833 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Bazan, J.F. & de Sauvage, F.J. Structural ties between cholesterol


transport and morphogen signaling. _Cell_ 138, 1055–1056 (2009). CAS  PubMed  Google Scholar  * Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. & Garcia, K.C. Structural basis of Wnt


recognition by Frizzled. _Science_ 337, 59–64 (2012). THE STRUCTURE OF WNT BOUND TO THE FRIZZLED CRD REVEALED A HYDROPHOBIC GROOVE THAT BINDS THE PALMITOYL MOIETY OF WNT. CAS  PubMed  PubMed


Central  Google Scholar  * Gao, X. & Hannoush, R.N. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. _Nat. Chem. Biol._ 10, 61–68 (2014). CAS  PubMed  Google


Scholar  * Nachtergaele, S. et al. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. _eLife_ 2, e01340 (2013). THE FIRST STRUCTURE OF THE


VERTEBRATE SMOOTHENED CRD REVEALING A HYDROPHOBIC GROOVE THAT APPEARS TO SERVE AS A LIGAND-BINDING SITE. PubMed  PubMed Central  Google Scholar  * Nedelcu, D., Liu, J., Xu, Y., Jao, C. &


Salic, A. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. _Nat. Chem. Biol._ 9, 557–564 (2013). DEVELOPED A NOVEL OXYSTEROL-DERIVED ANTAGONIST TO STUDY


THE IMPORTANCE OF THE SMOOTHENED CRD IN HEDGEHOG SIGNALING. CAS  PubMed  PubMed Central  Google Scholar  * Wang, Y. et al. Glucocorticoid compounds modify smoothened localization and


hedgehog pathway activity. _Chem. Biol._ 19, 972–982 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Rana, R. et al. Structural insights into the role of the Smoothened cysteine-rich


domain in Hedgehog signalling. _Nat. Commun._ 4, 2965 (2013). PubMed  Google Scholar  * Aanstad, P. et al. The extracellular domain of Smoothened regulates ciliary localization and is


required for high-level Hh signaling. _Curr. Biol._ 19, 1034–1039 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Infante, R.E. et al. NPC2 facilitates bidirectional transfer of


cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. _Proc. Natl. Acad. Sci. USA_ 105, 15287–15292 (2008). CAS  PubMed  PubMed Central  Google Scholar  *


Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. _Cell_ 99, 803–815 (1999). CAS  PubMed 


Google Scholar  * Hausmann, G., von Mering, C. & Basler, K. The hedgehog signaling pathway: where did it come from? _PLoS Biol._ 7, e1000146 (2009). PubMed  PubMed Central  Google


Scholar  * Denef, N., Neubuser, D., Perez, L. & Cohen, S.M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. _Cell_ 102, 521–531


(2000). CAS  PubMed  Google Scholar  * Milligan, G. Constitutive activity and inverse agonists of G protein–coupled receptors: a current perspective. _Mol. Pharmacol._ 64, 1271–1276 (2003).


CAS  PubMed  Google Scholar  * Adan, R.A. & Kas, M.J. Inverse agonism gains weight. _Trends Pharmacol. Sci._ 24, 315–321 (2003). CAS  PubMed  Google Scholar  * Taipale, J. et al. Effects


of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. _Nature_ 406, 1005–1009 (2000). CAS  PubMed  Google Scholar  * Takahashi, K., Tokita, S. & Kotani, H.


Generation and characterization of highly constitutive active histamine H3 receptors. _J. Pharmacol. Exp. Ther._ 307, 213–218 (2003). CAS  PubMed  Google Scholar  * Koth, C.M. et al.


Molecular basis for negative regulation of the glucagon receptor. _Proc. Natl. Acad. Sci. USA_ 109, 14393–14398 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tao, H. et al. Small


molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. _Chem. Biol._ 18, 432–437 (2011). CAS  PubMed  Google Scholar  * Deschaseaux, F., Sensebe, L.


& Heymann, D. Mechanisms of bone repair and regeneration. _Trends Mol. Med._ 15, 417–429 (2009). CAS  PubMed  Google Scholar  * Hadden, M.K. Hedgehog pathway agonism: therapeutic


potential and small-molecule development. _ChemMedChem_ 9, 27–37 (2014). CAS  PubMed  Google Scholar  * Montgomery, S.R. et al. A novel osteogenic oxysterol compound for therapeutic


development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding. _J. Bone Miner. Res._ 29, 1872–1885 (2014). CAS  PubMed  Google Scholar  *


Yam, P.T., Langlois, S.D., Morin, S. & Charron, F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase–dependent signaling pathway. _Neuron_ 62, 349–362 (2009). CAS 


PubMed  Google Scholar  * Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. _J. Biol._


1, 10 (2002). PubMed  PubMed Central  Google Scholar  * Robarge, K.D. et al. GDC-0449—a potent inhibitor of the hedgehog pathway. _Bioorg. Med. Chem. Lett._ 19, 5576–5581 (2009). CAS  PubMed


  Google Scholar  * Rodon, J. et al. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced


solid tumors. _Clin. Cancer Res._ 20, 1900–1909 (2014). CAS  PubMed  Google Scholar  * Miller-Moslin, K. et al. 1-Amino-4-benzylphthalazines as orally bioavailable smoothened antagonists


with antitumor activity. _J. Med. Chem._ 52, 3954–3968 (2009). CAS  PubMed  Google Scholar  * Björkhem, I., Meaney, S. & Diczfalusy, U. Oxysterols in human circulation: which role do


they have? _Curr. Opin. Lipidol._ 13, 247–253 (2002). PubMed  Google Scholar  * Weber-Boyvat, M., Zhong, W., Yan, D. & Olkkonen, V.M. Oxysterol-binding proteins: functions in cell


regulation beyond lipid metabolism. _Biochem. Pharmacol._ 86, 89–95 (2013). CAS  PubMed  Google Scholar  * Patel, R. et al. LXRb is required for glucocorticoid-induced hyperglycemia and


hepatosteatosis in mice. _J. Clin. Invest._ 121, 431–441 (2011). CAS  PubMed  Google Scholar  * Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. _Nature_ 475, 524–527


(2011). CAS  PubMed  PubMed Central  Google Scholar  * Liu, C. et al. Oxysterols direct B-cell migration through EBI2. _Nature_ 475, 519–523 (2011). CAS  PubMed  Google Scholar  Download


references ACKNOWLEDGEMENTS We thank A. Bruce for assistance with the graphical abstract. We apologize to all investigators whose work could not be cited due to reference limitations. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Molecular Oncology, Genentech Inc., San Francisco, California, USA Hayley J Sharpe & Frederic J de Sauvage * Department of


Structural Biology, Genentech Inc., San Francisco, California, USA Weiru Wang * Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, California, USA Rami N Hannoush


Authors * Hayley J Sharpe View author publications You can also search for this author inPubMed Google Scholar * Weiru Wang View author publications You can also search for this author


inPubMed Google Scholar * Rami N Hannoush View author publications You can also search for this author inPubMed Google Scholar * Frederic J de Sauvage View author publications You can also


search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Rami N Hannoush or Frederic J de Sauvage. ETHICS DECLARATIONS COMPETING INTERESTS H.J.S. is employed as


a postdoctoral researcher by Genentech Inc. R.N.H., W.W. and F.J.d.S. are employed by Genentech Inc. and own shares in Roche. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Sharpe, H., Wang, W., Hannoush, R. _et al._ Regulation of the oncoprotein Smoothened by small molecules. _Nat Chem Biol_ 11, 246–255 (2015).


https://doi.org/10.1038/nchembio.1776 Download citation * Received: 24 October 2014 * Accepted: 19 February 2015 * Published: 18 March 2015 * Issue Date: April 2015 * DOI:


https://doi.org/10.1038/nchembio.1776 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative