Play all audios:
The amount of energy that can be stored in Li-ion batteries is insufficient for the long-term needs of society, for example, for use in extended-range electric vehicles. Here, the
energy-storage capabilities of Li–O2 and Li–S batteries are compared with that of Li-ion, their performances are reviewed, and the challenges that need to be overcome if such batteries are
to succeed are highlighted. ABSTRACT Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage
possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable
challenge; there are few options. Here we consider two: Li–air (O2) and Li–S. The energy that can be stored in Li–air (based on aqueous or non-aqueous electrolytes) and Li–S cells is
compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances
in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li–air and Li–S justify the continued research
effort that will be needed. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your
institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access
to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read
our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PRODUCTION OF HIGH-ENERGY LI-ION BATTERIES COMPRISING SILICON-CONTAINING ANODES AND INSERTION-TYPE CATHODES Article
Open access 15 September 2021 WHY CHARGING LI–AIR BATTERIES WITH CURRENT LOW-VOLTAGE MEDIATORS IS SLOW AND SINGLET OXYGEN DOES NOT EXPLAIN DEGRADATION Article 01 June 2023 EXTREME FAST
CHARGING OF COMMERCIAL LI-ION BATTERIES VIA COMBINED THERMAL SWITCHING AND SELF-HEATING APPROACHES Article Open access 03 June 2023 CHANGE HISTORY * _ 04 JANUARY 2012 In the version of this
Review originally published, in Table 1, the values in rows 2–5 of the 'Cell voltage' column appeared incorrectly; the full column should have read 3.8, 1.65, 2.2, 3.0 and 3.2.
This has now been corrected in the HTML and PDF versions. _ REFERENCES * Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. _Prog. Batteries Sol. Cells_ 9, 209–217 (1990). CAS
Google Scholar * Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. _Nature_ 414, 359–367 (2001). CAS Google Scholar * Schalkwijk, W.v. &
Scrosati, B. _Advances in Lithium-Ion Batteries_ (Kluwer Academic/Plenum, 2002). Google Scholar * Nazri, G-A. & Pistoia, G. _Lithium Batteries: Science and Technology_ (Springer, 2003).
Google Scholar * Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. _Solid State Ionics_ 179, 752–760 (2008). CAS Google Scholar * Bruce, P. G., Scrosati, B.
& Tarascon, J-M. Nanomaterials for rechargeable lithium batteries. _Angew. Chem. Int. Ed._ 47, 2930–2946 (2008). CAS Google Scholar * Bruce, P. G., Hardwick, L. J. & Abraham, K.
M. Lithium-air and lithium-sulfur batteries. _Mater. Res. Soc. Bull._ 36, 506–512 (2011). CAS Google Scholar * Lee, J-S. et al. Metal–air batteries with high energy density: Li–air versus
Zn–air. _Adv. Energy Mater._ 1, 34–50 (2011). CAS Google Scholar * Neburchilov, V., Wang, H. J., Martin, J. J. & Qu, W. A review on air cathodes for zinc-air fuel cells. _J. Power
Sources_ 195, 1271–1291 (2010). CAS Google Scholar * Li, Q. F. & Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. _J. Power Sources_ 110, 1–10 (2002). CAS
Google Scholar * Beck, F. & Ruetschi, P. Rechargeable batteries with aqueous electrolytes. _Electrochim. Acta_ 45, 2467–2482 (2000). CAS Google Scholar * _Encyclopedia of
Electrochemical Power Sources_ (Elsevier, 2009). * Hamlen, P. & Atwater, T. B. _Handbook of Batteries_ (McGraw-Hill, 2001). Google Scholar * Duduta, M. et al. Semi-solid lithium
rechargeable flow battery. _Adv. Energy Mater._ 1, 511–516 (2011). CAS Google Scholar * Herbert, D. & Ulam, J. Electric dry cells and storage batteries. US patent 3,043,896 (1962). *
Ji, X. & Nazar, L. F. Advances in Li-S batteries. _J. Mater. Chem._ 20, 9821–9826 (2010). CAS Google Scholar * Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured
carbon–sulphur cathode for lithium–sulphur batteries. _Nature Mater._ 8, 500–506 (2009). CAS Google Scholar * Hassoun, J. & Scrosati, B. A high-performance polymer tin sulfur lithium
ion battery. _Angew. Chem. Int. Ed._ 49, 2371–2374 (2010). CAS Google Scholar * Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide
reservoirs. _Nature Commun._ 2, 325 (2011). Google Scholar * Jeong, S. S. et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three
different mixing conditions. _J. Power Sources_ 174, 745–750 (2007). CAS Google Scholar * Wang, J. Z. et al. Sulfur–graphene composite for rechargeable lithium batteries. _J. Power
Sources_ 196, 7030–7034 (2011). CAS Google Scholar * Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable
batteries. _Carbon_ 46, 229–235 (2008). CAS Google Scholar * Peled, E., Sternberg, Y., Gorenshtein, A. & Lavi, Y. Lithium–sulfur battery: Evaluation of dioxolane-based electrolytes.
_J. Electrochem. Soc._ 136, 1621–1625 (1989). CAS Google Scholar * Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. _J.
Electrochem. Soc._ 156, A694–A702 (2009). CAS Google Scholar * Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. _J. Electrochem. Soc._ 143,
1–5 (1996). CAS Google Scholar * Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Li/air non-aqueous batteries. US patent 20070117007 (2007). * Littauer, E. L. & Tsai, K.
C. Anodic behavior of lithium in aqueous-electrolytes. _J. Electrochem. Soc._ 123, 771–776 (1976). CAS Google Scholar * Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. &
Wilcke, W. Lithium−air battery: Promise and challenges. _J. Phys. Chem. Lett._ 1, 2193–2203 (2010). CAS Google Scholar * Kraytsberg, A. & Ein-Eli, Y. Review on Li–air
batteries—opportunities, limitations and perspective. _J. Power Sources_ 196, 886–893 (2010). Google Scholar * Zhang, J-G. & Bruce, P. G. in _Handbook of Batteries_ (eds Linden, D.
& Reddy, T. B.) 38.46–38.73 (McGraw-Hill, 2010). Google Scholar * Mikhaylik, Y., Kovalev, I., Xu, J. & Schock, R. Rechargeable Li–S battery with specific energy 350 Wh/kg and
specific power 3000 W/kg. _Meet. Abstr. Electrochem. Soc._ 801, 112 (2008). Google Scholar * Mikhaylik, Y. V. et al. High energy rechargeable Li–S cells for EV application: Status,
remaining problems, and solutions. _Meet. Abstr. Electrochem. Soc._ 902, 216 (2009). Google Scholar * Pistoia, G. _Batteries for Portable Devices_ (Elsevier, 2005). Google Scholar *
Anderman, M. _PHEV and EV Battery Technology Status and Vehicle and Battery Market Outlook_ (AABC Europe, 2011). Google Scholar * Zhang, S. S., Foster, D. & Read, J. Discharge
characteristic of a non-aqueous electrolyte Li/O2 battery. _J. Power Sources_ 195, 1235–1240 (2010). CAS Google Scholar * Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. &
Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium–air battery applications. _J. Phys. Chem. C_ 113, 20127–20134 (2009). CAS Google Scholar * Lu, Y-C., Gasteiger,
H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. _Electrochem. Solid State_ 13,
A69–A72 (2010). CAS Google Scholar * Trahey, L. et al. Activated lithium-metal-oxides as catalytic electrodes for Li–O2 cells. _Electrochem. Solid State_ 14, A64–A66 (2011). CAS Google
Scholar * Stevens, P. et al. Development of a lithium air rechargeable battery. _ECS Trans._ 28, 1–12 (2010). CAS Google Scholar * Hasegawa, S. et al. Study on lithium/air secondary
batteries-stability of NASICON-type lithium ion conducting glass–ceramics with water. _J. Power Sources_ 189, 371–377 (2009). CAS Google Scholar * Zhang, T. et al. Stability of a
water-stable lithium metal anode for a lithium–air battery with acetic acid-water solutions. _J. Electrochem. Soc._ 157, A214–A218 (2010). CAS Google Scholar * Laoire, C. O., Mukerjee, S.,
Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. _J. Phys. Chem. C_ 114,
9178–9186 (2010). CAS Google Scholar * Laoire, C. O., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME-LiPF6/O2 battery. _J. Electrochem.
Soc._ 158, A302–A308 (2011). CAS Google Scholar * Read, J. Characterization of the lithium/oxygen organic electrolyte battery. _J. Electrochem. Soc._ 149, A1190–A1195 (2002). CAS Google
Scholar * Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. _J. Electrochem. Soc._ 150, A1351–A1356 (2003). CAS Google Scholar
* Lu, Y-C. et al. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. _J. Am. Chem. Soc._ 132, 12170–12171 (2010). CAS Google
Scholar * Lu, Y-C., Gasteiger, H. A., Crumlin, E., Robert McGuire, J. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries.
_J. Electrochem. Soc._ 157, A1016–A1025 (2010). CAS Google Scholar * Lu, Y-C., Gasteiger, H. A. & Shao-Horn, Y. Method development to evaluate the oxygen reduction activity of
high-surface-area catalysts for Li–air batteries. _Electrochem. Solid State_ 14, A70–A74 (2011). CAS Google Scholar * Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G.
Rechargeable Li2O2 electrode for lithium batteries. _J. Am. Chem. Soc._ 128, 1390–1393 (2006). CAS Google Scholar * Débart, A., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for
rechargeable lithium batteries: The effect of a catalyst. _J. Power Sources_ 174, 1177–1182 (2007). Google Scholar * Débart, A., Paterson, A., Bao, J. & Bruce, P. α-MnO2 nanowires: A
catalyst for the O2 electrode in rechargeable lithium batteries. _Angew. Chem. Int. Ed._ 47, 4521–4524 (2008). Google Scholar * Kuboki, T., Okuyama, T., Ohsaki, T. & Takami, N.
Lithium–air batteries using hydrophobic room temperature ionic liquid electrolyte. _J. Power Sources_ 146, 766–769 (2005). CAS Google Scholar * Beattie, S. D., Manolescu, D. M. &
Blair, S. L. High-capacity lithium–air cathodes. _J. Electrochem. Soc._ 156, A44–A47 (2009). CAS Google Scholar * Yang, X-H., He, P. & Xia, Y-Y. Preparation of mesocellular carbon foam
and its application for lithium/oxygen battery. _Electrochem. Commun._ 11, 1127–1130 (2009). CAS Google Scholar * Yang, X-H. & Xia, Y-Y. The effect of oxygen pressures on the
electrochemical profile of lithium/oxygen battery. _J. Solid State Electr._ 14, 109–114 (2010). CAS Google Scholar * Zhang, J., Xu, W., Li, X. & Liu, W. Air dehydration membranes for
nonaqueous lithium–air batteries. _J. Electrochem. Soc._ 157, A940–A946 (2010). CAS Google Scholar * Zhang, J., Xu, W. & Liu, W. Oxygen-selective immobilized liquid membranes for
operation of lithium–air batteries in ambient air. _J. Power Sources_ 195, 7438–7444 (2010). CAS Google Scholar * Lu, Y. C. et al. The discharge rate capability of rechargeable Li–O2
batteries. _Energ. Environ. Sci._ 4, 2999–3007 (2011). CAS Google Scholar * Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for
high-energy rechargeable Li-O2 batteries. _Energ. Environ. Sci._ 4, 2952–2958 (2011). CAS Google Scholar * Xu, W., Xiao, J., Wang, D., Zhang, J. & Zhang, J-G. Crown ethers in
nonaqueous electrolytes for lithium/air batteries. _Electrochem. Solid St._ 13, A48–A51 (2010). CAS Google Scholar * Wang, D., Xiao, J., Xu, W. & Zhang, J-G. High capacity pouch-type
Li–air batteries. _J. Electrochem. Soc._ 157, A760–A764 (2010). CAS Google Scholar * Zhang, J-G., Wang, D., Xu, W., Xiao, J. & Williford, R. E. Ambient operation of Li/air batteries.
_J. Power Sources_ 195, 4332–4337 (2010). CAS Google Scholar * Xiao, J. et al. Optimization of air electrode for Li/air batteries. _J. Electrochem. Soc._ 157, A487–A492 (2010). CAS Google
Scholar * Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. _J. Electroanal. Chem._
297, 225–244 (1991). CAS Google Scholar * Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes.
_Electrochemistry_ 78, 403–405 (2010). CAS Google Scholar * Xu, W. et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate
electrolytes. _J. Power Sources_ 196, 3894–3899 (2011). CAS Google Scholar * Freunberger, S. A. et al. Fundamental mechanism of the lithium–air battery. _Meet. Abstr. - Electrochem. Soc._
1003, 399 (2010). Google Scholar * Veith, G. M., Dudney, N. J., Howe, J. & Nanda, J. Spectroscopic characterization of solid discharge products in Li-air cells with aprotic carbonate
electrolytes. _J. Phys. Chem. C_ 115, 14325–14333 (2011). CAS Google Scholar * Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes.
_J. Am. Chem. Soc._ 133, 8040–8047 (2011). CAS Google Scholar * Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. _Angew. Chem. Int. Ed._ 50, 8609–8613
(2011). CAS Google Scholar * McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents' critical role in nonaqueous lithium–oxygen battery
electrochemistry. _J. Phys. Chem. Lett._ 2, 1161–1166 (2011). CAS Google Scholar * Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O2 electrochemistry in a
polymer electrolyte solid-state cell. _Angew. Chem. Int. Ed._ 50, 2999–3002 (2011). CAS Google Scholar * Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. _Angew. Chem.
Int. Ed._ 50, 6351–6355 (2011). CAS Google Scholar * Bardé, F., Bruce, P. G., Freunberger, S. A. & Hardwick, L. J. Cathode catalyst for rechargeable metal–air & rechargeable
metal–air battery. JPO patent 059494 (2010). * Bardé, F., Bruce, P. G., Freunberger, S. A., Chen, Y. & Hardwick, L. J. Catalyst loaded onto carbon for rechargeable nonaqueous metal–air
battery. JPO patent 053888 (2011). * Cheng, H. & Scott, K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. _J. Power Sources_ 195, 1370–1374
(2010). CAS Google Scholar * Giordani, V., Freunberger, S. A., Bruce, P. G., Tarascon, J-M. & Larcher, D. H2O2 decomposition reaction as selecting tool for catalysts in Li–O2 cells.
_Electrochem. Solid St._ 13, A180–A183 (2010). CAS Google Scholar * Sawyer, D. T. & Roberts, J. L. Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold
and mercury electrodes. _J. Electroanal. Chem._ 12, 90–101 (1966). CAS Google Scholar * Kumar, B. et al. A solid-state, rechargeable, long cycle life lithium-air battery. _J. Electrochem.
Soc._ 157, A50–A54 (2010). CAS Google Scholar * Wang, Y. & Zhou, H. A lithium–air battery with a potential to continuously reduce O2 from air for delivering energy. _J. Power Sources_
195, 358–361 (2010). CAS Google Scholar * He, P., Wang, Y. & Zhou, H. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. _Electrochem. Commun._ 12, 1686–1689
(2010). CAS Google Scholar * He, P., Wang, Y. G. & Zhou, H. S. The effect of alkalinity and temperature on the performance of lithium–air fuel cell with hybrid electrolytes. _J. Power
Sources_ 196, 5611–5616 (2011). CAS Google Scholar * Wang, Y. G. & Zhou, H. S. A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.
_Chem. Commun._ 46, 6305–6307 (2010). CAS Google Scholar * Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air
batteries. _Nature Chem._ 3, 546–550 (2011). CAS Google Scholar * Cheon, S-E. et al. Rechargeable lithium sulfur battery. _J. Electrochem. Soc._ 150, A800–A805 (2003). CAS Google Scholar
* Choi, Y-J., Kim, K-W., Ahn, H-J. & Ahn, J-H. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. _J. Alloy Compd._ 449, 313–316 (2008). CAS Google Scholar
* Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. _J. Inorg. Nucl. Chem._ 39, 1761–1766 (1977). Google Scholar * Yamin, H. & Peled, E.
Electrochemistry of a nonaqueous lithium/sulfur cell. _J. Power Sources_ 9, 281–287 (1983). CAS Google Scholar * Ryu, H. S., Guo, Z., Ahn, H. J., Cho, G. B. & Liu, H. Investigation of
discharge reaction mechanism of lithium liquid electrolyte sulfur battery. _J. Power Sources_ 189, 1179–1183 (2009). CAS Google Scholar * Yamin, H., Gorenshtein, A., Penciner, J.,
Sternberg, Y. & Peled, E. Lithium sulfur battery — oxidation reduction-mechanisms of polysulphides in THF solutions. _J. Electrochem. Soc._ 135, 1045–1048 (1988). CAS Google Scholar *
Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. _J. Electrochem. Soc._ 151, A1969–A1976 (2004). CAS Google Scholar * Degott, P., _Polymere
Carbone-Soufre Synthese et Proprietes Electrochimiques_ PhD Thesis, l'Institut National Polytechnique de Grenoble (1986). Google Scholar * Visco, S.J., Mailhe, C.C., Jonghe, L.C.D.
& Armand, M.B. A novel class of organosulfur electrodes for energy storage. _J. Electrochem. Soc._ 136, 661–664 (1989). CAS Google Scholar * Liu, M., Visco, S.J. & Jonghe, L.C.D.
Electrochemical properties of organic disulfide/thiolate redox couples. _J. Electrochem. Soc._ 136, 2570–2575 (1989). CAS Google Scholar * Kiya, Y., Iwata, A., Sarukawa, T., Henderson, J.
C. & Abruña, H. D. Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)-poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. _J.
Power Sources_ 173, 522–530 (2007). CAS Google Scholar * Kiya, Y., Henderson, J. C., Hutchison, G. R. & Abruna, H. D. Synthesis, computational and electrochemical characterization of
a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. _J. Mater. Chem._ 17, 4366–4376 (2007). CAS Google
Scholar * Xu, G. X., Bi, L. Q., Yu, T. & Wen, L. PVC disulfide as cathode materials for secondary lithium batteries. _Chinese J. Polym. Sci._ 24, 307–313 (2006). CAS Google Scholar *
Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. _J. Electrochem. Soc._ 126, 523–527
(1979). CAS Google Scholar * Yamin, H., Penciner, J., Gorenshtain, A., Elam, M. & Peled, E. The electrochemical behavior of polysulfides in tetrahydrofuran. _J. Power Sources_ 14,
129–134 (1985). CAS Google Scholar * Peled, E., Gorenshtein, A., Segal, M. & Sternberg, Y. Rechargeable lithium–sulfur battery. _J. Power Sources_ 26, 269–271 (1989). CAS Google
Scholar * Tobishima, S-I., Yamamoto, H. & Matsuda, M. Study on the reduction species of sulfur by alkali metals in nonaqueous solvents. _Electrochim. Acta_ 42, 1019–1029 (1997). CAS
Google Scholar * Chu, M-Y. Liquid electrolyte lithium–sulfur batteries. US patent 6030720 (2000). * Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium
bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. _J. Electrochem. Soc._ 155, A368–A373 (2008). CAS Google Scholar *
Choi, J-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. _Electrochim. Acta_ 52, 2075–2082 (2007). CAS Google Scholar * Marmorstein, D. et al.
Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. _J. Power Sources_ 89, 219–226 (2000). CAS Google Scholar * Wang, J. L., Yang, J., Xie, J.
Y., Xu, N. X. & Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. _Electrochem. Commun._ 4, 499–502 (2002). CAS Google Scholar *
Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. _Electrochem. Commun._ 5, 701–705
(2003). CAS Google Scholar * Yang, Y. et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. _Nano Lett._ 10, 1486–1491 (2010). CAS Google Scholar * Han,
S-C. et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. _J. Electrochem. Soc._ 150, A889–A893 (2003). CAS Google Scholar
* Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. _Electrochim. Acta_ 51,
1330–1335 (2006). CAS Google Scholar * Niu, J. J., Wang, J. N., Jiang, Y., Su, L. F. & Ma, J. An approach to carbon nanotubes with high surface area and large pore volume. _Micropor.
Mesopor. Mater._ 100, 1–5 (2007). CAS Google Scholar * Yuan, L., Yuan, H., Qiu, X., Chen, L. & Zhu, W. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes
composite cathode for lithium/sulfur batteries. _J. Power Sources_ 189, 1141–1146 (2009). CAS Google Scholar * Song, M-S. et al. Effects of nanosized adsorbing material on electrochemical
properties of sulfur cathodes for Li/S secondary batteries. _J. Electrochem. Soc._ 151, A791–A795 (2004). CAS Google Scholar * Choi, Y. J. et al. Electrochemical properties of sulfur
electrode containing nano Al2O3 for lithium/sulfur cell. _Phys. Scripta_ T129, 62–65 (2007). CAS Google Scholar * Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer–sulfur
composite cathode material for rechargeable lithium batteries. _Adv. Mater._ 14, 963–965 (2002). CAS Google Scholar * Yu, X-g. et al. Lithium storage in conductive sulfur-containing
polymers. _J. Electroanal. Chem._ 573, 121–128 (2004). CAS Google Scholar * Wang, J. et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries.
_Electrochim. Acta_ 51, 4634–4638 (2006). CAS Google Scholar * Lai, C., Gao, X. P., Zhang, B., Yan, T. Y. & Zhou, Z. Synthesis and electrochemical performance of sulfur/highly porous
carbon composites. _J. Phys. Chem. C_ 113, 4712–4716 (2009). CAS Google Scholar * Liang, C., Dudney, N. J. & Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material
for high-energy lithium battery. _Chem. Mater._ 21, 4724–4730 (2009). CAS Google Scholar * Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow
carbon@sulfur composites for high-power lithium–sulfur batteries. _Angew. Chem. Int. Ed._ 50, 5904–5908 (2011). CAS Google Scholar * Li, S., Xie, M., Liu, J., Wang, H. & Yan, H. Layer
structured sulfur/expanded graphite composite as cathode for lithium battery. _Electrochem. Solid St._ 14, A105–A107 (2011). CAS Google Scholar * Cao, Y. et al. Sandwich-type
functionalized graphene sheet–sulfur nanocomposite for rechargeable lithium batteries. _Phys. Chem. Chem. Phys._ 13, 7660–7665 (2011). CAS Google Scholar * Wu, F. et al.
Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. _J. Phys. Chem. C_ 115, 6057–6063 (2011). CAS
Google Scholar * Qiu, L., Zhang, S., Zhang, L., Sun, M. & Wang, W. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for
lithium/sulfur batteries. _Electrochim. Acta_ 55, 4632–4636 (2010). CAS Google Scholar * Demir-Cakan, R. et al. Cathode composites for Li–S batteries via the use of oxygenated porous
architectures. _J. Am. Chem. Soc._ 133, 16154–16160 (2011). CAS Google Scholar * Mirzaeian, M. & Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in
rechargeable lithium oxygen batteries. _Electrochim. Acta_ 54, 7444–7451 (2009). CAS Google Scholar * Zhang, G. Q. et al. Lithium–air batteries using SWNT/CNF buckypapers as air
electrodes. _J. Electrochem. Soc._ 157, A953–A956 (2010). CAS Google Scholar * Albertus, P. et al. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling.
_J. Electrochem. Soc._ 158, A343–A351 (2011). CAS Google Scholar * Mikhaylic, Y. V. Electrolytes for lithium sulfur cells. US patent 7354680 (2008). * http://oharacorp.com/pdf/LIC-GC.pdf
* Imanishi, N. et al. Lithium anode for lithium–air secondary batteries. _J. Power Sources_ 185, 1392–1397 (2008). CAS Google Scholar * Zhang, T. et al. A novel high energy density
rechargeable lithium/air battery. _Chem. Commun._ 46, 1661–1663 (2010). CAS Google Scholar * Zhang, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O. Stability of Li/polymer
electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. _Electrochem. Solid State_ 14, A45–A48 (2011). CAS Google Scholar * Debart, A., Dupont, L.,
Patrice, R. & Tarascon, J-M. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. _Solid State Sci._ 8, 640–651 (2006). CAS
Google Scholar * Zhang, S. S., Foster, D. & Read, J. A high energy density lithium/sulfur-oxygen hybrid battery. _J. Power Sources_ 195, 3684–3688 (2010). CAS Google Scholar *
http://www.nissanusa.com/leaf-electric-car/specs-features/index#/leaf-electric-car/specs-features/index. * US Advanced Battery Consortium _USABC Goals for Advanced Batteries for EVs_ (2006).
Available at: http://uscar.org/commands/files_download.php?files_id=27. Download references ACKNOWLEDGEMENTS P.G.B. is indebted to the EPRSC and Toyota Motor Europe for support. The authors
wish to express their thanks to S. Visco, M. Armand and R. Demir-Cakan and the ALISTORE-ERI members for helpful discussions. P.G.B. and J.M.T. are members of ALISTORE-ERI — European Network
of Excellence on Lithium Batteries. AUTHOR INFORMATION Author notes * Laurence J. Hardwick Present address: Present address: Stephenson Institute for Renewable Energy, Department of
Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK, AUTHORS AND AFFILIATIONS * School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Fife,
Scotland, UK Peter G. Bruce, Stefan A. Freunberger & Laurence J. Hardwick * Laboratoire de Réactivité et Chimie des Solides — UMR CNRS 6007, 33 rue Saint-Leu, 80039, Amiens Cedex, France
Jean-Marie Tarascon Authors * Peter G. Bruce View author publications You can also search for this author inPubMed Google Scholar * Stefan A. Freunberger View author publications You can
also search for this author inPubMed Google Scholar * Laurence J. Hardwick View author publications You can also search for this author inPubMed Google Scholar * Jean-Marie Tarascon View
author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Peter G. Bruce. ETHICS DECLARATIONS COMPETING INTERESTS The authors
declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bruce, P., Freunberger, S., Hardwick, L. _et al._ Li–O2 and
Li–S batteries with high energy storage. _Nature Mater_ 11, 19–29 (2012). https://doi.org/10.1038/nmat3191 Download citation * Published: 15 December 2011 * Issue Date: January 2012 * DOI:
https://doi.org/10.1038/nmat3191 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently
available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative