Clouds, circulation and climate sensitivity

Clouds, circulation and climate sensitivity

Play all audios:

Loading...

ABSTRACT Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide


robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to


fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent


advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the


strength and the variability of the tropical rain belts and the extratropical storm tracks. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS GREATER CLIMATE SENSITIVITY IMPLIED BY ANVIL CLOUD THINNING


Article 17 April 2024 EQUILIBRIUM CLIMATE SENSITIVITY ABOVE 5 °C PLAUSIBLE DUE TO STATE-DEPENDENT CLOUD FEEDBACK Article 26 October 2020 MODEL SPREAD IN TROPICAL LOW CLOUD FEEDBACK TIED TO


OVERTURNING CIRCULATION RESPONSE TO WARMING Article Open access 19 November 2022 REFERENCES * Emanuel, K. in _Meteorology at the Millennium_ (ed. Pearce, R. P.) 1–14 (Academic, 2002). Google


Scholar  * Sherwood, S. C., Bony, S. & Dufresne, J-L. Spread in model climate sensitivity traced to atmospheric convective mixing. _Nature_ 505, 37–42 (2014). Article  Google Scholar  *


IPCC Summary for Policymakers _Climate Change 2013: The Physical Science Basis_ (eds Stocker, T. F. et al.) 1–29 (Cambridge Univ. Press, 2013). * Shepherd, T. G. Atmospheric circulation as


a source of uncertainty in climate change projections. _Nature Geosci._ 7, 703–708 (2014). Article  Google Scholar  * Stevens, B. & Bony, S. What are climate models missing? _Science_


340, 1053–1054 (2013). Article  Google Scholar  * Bony, S. et al. in _Monograph on Climate Science for Serving Society: Research, Modelling and Prediction Priorities_ (eds Hurrell, J. W.


& Asrar, G.) 391–413 (Springer, 2013). Book  Google Scholar  * Boucher, O. et al. in _Climate Change 2013: The Physical Science Basis_ (eds Stocker, T. et al.) 571–657 (IPCC, Cambridge


Univ. Press, 2013). Google Scholar  * Sherwood, S. C. et al. in _Climate Science for Serving Society_ (eds Hurrell, J. W. & Asrar, G.) 73–103 (Springer, 2013). Book  Google Scholar  *


Held, I. Simplicity amid complexity. _Science_ 343, 1206–1207 (2014). Article  Google Scholar  * Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid


atmosphere. _J. Atmos. Sci._ 37, 515–533 (1980). Article  Google Scholar  * Emanuel, K. A. The dependence of hurricane intensity on climate. _Nature_ 326, 483–485 (1987). Article  Google


Scholar  * Hartmann, D. L. & Larson, K. An important constraint on tropical cloud–climate feedback. _Geophys. Res. Lett._ 29, 1951 (2002). Article  Google Scholar  * Cooke, R., Wielicki,


B. A., Young, D. F. & Mlynczak, M. G. Value of information for climate observing systems. _Environ. Syst. Decis._ 34, 98–109 (2013). Article  Google Scholar  * Stevens, B. & Bony,


S. Water in the atmosphere. _Phys. Today_ 66, 29 (June 2013). * Rieck, M., Nuijens, L. & Stevens, B. Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. _J.


Atmos. Sci._ 69, 2538–2550 (2012). Article  Google Scholar  * Zhang, M. et al. CGILS: Results from the first phase of an international project to understand the physical mechanisms of low


cloud feedbacks in single column models. _J. Adv. Model. Earth Syst._ 5, 826–842 (2013). Article  Google Scholar  * Zhao, M. An investigation of the connections among convection, clouds, and


climate sensitivity in a global climate model. _J. Clim._ 27, 1845–1862 (2014). Article  Google Scholar  * Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning


cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. _J. Clim._ 25, 3715–3735 (2012). Article  Google Scholar  * Butler, A. H., Thompson, D. W. J. & Heikes,


R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. _J. Clim._ 23, 3474–3496 (2010). Article  Google Scholar 


* Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar ozone depletion on subtropical precipitation. _Science_ 332, 951–954 (2011). Article  Google Scholar  * Brayshaw,


D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. _J. Atmos. Sci._ 66, 2539–2558 (2009). Article 


Google Scholar  * Simpson, I. R., Shaw, T. A. & Seager, R. A Diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. _J. Atmos. Sci._


71, 2489–2515 (2014). Article  Google Scholar  * Woollings, T. Dynamical influences on European climate: an uncertain future. _Phil. Trans. R. Soc. A_ 368, 3733–3756 (2010). Article  Google


Scholar  * Grise, K. M. & Polvani, L. M. Southern hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. _J. Clim._ 27, 6074–6092 (2014).


Article  Google Scholar  * Ceppi, P., Zelinka, M. D. & Hartmann, D. L. The response of the southern hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5.


_Geophys. Res. Lett._ 41, 3244–3250 (2014). Article  Google Scholar  * Miyamoto, Y. et al. Deep moist atmospheric convection in a subkilometer global simulation. _Geophys. Res. Lett._ 40,


4922–4926 (2013). Article  Google Scholar  * Rivière, G., Laîné, A., Lapeyre, G., Salas-Mélia, D. & Kageyama, M. Links between Rossby wave breaking and the North Atlantic


Oscillation–Arctic Oscillation in present-day and last glacial maximum climate simulations. _J. Clim._ 23, 2987–3008 (2010). Article  Google Scholar  * Kohfeld, K. E. & Harrison, S. C.


How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. _Quat. Sci. Rev._ 19, 321–346 (2000). Article  Google Scholar  * Braconnot, P. et al.


Evaluation of climate models using palaeoclimatic data. _Nature Clim. Change_ 2, 417–424 (2012). Article  Google Scholar  * Marsham, J. H. et al. The role of moist convection in the West


African monsoon system: Insights from continental-scale convection-permitting simulations. _Geophys. Res. Lett._ 40, 1843–1849 (2013). Article  Google Scholar  * Biasutti, M. & Giannini,


A. Robust Sahel drying in response to late 20th century forcings. _Geophys. Res. Lett._ 33, L11706 (2006). Article  Google Scholar  * Kang, S. M., Held, I. M., Frierson, D. M. W. &


Zhao, M. The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. _J. Clim._ 21, 3521–3532 (2008). Article  Google Scholar  * Hwang, Y. T.


& Frierson, D. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. _Proc. Natl Acad. Sci. USA_ 110, 4935–4940 (2013). Article  Google


Scholar  * Held, I. M., Delworth, T. L., Lu, J., Findell, K. L. & Knutson, T. R. Simulation of Sahel drought in the 20th and 21st centuries. _Proc. Natl Acad. Sci. USA_ 102, 17891–17896


(2005). Article  Google Scholar  * Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and


northern Africa in the CMIP5 simulations. _Clim. Past_ 10, 551–568 (2014). Article  Google Scholar  * Donohoe, A., Marshall, J., Ferreira, D. & McGee, D. The relationship between ITCZ


location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. _J. Clim._ 26, 3597–3618 (2013). Article  Google Scholar  * Houze, R. A. Jr.


Cloud clusters and large-scale vertical motions in the tropics. _J. Meteorol. Soc. Japan_ 60, 396–408 (1982). Article  Google Scholar  * Bretherton, C. S., Blossey, P. N. &


Khairoutdinov, M. An energy-balance analysis of deep convective self-aggregation above uniform SST. _J. Atmos. Sci._ 62, 4273–4292 (2005). Article  Google Scholar  * Tobin, I., Bony, S.


& Roca, R. Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. _J. Clim._ 25, 6885–6904 (2012).


Article  Google Scholar  * Wing, A. A. & Emanuel, K. A. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. _J. Adv. Model. Earth


Syst._ 6, 59–74 (2014). Article  Google Scholar  * Seifert, A. & Heus, T. Large-eddy simulation of organized precipitating trade wind cumulus clouds. _Atmos. Chem. Phys._ 13, 5631–5645


(2013). Article  Google Scholar  * Muller, C. J. & Held, I. M. Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. _J. Atmos. Sci._ 69, 2551–2565


(2012). Article  Google Scholar  * Neggers, R. A. J., Neelin, J. D. & Stevens, B. Impact mechanisms of shallow cumulus convection on tropical climate dynamics. _J. Clim._ 20, 2623–2642


(2007). Article  Google Scholar  * Jakob, C. Accelerating progress in global atmospheric model development through improved parameterization. _Bull. Am. Meteorol. Soc._ 91, 869–875 (2010).


Article  Google Scholar  * Lorenz, E. N. in _The General Circulation of the Atmosphere_ (ed. Corby, G. A.) 3–23 (Royal Meteorological Society, 1969); http://go.nature.com/Y3b8bO Google


Scholar  * Slingo, A. & Slingo, J. The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. _Q. J. R. Meteorol. Soc._


114, 1027–1062 (1988). Article  Google Scholar  * Bony, S. & Emanuel, K. A. On the role of moist processes in tropical intraseasonal variability: Cloud-radiation and moisture-convection


feedbacks. _J. Atmos. Sci._ 62, 2770–2789 (2005). Article  Google Scholar  * Chagnon, S., Gray, S. L. & Methven, J. Diabatic processes modifying potential vorticity in a North Atlantic


cyclone. _Q. J. R. Meteorol. Soc._ 139, 1270–1282 (2013). Article  Google Scholar  * Joos, H. & Wernli, H. Influence of microphysical processes on the potential vorticity development in


a warm conveyor belt: a case study with the limited area model COSMO. _Q. J. R. Meteorol. Soc._ 138, 407–418 (2012). Article  Google Scholar  * Martin, G. M. et al. Analysis and reduction of


systematic errors through a seamless approach to modeling weather and climate. _J. Clim._ 23, 5933–5957 (2010). Article  Google Scholar  Download references ACKNOWLEDGEMENTS This paper was


developed as part of the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme. The process of identifying a handful of key scientific


questions culminated in a workshop whose participants are gratefully acknowledged: D. Abbot, P. Bauer, M. Biasutti, H. Douville, J-L. Dufresne, A. Del Genio, K. Emanuel, Q. Fu, J.


Hargreaves, S. Harrison, I. Held, C. Hohenegger, B. Hoskins, S. Kang, H. Kawai, S. A. Klein, N. Loeb, T. Mauritsen, B. Mapes, M. Miller, C. Muller, C. Prentice, C. Risi, M. Satoh, C.


Schumacher, B. Wielicki, M. Yoshimori and P. Zuidema. We thank the German Weather Service, PMIP, EUMETSAT and NASA for data. M. Doutriaux-Boucher (EUMETSAT) provided the satellite products


used in Fig. 2a and b. S.B. and B.S. acknowledge support from the LABEX L-IPSL and the Max Planck Society for the Advancement of Science. M.J.W. was supported by the Joint UK DECC/Defra Met


Office Hadley Centre Climate Programme (GA01101). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * LMD/IPSL, CNRS, Université Pierre et Marie Curie, UMR 8539, 4 Place Jussieu, mail box 99,


75252, Paris, France Sandrine Bony * Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg, D-20146, Germany Bjorn Stevens * Department of Atmospheric Sciences, University of


Washington, Seattle, 98195-1640, Washington, USA Dargan M. W. Frierson * School of Mathematical Sciences, Monash University, Clayton, 3800, Victoria, Australia Christian Jakob * LSCE/IPSL,


CEA-CNRS-UVSQ, UMR 8212, Orme des Merisiers, Gif-sur-Yvette, 91191, France Masa Kageyama * University of Colorado, Boulder, CIRES, 216 UCB, Boulder, 80309, Colorado, USA Robert Pincus *


Physical Sciences Division, NOAA/Earth System Research Lab, Boulder, 80305, Colorado, USA Robert Pincus * Department of Meteorology, University of Reading, Reading, RG6 6BB, UK Theodore G.


Shepherd * Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, 2052, Australia Steven C. Sherwood * KNMI, Postbus


201, De Bilt, 3730 AE, the Netherlands A. Pier Siebesma * Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, New York, USA Adam H. Sobel *


Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, 277-8568, Japan Masahiro Watanabe * Hadley Centre, Met Office, Exeter, EX1 3PB, UK Mark J. Webb Authors * Sandrine Bony


View author publications You can also search for this author inPubMed Google Scholar * Bjorn Stevens View author publications You can also search for this author inPubMed Google Scholar *


Dargan M. W. Frierson View author publications You can also search for this author inPubMed Google Scholar * Christian Jakob View author publications You can also search for this author


inPubMed Google Scholar * Masa Kageyama View author publications You can also search for this author inPubMed Google Scholar * Robert Pincus View author publications You can also search for


this author inPubMed Google Scholar * Theodore G. Shepherd View author publications You can also search for this author inPubMed Google Scholar * Steven C. Sherwood View author publications


You can also search for this author inPubMed Google Scholar * A. Pier Siebesma View author publications You can also search for this author inPubMed Google Scholar * Adam H. Sobel View


author publications You can also search for this author inPubMed Google Scholar * Masahiro Watanabe View author publications You can also search for this author inPubMed Google Scholar *


Mark J. Webb View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.B. and B.S. led the writing of the paper. All authors contributed to the


development and writing of the manuscript. CORRESPONDING AUTHOR Correspondence to Sandrine Bony. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bony, S., Stevens, B., Frierson, D. _et al._ Clouds, circulation and climate sensitivity. _Nature


Geosci_ 8, 261–268 (2015). https://doi.org/10.1038/ngeo2398 Download citation * Received: 11 November 2014 * Accepted: 23 February 2015 * Published: 31 March 2015 * Issue Date: April 2015 *


DOI: https://doi.org/10.1038/ngeo2398 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative