Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles

Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles

Play all audios:

Loading...

ABSTRACT Self-organization of nanoparticles into two- and three-dimensional superlattices on a large scale is required for their implementation into nano- or microelectronic devices1,2. This


is achieved, generally after a size-selection process3,4, through spontaneous self-organization on a surface5,6,7,8,9,10,11, layer-by-layer deposition12 or the three-layer technique of


oversaturation3,14, but these techniques consider superlattices of limited size. An alternative method developed in our group involves the direct formation in solution of crystalline


superlattices, for example of tin nanospheres, iron nanocubes or cobalt nanorods, but these are also of limited size15,16,17. Here, we report the first direct preparation in solution of


multimillimetre-sized three-dimensional compact superlattices of nanoparticles. The 15-nm monodisperse FeCo particles adopt an unusual short-range atomic order that transforms into


body-centred-cubic on annealing at 500 ∘C. The latter process produces an air-stable material with magnetic properties suitable for radiofrequency applications. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS GENERAL SYNTHESIS OF HIGH-ENTROPY ALLOY AND CERAMIC NANOPARTICLES IN NANOSECONDS Article 10 February 2022 CRYSTALLINE AND MAGNETIC PROPERTIES OF COO NANOPARTICLES


LOCALLY INVESTIGATED BY USING RADIOACTIVE INDIUM TRACER Article Open access 25 October 2021 TUNING STRUCTURAL AND MAGNETIC PROPERTIES OF FE OXIDE NANOPARTICLES BY SPECIFIC HYDROGENATION


TREATMENTS Article Open access 14 October 2020 REFERENCES * Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. _Science_ 271, 933–937 (1996). Article  Google Scholar  *


Carter, J. D., Cheng, G. & Guo, T. Growth of self-aligned crystalline cobalt silicide nanostructures from Co nanoparticles. _J. Phys. Chem. B._ 108, 6901–6904 (2004). Article  Google


Scholar  * Wang, Z. L. et al. Superlattices of self-assembled tetrahedral Ag nanocrystals. _Adv. Mater._ 10, 808–812 (1998). Article  Google Scholar  * Park, J. et al. Ultra-large-scale


syntheses of monodisperse nanocrystals. _Nature Mater._ 3, 891–895 (2004). Article  Google Scholar  * Legrand, J., Ngo, A. T., Petit, C. & Pileni, M. P. Domain shapes and superlattices


made of cobalt nanocrystals. _Adv. Mater._ 13, 58–62 (2001). Article  Google Scholar  * Sigman, M. B., Saunders, A. E. & Korgel, B. A. Metal nanocrystal superlattice nucleation and


growth. _Langmuir_ 20, 978–983 (2004). Article  Google Scholar  * Hoogenboom, J. P. et al. Template induced growth of close-packed colloidal crystals during solvent evaporation. _Nano Lett._


4, 205–208 (2004). Article  Google Scholar  * Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. _J. Appl. Phys._ 85,


4325–4330 (1999). Article  Google Scholar  * Stoeva, S. I. et al. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different


methods. _J. Phys. Chem. B_ 107, 7441–7448 (2003). Article  Google Scholar  * Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic


FePt nanocrystal superlattices. _Science_ 287, 1989–1992 (2000). Article  Google Scholar  * Lisiecki, I., Albouy, P. A. & Pileni, M. P. Face-centered cubic “supracrystals” of cobalt


nanocrystals. _Adv. Mater._ 15, 712–716 (2003). Article  Google Scholar  * Wang, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. _Adv.


Mater._ 15, 432–436 (2003). Article  Google Scholar  * Talapin, D. V. et al. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. _Adv.


Mater._ 13, 1868–1871 (2001). Article  Google Scholar  * Shevchenko, E. V. et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. _J. Am. Chem. Soc._ 124, 11480–11485 (2002).


Article  Google Scholar  * Soulantica, K., Maisonnat, A., Fromen, M. C., Casanove, M. J. & Chaudret, B. Spontaneous formation of ordered 3D super-lattices of nanocrystals from


polydisperse colloidal solutions. _Angew. Chem. Int. Edn Engl._ 42, 1945–1949 (2003). Article  Google Scholar  * Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. & Fejes, P.


Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 . _Science_ 303, 821–823 (2004). Article  Google Scholar  * Dumestre, F. et al. Unprecedented crystalline super-lattices of


monodisperse cobalt nanorods. _Angew. Chem. Int. Edn Engl._ 42, 5213–5216 (2003). Article  Google Scholar  * Duc, N. H., Danh, T. M., Tuan, N. A. & Teillet, J. Large magnetostrictive


susceptibility in Tb-FeCo/FeCo multilayers. _Appl. Phys. Lett._ 78, 3648–3650 (2001). Article  Google Scholar  * Cooke, M. D. et al. The effect of thermal treatment, composition and


substrate on the texture and magnetic properties of FeCo thin films. _J. Phys. D_ 33, 1450–1459 (2000). Article  Google Scholar  * Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph,


D. C. Spin-polarized current switching of a Co thin film nanomagnet. _Appl. Phys. Lett._ 77, 3809–3811 (2000). Article  Google Scholar  * Garcia-Miquel, H., Bhagat, S. M., Lofland, S. E.,


Kurlyandskaya, G. V. & Svalov, A. V. Ferromagnetic resonance in FeCoNi electroplated wires. _J. Appl. Phys._ 94, 1868–1872 (2003). Article  Google Scholar  * Willard, M. A., Laughlin, D.


E. & McHenry, M. E. Ferromagnetic resonnance and eddy currents in high-permeable thin films. _J. Appl. Phys._ 87, 7091–7096 (2000). Article  Google Scholar  * Corrias, A., Casula, M.


F., Falqui, A. & Paschina, G. Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. _Chem. Mater._ 16, 3130–3138 (2004). Article  Google


Scholar  * Tang, S. L. et al. Nanostructure and magnetic properties of Fe69Co31 nanowire arrays. _Chem. Phys. Lett._ 384, 1–4 (2004). Article  Google Scholar  * Zitoun, D. et al. Synthesis


and magnetism of Co_x_Rh1−_x_ and Co_x_Ru1−_x_ nanoparticles. _J. Phys. Chem. B_ 107, 6997–7005 (2003). Article  Google Scholar  * Margeat, O., Amiens, C., Chaudret, B., Lecante, P. &


Benfield, R. E. Chemical control of structural and magnetic properties of cobalt nanoparticles. _Chem. Mater._ 17, 107–111 (2005). Article  Google Scholar  * Dassenoy, F. et al. Experimental


evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers. From a polytetrahedral arrangement to hexagonal structure. _J. Chem. Phys._ 112, 8137–8145


(2000). Article  Google Scholar  * Dinega, D. P. & Bawendi, M. G. A solution-phase chemical approach to a new crystal structure of cobalt. _Angew. Chem. Int. Edn_ 38, 1788–1791 (1999).


Article  Google Scholar  * Turgut, Z., Nuhfer, N. T., Piehler, H. R. & McHenry, M. E. Magnetic properties and microstructural observations of oxide coated FeCo nanocrystals before and


after compaction. _J. Appl. Phys._ 85, 4406–4408 (1999). Article  Google Scholar  * Turgut, Z., Huang, M.-Q., Gallagher, K., McHenry, M. E. & Majetich, S. A. Magnetic evidence for


structural phase transformation in FeCo nanpocrystals produced by a carbon arc. _J. Appl. Phys._ 81, 4039–4041 (1997). Article  Google Scholar  * Kechrakos, D. & Trohidou, K. N. Magnetic


properties of dipolar interacting single domain particles. _Phys. Rev. B_ 58, 12169–12177 (1998). Article  Google Scholar  * Otsuka, S. & Rossi, M. Synthesis, structure, and properties


of -cyclo-octenyl–cyclo-octa- 1,5-dienecobalt. _J. Chem. Soc. A_ 2630–2633 (1968). * Andersen, R. A. et al. Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in


M[N(SiMe3)2]2 (M=Mn,Fe,Co) : Two coordinate transition-metal amides. _Inorg. Chem._ 27, 1782–1786 (1988). Article  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank CNRS


and FREESCALE S. P. S. for support, M. Vincent Collière, Lucien Datas and TEMSCAN service (Université Paul Sabatier Toulouse) for TEM, Mlle Isabelle Fourquaux and Mr Bruno Payré (CMEAB,


Université Paul Sabatier Toulouse) for ultramicrotomy and Alain Mari for the magnetic measurements. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Laboratoire de Chimie de Coordination du


CNRS, 205, route de Narbonne, 31077, Toulouse, Cedex 04, France Céline Desvaux, Catherine Amiens & Bruno Chaudret * Freescale Semiconductor, le Mirail BP 1029, 31023, Toulouse Cedex,


France Céline Desvaux & Philippe Renaud * Freescale Semiconductor, Inc., 2100 E. Elliot Road, Tempe, Arizona, 85824, USA Peter Fejes * Laboratoire de la Physique de la Matière Condensée,


INSA, 135 avenue de Rangueil, 31077, Toulouse, France Marc Respaud * Centre d’Elaboration des Matériaux et d’Etude Structurale, 29, rue Jeanne Marvig, BP94347, 31055, Toulouse, Cedex 04,


France Pierre Lecante & Etienne Snoeck Authors * Céline Desvaux View author publications You can also search for this author inPubMed Google Scholar * Catherine Amiens View author


publications You can also search for this author inPubMed Google Scholar * Peter Fejes View author publications You can also search for this author inPubMed Google Scholar * Philippe Renaud


View author publications You can also search for this author inPubMed Google Scholar * Marc Respaud View author publications You can also search for this author inPubMed Google Scholar *


Pierre Lecante View author publications You can also search for this author inPubMed Google Scholar * Etienne Snoeck View author publications You can also search for this author inPubMed 


Google Scholar * Bruno Chaudret View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Bruno Chaudret. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary figures S1, S2 and S3 (PDF 78 kb)


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Desvaux, C., Amiens, C., Fejes, P. _et al._ Multimillimetre-large superlattices of air-stable iron–cobalt


nanoparticles. _Nature Mater_ 4, 750–753 (2005). https://doi.org/10.1038/nmat1480 Download citation * Received: 17 March 2005 * Accepted: 28 July 2005 * Published: 11 September 2005 * Issue


Date: 01 October 2005 * DOI: https://doi.org/10.1038/nmat1480 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative