Tuning magnetoresistance between positive and negative values in organic semiconductors

Tuning magnetoresistance between positive and negative values in organic semiconductors

Play all audios:

Loading...

ABSTRACT Magnetic-field-dependent injection current, namely magnetoresistance, is readily observable in organic semiconductor devices. This provides a non-contact approach to tune organic


optoelectronic properties by using a magnetic field. Here, we demonstrate that this magnetoresistance can be changed between positive and negative values by adjusting the dissociation and


charge reaction in excited states through changing the bipolar charge injection in organic light-emitting diodes. This finding reveals that the magnetic-field-dependent generation of


secondary charge carriers from the dissociation and charge reaction affects the injection current by forming further space charges at the organic–electrode interfaces and therefore accounts


for the tunable magnetoresistance. Furthermore, the dissociation and charge reaction have opposite dependences on magnetic field in the generation of secondary charge carriers, consequently


leading to negative and positive magnetoresistance, respectively. As a result, adjusting the dissociation and charge reaction in excited states provides a convenient pathway to tune the


magnetoresistance in organic semiconductors. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LIGHT SOURCES WITH BIAS TUNABLE SPECTRUM BASED ON VAN DER WAALS INTERFACE TRANSISTORS Article


Open access 07 July 2022 TUNING OF THE MAGNETOTRANSPORT PROPERTIES OF A SPIN-POLARIZED 2D ELECTRON SYSTEM USING VISIBLE LIGHT Article Open access 21 June 2023 MULTI-PARAMETER CONTROL OF


PHOTODETECTION IN VAN DER WAALS MAGNET CRSBR Article Open access 03 February 2025 REFERENCES * Taliani, C. et al. Organic-inorganic hybrid spin-valve: A novel approach to spintronics. _Phase


Transit._ 75, 1049–1058 (2002). Article  CAS  Google Scholar  * Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. _Nature_ 427, 821–824


(2004). Article  CAS  Google Scholar  * Kalinowski, J., Cocchi, M., Virgili, D., Di Marco, P. & Fattori, V. Magnetic field effects on emission and current in Alq(3)-based


electroluminescent diodes. _Chem. Phys. Lett._ 380, 710–715 (2003). Article  CAS  Google Scholar  * Kalinowski, J., Cocchi, M., Virgili, D., Fattori, V. & Di Marco, P. Magnetic field


effects on organic electrophosphorescence. _Phys. Rev. B_ 70, 205303 (2004). Article  Google Scholar  * Davis, A. H. & Bussmann, K. Large magnetic field effects in organic light emitting


diodes based on tris(8-hydroxyquinoline aluminum) (Alq(3))/IN,N′-Di(naphthalen-1-yl)-N,N′diphenyl-benzidine (NPB) bilayers. _J. Vac. Sci. Technol. A_ 22, 1885–1891 (2004). Article  CAS 


Google Scholar  * Francis, T. L., Mermer, Ö., Veeraraghavan, G. & Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. _New J. Phys._


6, 185–192 (2004). Article  Google Scholar  * Sheng, Y. et al. Hyperfine interaction and magnetoresistance in organic semiconductors. _Phys. Rev. B_ 74, 045213 (2006). Article  Google


Scholar  * Wu, Y. & Hu, B. Metal electrode effects on spin–orbital coupling and magnetoresistance in organic semiconductor devices. _Appl. Phys. Lett._ 89, 203510 (2006). Article  Google


Scholar  * Desai, P. et al. Magnetoresistance and efficiency measurements of Alq3-based OLEDs. _Phys. Rev. B_ 75, 094423 (2007). Article  Google Scholar  * Wu, Y., Xu, Z., Hu, B. &


Howe, J. Tuning magnetoresistance and magnetic field-dependent electroluminescence through mixing strong-spin–orbital-coupling molecule and weak-spin–orbital-coupling polymer. _Phys. Rev. B_


75, 035214 (2007). Article  Google Scholar  * Fesser, K., Bishop, A. R. & Campbell, D. K. Optical absorption from polarons in a model of polyacetylene. _Phys. Rev. B_ 27, 4804 (1983).


Article  CAS  Google Scholar  * Bassler, H. Injection, transport and recombination of charge carriers in organic light-emitting diodes. _Polym. Adv. Technol._ 9, 402–418 (1998). Article  CAS


  Google Scholar  * Kalinowski, J. Electroluminescence in organics. _J. Phys. D_ 32, R179–R250 (1999). Article  CAS  Google Scholar  * Kalinowski, J., Szmytkowski, J. & Stampor, W.


Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3 . _Chem. Phys. Lett._ 378, 380–387 (2003). Article  CAS  Google Scholar  * Wilkinson, J., Davis, A. H.,


Bussmann, K. & Long, J. P. Evidence for charge-carrier mediated magnetic-field modulation of electroluminescence in organic light-emitting diodes. _Appl. Phys. Lett._ 86, 111109 (2005).


Article  Google Scholar  * Köhler, A. et al. UV photocurrent spectroscopy in poly(p-phenylene vinylene) and derivatives. _Synth. Met._ 84, 675–676 (1997). Article  Google Scholar  * Muller,


J. G. et al. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer: Fullerene solar cells. _Phys. Rev. B_ 72, 195208 (2005). Article  Google


Scholar  * Szmytkowski, J., Stampor, W., Kalinowski, J. & Kafafi, Z. H. Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (III). _Appl.


Phys. Lett._ 80, 1465 (2002). Article  CAS  Google Scholar  * Kalinowski, J. et al. Coexistence of dissociation and annihilation of excitons on charge carriers in organic phosphorescent


emitters. _Phys. Rev. B_ 74, 085316 (2006). Article  Google Scholar  * Pope, M. & Swenberg, C. E. _Electronic Processes in Organic Crystals_ 2nd edn (Oxford Univ. Press, Oxford, 1999).


Google Scholar  * Wittmer, M. & Zschokke-Gränacher, I. Exciton-charge carrier interactions in the electroluminescence of crystalline anthracence. _J. Chem. Phys._ 63, 4187–4194 (1975).


Article  CAS  Google Scholar  * Ern, V. & Merrifield, R. E. Magnetic field effect on triplet exciton quenching in organic crystals. _Phys. Rev. Lett._ 21, 609–611 (1968). Article  CAS 


Google Scholar  * Tolstov, I. V. et al. On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS. _J. Lumin._ 112, 368–371


(2005). Article  CAS  Google Scholar  * Kalinowski, J. & Signerski, R. Exciton-enhanced double injection current in tetracene crystals. _Phys. Status Solidi B_ 118, K147–K150 (1983).


Article  CAS  Google Scholar  * Kalinowski, J. & Godlewski, J. Magnetic field effects on recombination radiation in tetracene crystal. _Chem. Phys. Lett._ 36, 345 (1975). Article  CAS 


Google Scholar  * Birks, J. B. _Organic Molecular Photophysics_ (Wiley, London, 1975). Google Scholar  * Frenkel, J. On pre-breakdown phenomena in insulators and electronic semiconductors.


_Phys. Rev._ 54, 647–648 (1938). Article  Google Scholar  * Onsager, L. Initial recombination of ions. _Phys. Rev._ 54, 554–557 (1938). Article  CAS  Google Scholar  * Doubleday, C. Jr,


Turro, N. J. & Wang, J. F. Dynamics of flexible triplet biradicals. _Acc. Chem. Res._ 22, 199–205 (1989). Article  CAS  Google Scholar  * Hu, B., Wu, Y., Zhang, Z., Dai, S. & Shen,


J. Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors. _Appl. Phys. Lett._ 88, 022114 (2006). Article 


Google Scholar  * Wu, Y., Hu, B., Howe, J., Li, A-P. & Shen, J. Spin injection from ferromagnetic nanoclusters into organic semiconducting polymers. _Phys. Rev. B_ 75, 075413 (2007).


Article  Google Scholar  * Ito, F., Ikoma, T., Akiyama, K., Watanabe, A. & Tero-Kubota, S. Carrier generation process on photoconductive polymer films as studied by magnetic field


effects on the charge-transfer fluorescence and photocurrent. _J. Phys. Chem. B_ 109, 8707–8717 (2005). Article  CAS  Google Scholar  * Kalinowski, J. et al. Quenching effects in organic


electrophosphorescence. _Phys. Rev. B_ 66, 235321 (2002). Article  Google Scholar  * Graupner, W., Partee, J., Shinar, J., Leising, G. & Scherf, U. Dynamics of long-lived polarons in


poly(para-phyenylene)-type ladder polymers. _Phys. Rev. Lett._ 77, 2033–2036 (1996). Article  CAS  Google Scholar  * Stampor, W. Electromodulation of fluorescence in hole-transporting


materials (TPD, TAPC) for organic light-emitting diodes. _Chem. Phys._ 256, 351–362 (2000). Article  CAS  Google Scholar  * Xu, Z., Wu, Y. & Hu, B. Dissociation processes of singlet and


triplet excitons in organic photovoltaic cells. _Appl. Phys. Lett._ 89, 131116 (2006). Article  Google Scholar  * Köhler, A., Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J.


Enhanced photocurrent response in photocells made with platinum-poly-yne/C60 blends by photoinduced electron transfer. _Synth. Met._ 77, 147–150 (1996). Article  Google Scholar  *


Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. _Science_ 258, 1474–1476 (1992). Article  CAS


  Google Scholar  * Wohlgenannt, M. & Vardeny, Z. V. Spin-dependent exciton formation rates in π-conjugated materials. _J. Phys. Condens. Matter_ 15, R83–R107 (2003). Article  CAS 


Google Scholar  * Finkenzeller, W. J. & Yersin, H. Emission of Ir(ppy)(3). Temperature dependence, decay dynamics, and magnetic field properties. _Chem. Phys. Lett._ 377, 299–305 (2003).


Article  CAS  Google Scholar  * Salis, G., Alvarado, S. F., Tschudy, M., Brunschwiler, T. & Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin


injection. _Phys. Rev. B_ 70, 085203 (2004). Article  Google Scholar  * Geacintov, N. E., Pope, M. & Fox, S. Magnetic field effects on photo-enhanced currents in organic crystals. _J.


Phys. Chem. Solids_ 31, 1375–1379 (1970). Article  CAS  Google Scholar  * Levinson, J., Weisz, S. Z., Cobas, A. & Rolon, A. Determination of the triplet exciton-trapped electron reaction


rate constant in Anthracene crystals. _J. Chem. Phys._ 52, 2794–2795 (1970). Article  CAS  Google Scholar  * Helfrich, W. Destruction of triplet excitons in Anthracene by injected


electrons. _Phys. Rev. Lett._ 16, 401–403 (1966). Article  CAS  Google Scholar  * Brabec, C. J. et al. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk


heterojunctions in real time. _Chem. Phys. Lett._ 340, 232–236 (2001). Article  CAS  Google Scholar  * Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related


phenomena. _Chem. Phys._ 89, 51–147 (1999). Google Scholar  * Ganzorig, C. & Iizumi, Y. A possible mechanism for enhanced electrofluorescence emission through triplet-triplet


annihilation in organic electroluminescent devices. _Appl. Phys. Lett._ 81, 3137–3139 (2002). Article  CAS  Google Scholar  * Prigodin, V. N., Bergeson, J. D., Lincoln, D. M. & Epstein,


A. J. Anomalous room temperature magnetoresistance in organic semiconductors. _Synth. Met._ 156, 757–761 (2006). Article  CAS  Google Scholar  * Parker, I. D. Carrier tunneling and device


characteristics in polymer light-emitting diodes. _J. Appl. Phys._ 75, 1656–1666 (1994). Article  CAS  Google Scholar  * Eastman, D. E. Photoelectric workfunctions of transition, rare-earth,


and nobel metals. _Phys. Rev. B_ 2, 1–2 (1970). Article  Google Scholar  Download references ACKNOWLEDGEMENTS This research was supported by the Airforce Office of Scientific Office


(FA9550-06-10070) and the National Science Foundation Career Award (ECCS-0644945). Partial support from the Center for Materials Processing and Joint Institute of Advanced Materials


Laboratory at the University of Tennessee is also acknowledged. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Materials Science and Engineering, University of Tennessee,


Knoxville, Tennessee 37996, USA Bin Hu & Yue Wu Authors * Bin Hu View author publications You can also search for this author inPubMed Google Scholar * Yue Wu View author publications


You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Bin Hu. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Hu, B., Wu, Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. _Nature Mater_ 6, 985–991 (2007). https://doi.org/10.1038/nmat2034 Download


citation * Received: 31 January 2007 * Accepted: 18 September 2007 * Published: 21 October 2007 * Issue Date: December 2007 * DOI: https://doi.org/10.1038/nmat2034 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative