Play all audios:
ABSTRACT Self-organization of nanoparticles into two- and three-dimensional superlattices on a large scale is required for their implementation into nano- or microelectronic devices1,2. This
is achieved, generally after a size-selection process3,4, through spontaneous self-organization on a surface5,6,7,8,9,10,11, layer-by-layer deposition12 or the three-layer technique of
oversaturation3,14, but these techniques consider superlattices of limited size. An alternative method developed in our group involves the direct formation in solution of crystalline
superlattices, for example of tin nanospheres, iron nanocubes or cobalt nanorods, but these are also of limited size15,16,17. Here, we report the first direct preparation in solution of
multimillimetre-sized three-dimensional compact superlattices of nanoparticles. The 15-nm monodisperse FeCo particles adopt an unusual short-range atomic order that transforms into
body-centred-cubic on annealing at 500 ∘C. The latter process produces an air-stable material with magnetic properties suitable for radiofrequency applications. Access through your
institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print
issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to
local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT
BEING VIEWED BY OTHERS GENERAL SYNTHESIS OF HIGH-ENTROPY ALLOY AND CERAMIC NANOPARTICLES IN NANOSECONDS Article 10 February 2022 CRYSTALLINE AND MAGNETIC PROPERTIES OF COO NANOPARTICLES
LOCALLY INVESTIGATED BY USING RADIOACTIVE INDIUM TRACER Article Open access 25 October 2021 TUNING STRUCTURAL AND MAGNETIC PROPERTIES OF FE OXIDE NANOPARTICLES BY SPECIFIC HYDROGENATION
TREATMENTS Article Open access 14 October 2020 REFERENCES * Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. _Science_ 271, 933–937 (1996). Article Google Scholar *
Carter, J. D., Cheng, G. & Guo, T. Growth of self-aligned crystalline cobalt silicide nanostructures from Co nanoparticles. _J. Phys. Chem. B._ 108, 6901–6904 (2004). Article Google
Scholar * Wang, Z. L. et al. Superlattices of self-assembled tetrahedral Ag nanocrystals. _Adv. Mater._ 10, 808–812 (1998). Article Google Scholar * Park, J. et al. Ultra-large-scale
syntheses of monodisperse nanocrystals. _Nature Mater._ 3, 891–895 (2004). Article Google Scholar * Legrand, J., Ngo, A. T., Petit, C. & Pileni, M. P. Domain shapes and superlattices
made of cobalt nanocrystals. _Adv. Mater._ 13, 58–62 (2001). Article Google Scholar * Sigman, M. B., Saunders, A. E. & Korgel, B. A. Metal nanocrystal superlattice nucleation and
growth. _Langmuir_ 20, 978–983 (2004). Article Google Scholar * Hoogenboom, J. P. et al. Template induced growth of close-packed colloidal crystals during solvent evaporation. _Nano Lett._
4, 205–208 (2004). Article Google Scholar * Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. _J. Appl. Phys._ 85,
4325–4330 (1999). Article Google Scholar * Stoeva, S. I. et al. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different
methods. _J. Phys. Chem. B_ 107, 7441–7448 (2003). Article Google Scholar * Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic
FePt nanocrystal superlattices. _Science_ 287, 1989–1992 (2000). Article Google Scholar * Lisiecki, I., Albouy, P. A. & Pileni, M. P. Face-centered cubic “supracrystals” of cobalt
nanocrystals. _Adv. Mater._ 15, 712–716 (2003). Article Google Scholar * Wang, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. _Adv.
Mater._ 15, 432–436 (2003). Article Google Scholar * Talapin, D. V. et al. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. _Adv.
Mater._ 13, 1868–1871 (2001). Article Google Scholar * Shevchenko, E. V. et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. _J. Am. Chem. Soc._ 124, 11480–11485 (2002).
Article Google Scholar * Soulantica, K., Maisonnat, A., Fromen, M. C., Casanove, M. J. & Chaudret, B. Spontaneous formation of ordered 3D super-lattices of nanocrystals from
polydisperse colloidal solutions. _Angew. Chem. Int. Edn Engl._ 42, 1945–1949 (2003). Article Google Scholar * Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. & Fejes, P.
Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 . _Science_ 303, 821–823 (2004). Article Google Scholar * Dumestre, F. et al. Unprecedented crystalline super-lattices of
monodisperse cobalt nanorods. _Angew. Chem. Int. Edn Engl._ 42, 5213–5216 (2003). Article Google Scholar * Duc, N. H., Danh, T. M., Tuan, N. A. & Teillet, J. Large magnetostrictive
susceptibility in Tb-FeCo/FeCo multilayers. _Appl. Phys. Lett._ 78, 3648–3650 (2001). Article Google Scholar * Cooke, M. D. et al. The effect of thermal treatment, composition and
substrate on the texture and magnetic properties of FeCo thin films. _J. Phys. D_ 33, 1450–1459 (2000). Article Google Scholar * Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph,
D. C. Spin-polarized current switching of a Co thin film nanomagnet. _Appl. Phys. Lett._ 77, 3809–3811 (2000). Article Google Scholar * Garcia-Miquel, H., Bhagat, S. M., Lofland, S. E.,
Kurlyandskaya, G. V. & Svalov, A. V. Ferromagnetic resonance in FeCoNi electroplated wires. _J. Appl. Phys._ 94, 1868–1872 (2003). Article Google Scholar * Willard, M. A., Laughlin, D.
E. & McHenry, M. E. Ferromagnetic resonnance and eddy currents in high-permeable thin films. _J. Appl. Phys._ 87, 7091–7096 (2000). Article Google Scholar * Corrias, A., Casula, M.
F., Falqui, A. & Paschina, G. Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. _Chem. Mater._ 16, 3130–3138 (2004). Article Google
Scholar * Tang, S. L. et al. Nanostructure and magnetic properties of Fe69Co31 nanowire arrays. _Chem. Phys. Lett._ 384, 1–4 (2004). Article Google Scholar * Zitoun, D. et al. Synthesis
and magnetism of Co_x_Rh1−_x_ and Co_x_Ru1−_x_ nanoparticles. _J. Phys. Chem. B_ 107, 6997–7005 (2003). Article Google Scholar * Margeat, O., Amiens, C., Chaudret, B., Lecante, P. &
Benfield, R. E. Chemical control of structural and magnetic properties of cobalt nanoparticles. _Chem. Mater._ 17, 107–111 (2005). Article Google Scholar * Dassenoy, F. et al. Experimental
evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers. From a polytetrahedral arrangement to hexagonal structure. _J. Chem. Phys._ 112, 8137–8145
(2000). Article Google Scholar * Dinega, D. P. & Bawendi, M. G. A solution-phase chemical approach to a new crystal structure of cobalt. _Angew. Chem. Int. Edn_ 38, 1788–1791 (1999).
Article Google Scholar * Turgut, Z., Nuhfer, N. T., Piehler, H. R. & McHenry, M. E. Magnetic properties and microstructural observations of oxide coated FeCo nanocrystals before and
after compaction. _J. Appl. Phys._ 85, 4406–4408 (1999). Article Google Scholar * Turgut, Z., Huang, M.-Q., Gallagher, K., McHenry, M. E. & Majetich, S. A. Magnetic evidence for
structural phase transformation in FeCo nanpocrystals produced by a carbon arc. _J. Appl. Phys._ 81, 4039–4041 (1997). Article Google Scholar * Kechrakos, D. & Trohidou, K. N. Magnetic
properties of dipolar interacting single domain particles. _Phys. Rev. B_ 58, 12169–12177 (1998). Article Google Scholar * Otsuka, S. & Rossi, M. Synthesis, structure, and properties
of -cyclo-octenyl–cyclo-octa- 1,5-dienecobalt. _J. Chem. Soc. A_ 2630–2633 (1968). * Andersen, R. A. et al. Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in
M[N(SiMe3)2]2 (M=Mn,Fe,Co) : Two coordinate transition-metal amides. _Inorg. Chem._ 27, 1782–1786 (1988). Article Google Scholar Download references ACKNOWLEDGEMENTS The authors thank CNRS
and FREESCALE S. P. S. for support, M. Vincent Collière, Lucien Datas and TEMSCAN service (Université Paul Sabatier Toulouse) for TEM, Mlle Isabelle Fourquaux and Mr Bruno Payré (CMEAB,
Université Paul Sabatier Toulouse) for ultramicrotomy and Alain Mari for the magnetic measurements. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Laboratoire de Chimie de Coordination du
CNRS, 205, route de Narbonne, 31077, Toulouse, Cedex 04, France Céline Desvaux, Catherine Amiens & Bruno Chaudret * Freescale Semiconductor, le Mirail BP 1029, 31023, Toulouse Cedex,
France Céline Desvaux & Philippe Renaud * Freescale Semiconductor, Inc., 2100 E. Elliot Road, Tempe, Arizona, 85824, USA Peter Fejes * Laboratoire de la Physique de la Matière Condensée,
INSA, 135 avenue de Rangueil, 31077, Toulouse, France Marc Respaud * Centre d’Elaboration des Matériaux et d’Etude Structurale, 29, rue Jeanne Marvig, BP94347, 31055, Toulouse, Cedex 04,
France Pierre Lecante & Etienne Snoeck Authors * Céline Desvaux View author publications You can also search for this author inPubMed Google Scholar * Catherine Amiens View author
publications You can also search for this author inPubMed Google Scholar * Peter Fejes View author publications You can also search for this author inPubMed Google Scholar * Philippe Renaud
View author publications You can also search for this author inPubMed Google Scholar * Marc Respaud View author publications You can also search for this author inPubMed Google Scholar *
Pierre Lecante View author publications You can also search for this author inPubMed Google Scholar * Etienne Snoeck View author publications You can also search for this author inPubMed
Google Scholar * Bruno Chaudret View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Bruno Chaudret. ETHICS
DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary figures S1, S2 and S3 (PDF 78 kb)
RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Desvaux, C., Amiens, C., Fejes, P. _et al._ Multimillimetre-large superlattices of air-stable iron–cobalt
nanoparticles. _Nature Mater_ 4, 750–753 (2005). https://doi.org/10.1038/nmat1480 Download citation * Received: 17 March 2005 * Accepted: 28 July 2005 * Published: 11 September 2005 * Issue
Date: 01 October 2005 * DOI: https://doi.org/10.1038/nmat1480 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative