Protein crystallization: from purified protein to diffraction-quality crystal

Protein crystallization: from purified protein to diffraction-quality crystal

Play all audios:

Loading...

ABSTRACT Determining the structure of biological macromolecules by X-ray crystallography involves a series of steps: selection of the target molecule; cloning, expression, purification and


crystallization; collection of diffraction data and determination of atomic positions. However, even when pure soluble protein is available, producing high-quality crystals remains a major


bottleneck in structure determination. Here we present a guide for the non-expert to screen for appropriate crystallization conditions and optimize diffraction-quality crystal growth. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS ACCURATE COMPUTATIONAL DESIGN OF THREE-DIMENSIONAL PROTEIN CRYSTALS Article 16 October 2023 COMPREHENSIVE MICROCRYSTAL ELECTRON DIFFRACTION SAMPLE


PREPARATION FOR CRYO-EM Article 20 December 2024 MICROED FOR THE STUDY OF PROTEIN–LIGAND INTERACTIONS AND THE POTENTIAL FOR DRUG DISCOVERY Article 27 October 2021 REFERENCES * McPherson, A.


_Crystallization of Biological Macromolecules_ (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1999). Google Scholar  * Bergfors, T. _Protein Crystallization: Techniques,


Strategies, and Tips_ (International University Line, La Jolla, California, 1999). Google Scholar  * Derewenda, Z.S. & Vekilov, P.G. Entropy and surface engineering in protein


crystallization. _Acta Crystallogr. D_ 62, 116–124 (2006). Article  PubMed  Google Scholar  * Chayen, N.E. Protein crystallization for genomics: throughput versus output. _J. Struct. Funct.


Genomics_ 4, 115–120 (2003). Article  CAS  PubMed  Google Scholar  * Jancarik, J. & Kim, S.H. Sparse-matrix sampling—a screening method for crystallization of proteins. _J. Appl. Cryst._


24, 409–411 (1991). Article  CAS  Google Scholar  * Gilliland, G.L., Tung, M., Blakeslee, D.M. & Ladner, J.E. Biological Macromolecule Crystallization Database, version-3.0—new


features, data and the NASA Archive for Protein Crystal-Growth Data. _Acta Crystallogr. D_ 50, 408–413 (1994). Article  CAS  PubMed  Google Scholar  * Brzozowski, A.M. & Walton, J. Clear


strategy screens for macromolecular crystallization. _J. Appl. Cryst._ 34, 97–101 (2001). Article  CAS  Google Scholar  * DeLucas, L.J. _ et al_. Protein crystallization: virtual screening


and optimization. _Prog. Biophys. Mol. Biol._ 88, 285–309 (2005). Article  CAS  PubMed  Google Scholar  * Page, R. & Stevens, R.C. Crystallization data mining in structural genomics:


using positive and negative results to optimize protein crystallization screens. _Methods_ 34, 373–389 (2004). Article  CAS  PubMed  Google Scholar  * Rupp, B. & Wang, J. Predictive


models for protein crystallization. _Methods_ 34, 390–407 (2004). Article  CAS  PubMed  Google Scholar  * Walter, T.S. _ et al_. A procedure for setting up high-throughput nanolitre


crystallization experiments. I. Protocol design and validation. _J. Appl. Cryst._ 36, 308–314 (2003). Article  CAS  Google Scholar  * Luft, J.R. _ et al_. A deliberate approach to screening


for initial crystallization conditions of biological macromolecules. _J. Struct. Biol._ 142, 170–179 (2003). Article  CAS  PubMed  Google Scholar  * Bard, J., Ercolani, K., Svenson, K.,


Olland, A. & Somers, W. Automated systems for protein crystallization. _Methods_ 34, 329–347 (2004). Article  CAS  PubMed  Google Scholar  * Wilson, J. Automated classification of images


from crystallization experiments. _Adv. Data Mining_ 4065, 459–473 (2006). Google Scholar  * Chayen, N.E., Stewart, P.D.S., Maeder, D.L. & Blow, D.M. An automated system for microbatch


protein crystallization and screening. _J. Appl. Cryst._ 23, 297–302 (1990). Article  CAS  Google Scholar  * Chayen, N.E. Comparative studies of protein crystallization by vapour-diffusion


and microbatch techniques. _Acta Crystallogr. D_ 54, 8–15 (1998). Article  CAS  PubMed  Google Scholar  * Garcia-Ruiz, J.M. & Ng, J.D. Counterdiffusion capillary crystallization for


high-throughput applications. in _Protein Crystallization Strategies for Structural Genomics_ (ed. Chayen, N.E.) 111–126 (International University Line, La Jolla, California, 2007). Google


Scholar  * Moreno, A., Saridakis, E. & Chayen, N.E. Combination of oils and gels for enhancing the growth of protein crystals. _J. Appl. Cryst._ 35, 140–142 (2002). Article  CAS  Google


Scholar  * Hansen, C. & Quake, S.R. Microfluidics in structural biology: smaller, faster... better. _Curr. Opin. Struct. Biol._ 13, 538–544 (2003). Article  CAS  PubMed  Google Scholar 


* Sommer, M.O.A. & Larsen, S. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator. _J. Synchrotron Rad._ 12, 779–785 (2005).


Article  CAS  Google Scholar  * Zheng, B., Gerdts, C.J. & Ismagilov, R.F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. _Curr. Opin.


Struct. Biol._ 15, 548–555 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ducruix, A. & Giegé, R. (eds.) _Crystallization of Nucleic Acids and Proteins_ (Oxford


University Press, Oxford, 1999). Google Scholar  * Chayen, N.E. _ et al_. Trends and challenges in experimental macromolecular crystallography. _Q. Rev. Biophys._ 29, 227–278 (1996). Article


  CAS  PubMed  Google Scholar  * Chayen, N.E. Methods for separating nucleation and growth in protein crystallization. _Prog. Biophys. Mol. Biol._ 88, 329–337 (2005). Article  CAS  PubMed 


Google Scholar  * Ataka, M. Protein crystal growth: an approach based on phase diagram determination. _Phase Transit._ 45, 205–219 (1993). Article  CAS  Google Scholar  * Stura, E.A. &


Wilson, I.A. Application of the streak seeding technique in protein crystallization. _J. Cryst. Growth_ 110, 270–282 (1991). Article  CAS  Google Scholar  * Chayen, N.E. Automation of


non-conventional crystallization techniques for screening and optimization. in _Macromolecular Crystallography: Conventional and High-Throughput Methods_ (eds. Sanderson, M.R. & Skelly,


J.V.) 45–58 (Oxford University Press, Oxford, 2007). Chapter  Google Scholar  * Bergfors, T. Seeds to crystals. _J. Struct. Biol._ 142, 66–76 (2003). Article  CAS  PubMed  Google Scholar  *


McPherson, A. & Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. _Science_ 239, 385–387 (1988). Article  CAS  PubMed  Google Scholar  *


Falini, G., Fermani, S., Conforti, G. & Ripamonti, A. Protein crystallization on chemically modified mica surfaces. _Acta Crystallogr. D_ 58, 1649–1652 (2002). Article  PubMed  Google


Scholar  * Nanev, C.N. & Tsekova, D. Heterogeneous nucleation of hen-egg-white lysozyme-molecular approach. _Cryst. Res. Technol._ 35, 189–195 (2000). Article  CAS  Google Scholar  *


Sanjoh, A., Tsukihara, T. & Gorti, S. Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening. _J. Cryst. Growth_ 232, 618–628 (2001).


Article  CAS  Google Scholar  * D'Arcy, A., Mac Sweeney, A. & Habera, A. Modified microbatch and seeding in protein crystallization experiments. _J. Synchrotron Rad._ 11, 24–26


(2004). Article  CAS  Google Scholar  * Chayen, N.E., Saridakis, E., El-Bahar, R. & Nemirovsky, Y. Porous silicon: an effective nucleation-inducing material for protein crystallization.


_J. Mol. Biol._ 312, 591–595 (2001). Article  CAS  PubMed  Google Scholar  * Chayen, N.E., Saridakis, E. & Sear, R.P. Experiment and theory for heterogeneous nucleation of protein


crystals in a porous medium. _Proc. Natl. Acad. Sci. USA_ 103, 597–601 (2006). Article  CAS  PubMed  Google Scholar  * Saridakis, E.E.G., Stewart, P.D.S., Lloyd, L.F. & Blow, D.M.


Phase-diagram and dilution experiments in the crystallization of carboxypeptidase G2 . _Acta Crystallogr. D_ 50, 293–297 (1994). Article  CAS  PubMed  Google Scholar  * Saridakis, E. &


Chayen, N.E. Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. _Biophys. J._ 84, 1218–1222 (2003). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Blow, D.M., Chayen, N.E., Lloyd, L.F. & Saridakis, E. Control of nucleation of protein crystals. _Protein Sci._ 3, 1638–1643 (1994). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Krengel, U. _ et al_. Preliminary X-ray crystallographic analysis of the secreted chorismate mutase from _Mycobacterium tuberculosis_: a tricky crystallization


problem solved. _Acta Crystallogr. F_ 62, 441–445 (2006). Article  CAS  Google Scholar  * Gerdts, C.J. _ et al_. Time-controlled microfluidic seeding in nL-volume droplets to separate


nucleation and growth stages of protein crystallization. _Angew. Chem. Int. Ed._ 45, 8156–8160 (2006). Article  CAS  Google Scholar  * Karpowich, N. _ et al_. Crystal structures of MJ1267


reveal an induced-fit effect at the ATPase active site of an ABC transporter. _Structure_ 9, 571–586 (2001). Article  CAS  PubMed  Google Scholar  * Garcia-Ruiz, J.M., Gonzalez-Ramirez,


L.A., Gavira, J.A. & Otalora, F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. _Acta Crystallogr. D_ 58, 1638–1642 (2002).


Article  PubMed  Google Scholar  * Snell, E.H. & Helliwell, J.R. Macromolecular crystallization in microgravity. _Rep. Prog. Phys._ 68, 799–853 (2005). Article  CAS  Google Scholar  *


Heijna, M.C.R. _ et al_. Magnetically controlled gravity for protein crystal growth. _Appl. Phys. Lett._ 90, 264105 (2007). Article  Google Scholar  * Talreja, S., Kim, D.Y., Mirarefi, A.Y.,


Zukoski, C.F. & Kenis, P.J.A. Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. _J. Appl. Cryst._ 38,


988–995 (2005). Article  CAS  Google Scholar  * Chayen, N.E. A novel technique to control the rate of vapour diffusion, giving larger protein crystals. _J. Appl. Cryst._ 30, 198–202 (1997).


Article  CAS  Google Scholar  * Mayans, O. _ et al_. Structural basis for activation of the titin kinase domain during myofibrillogenesis. _Nature_ 395, 863–869 (1998). Article  CAS  PubMed


  Google Scholar  * Isupov, M.N. _ et al_. Crystallization and preliminary X-ray diffraction studies of a fungal hydrolase from Ophiostoma novo-ulmi. _Acta Crystallogr. D_ 60, 1879–1882


(2004). Article  PubMed  Google Scholar  * Schubot, F.D., Cherry, S., Austin, B.P., Tropea, J.E. & Waugh, D.S. Crystal structure of the protease-resistant core domain of _Yersinia


pestis_ virulence factor YopR. _Protein Sci._ 14, 1679–1683 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khurshid, S., Govada, L. & Chayen, N.E. Dynamic screening


experiments to maximize hits for crystallization. _Cryst. Growth Des._ 7, 2171–2175 (2007). Article  CAS  Google Scholar  * D'Arcy, A. Crystallizing proteins—a rational approach? _Acta


Crystallogr. D_ 50, 469–471 (1994). Article  CAS  PubMed  Google Scholar  * Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W.M. & Chayen, N.E. Separating nucleation and growth in


protein crystallization using dynamic light scattering. _Acta Crystallogr. D_ 58, 1597–1600 (2002). Article  PubMed  Google Scholar  * Wilson, W.W. Light scattering as a diagnostic for


protein crystal growth—a practical approach. _J. Struct. Biol._ 142, 56–65 (2003). Article  PubMed  Google Scholar  * Pantoliano, M.W. _ et al_. High-density miniaturized thermal shift


assays as a general strategy for drug discovery. _J. Biomol. Screen._ 6, 429–440 (2001). Article  CAS  PubMed  Google Scholar  * Chayen, N.E. Turning protein crystallization from an art into


a science. _Curr. Opin. Struct. Biol._ 14, 577–583 (2004). Article  CAS  PubMed  Google Scholar  * Nollert, P. From test tube to plate: a simple procedure for the rapid preparation of


microcrystallization experiments using the cubic phase method. _J. Appl. Cryst._ 35, 637–640 (2002). Article  CAS  Google Scholar  * Peddi, A. _ et al_. M. High-throughput automated system


for crystallizing membrane proteins in lipidic mesophases. _IEEE Trans. Automat. Sci. Eng._ 4, 129–140 (2007). Article  Google Scholar  * Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P.


& Landau. E.M. X-Ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. _Science_ 277, 1676–1681 (1997). Article  CAS  PubMed  Google


Scholar  * Cherozov, V. _ et al_. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. _Science_ 318, 1258–1265 (2007). Article  Google Scholar


  * Snider, H., Barrends, T. & Dijkstra, D. Crystallization of phospholipase A in two biological oligomerization states. in _Methods and Results in Crystallization of Membrane Proteins_


(ed. Iwata, S.) 265–278 (International University Line, La Jolla, California, 2003). Google Scholar  * Stock, D., Leslie, A.G. & Walker, J.E. Molecular architecture of the rotary motor


in ATP synthase. _Science_ 286, 1700–1705 (1999). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We acknowledge funding from the Engineering and Physical Sciences


Research Council UK (EP/D501113/1) and the European Commission OptiCryst project LSHG-CT-2006-037793. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Naomi E. Chayen is in the Department of


Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ,


UK., Naomi E Chayen * Emmanuel Saridakis is at the Laboratory of Structural and Supramolecular Chemistry, Institute of Physical Chemistry, National Centre for Scientific Research


“Demokritos”, Ag. Paraskevi, 15310 Athens, Greece., Emmanuel Saridakis Authors * Naomi E Chayen View author publications You can also search for this author inPubMed Google Scholar *


Emmanuel Saridakis View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Naomi E Chayen. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–2, Supplementary Note 1, Supplementary Protocols 1–2 (PDF 514 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Chayen, N., Saridakis, E. Protein crystallization: from purified protein to diffraction-quality crystal. _Nat Methods_ 5, 147–153 (2008).


https://doi.org/10.1038/nmeth.f.203 Download citation * Published: 30 January 2008 * Issue Date: February 2008 * DOI: https://doi.org/10.1038/nmeth.f.203 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative