Play all audios:
ABSTRACT Determining the structure of biological macromolecules by X-ray crystallography involves a series of steps: selection of the target molecule; cloning, expression, purification and
crystallization; collection of diffraction data and determination of atomic positions. However, even when pure soluble protein is available, producing high-quality crystals remains a major
bottleneck in structure determination. Here we present a guide for the non-expert to screen for appropriate crystallization conditions and optimize diffraction-quality crystal growth. Access
through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal
Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices
may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support
SIMILAR CONTENT BEING VIEWED BY OTHERS ACCURATE COMPUTATIONAL DESIGN OF THREE-DIMENSIONAL PROTEIN CRYSTALS Article 16 October 2023 COMPREHENSIVE MICROCRYSTAL ELECTRON DIFFRACTION SAMPLE
PREPARATION FOR CRYO-EM Article 20 December 2024 MICROED FOR THE STUDY OF PROTEIN–LIGAND INTERACTIONS AND THE POTENTIAL FOR DRUG DISCOVERY Article 27 October 2021 REFERENCES * McPherson, A.
_Crystallization of Biological Macromolecules_ (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1999). Google Scholar * Bergfors, T. _Protein Crystallization: Techniques,
Strategies, and Tips_ (International University Line, La Jolla, California, 1999). Google Scholar * Derewenda, Z.S. & Vekilov, P.G. Entropy and surface engineering in protein
crystallization. _Acta Crystallogr. D_ 62, 116–124 (2006). Article PubMed Google Scholar * Chayen, N.E. Protein crystallization for genomics: throughput versus output. _J. Struct. Funct.
Genomics_ 4, 115–120 (2003). Article CAS PubMed Google Scholar * Jancarik, J. & Kim, S.H. Sparse-matrix sampling—a screening method for crystallization of proteins. _J. Appl. Cryst._
24, 409–411 (1991). Article CAS Google Scholar * Gilliland, G.L., Tung, M., Blakeslee, D.M. & Ladner, J.E. Biological Macromolecule Crystallization Database, version-3.0—new
features, data and the NASA Archive for Protein Crystal-Growth Data. _Acta Crystallogr. D_ 50, 408–413 (1994). Article CAS PubMed Google Scholar * Brzozowski, A.M. & Walton, J. Clear
strategy screens for macromolecular crystallization. _J. Appl. Cryst._ 34, 97–101 (2001). Article CAS Google Scholar * DeLucas, L.J. _ et al_. Protein crystallization: virtual screening
and optimization. _Prog. Biophys. Mol. Biol._ 88, 285–309 (2005). Article CAS PubMed Google Scholar * Page, R. & Stevens, R.C. Crystallization data mining in structural genomics:
using positive and negative results to optimize protein crystallization screens. _Methods_ 34, 373–389 (2004). Article CAS PubMed Google Scholar * Rupp, B. & Wang, J. Predictive
models for protein crystallization. _Methods_ 34, 390–407 (2004). Article CAS PubMed Google Scholar * Walter, T.S. _ et al_. A procedure for setting up high-throughput nanolitre
crystallization experiments. I. Protocol design and validation. _J. Appl. Cryst._ 36, 308–314 (2003). Article CAS Google Scholar * Luft, J.R. _ et al_. A deliberate approach to screening
for initial crystallization conditions of biological macromolecules. _J. Struct. Biol._ 142, 170–179 (2003). Article CAS PubMed Google Scholar * Bard, J., Ercolani, K., Svenson, K.,
Olland, A. & Somers, W. Automated systems for protein crystallization. _Methods_ 34, 329–347 (2004). Article CAS PubMed Google Scholar * Wilson, J. Automated classification of images
from crystallization experiments. _Adv. Data Mining_ 4065, 459–473 (2006). Google Scholar * Chayen, N.E., Stewart, P.D.S., Maeder, D.L. & Blow, D.M. An automated system for microbatch
protein crystallization and screening. _J. Appl. Cryst._ 23, 297–302 (1990). Article CAS Google Scholar * Chayen, N.E. Comparative studies of protein crystallization by vapour-diffusion
and microbatch techniques. _Acta Crystallogr. D_ 54, 8–15 (1998). Article CAS PubMed Google Scholar * Garcia-Ruiz, J.M. & Ng, J.D. Counterdiffusion capillary crystallization for
high-throughput applications. in _Protein Crystallization Strategies for Structural Genomics_ (ed. Chayen, N.E.) 111–126 (International University Line, La Jolla, California, 2007). Google
Scholar * Moreno, A., Saridakis, E. & Chayen, N.E. Combination of oils and gels for enhancing the growth of protein crystals. _J. Appl. Cryst._ 35, 140–142 (2002). Article CAS Google
Scholar * Hansen, C. & Quake, S.R. Microfluidics in structural biology: smaller, faster... better. _Curr. Opin. Struct. Biol._ 13, 538–544 (2003). Article CAS PubMed Google Scholar
* Sommer, M.O.A. & Larsen, S. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator. _J. Synchrotron Rad._ 12, 779–785 (2005).
Article CAS Google Scholar * Zheng, B., Gerdts, C.J. & Ismagilov, R.F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. _Curr. Opin.
Struct. Biol._ 15, 548–555 (2005). Article CAS PubMed PubMed Central Google Scholar * Ducruix, A. & Giegé, R. (eds.) _Crystallization of Nucleic Acids and Proteins_ (Oxford
University Press, Oxford, 1999). Google Scholar * Chayen, N.E. _ et al_. Trends and challenges in experimental macromolecular crystallography. _Q. Rev. Biophys._ 29, 227–278 (1996). Article
CAS PubMed Google Scholar * Chayen, N.E. Methods for separating nucleation and growth in protein crystallization. _Prog. Biophys. Mol. Biol._ 88, 329–337 (2005). Article CAS PubMed
Google Scholar * Ataka, M. Protein crystal growth: an approach based on phase diagram determination. _Phase Transit._ 45, 205–219 (1993). Article CAS Google Scholar * Stura, E.A. &
Wilson, I.A. Application of the streak seeding technique in protein crystallization. _J. Cryst. Growth_ 110, 270–282 (1991). Article CAS Google Scholar * Chayen, N.E. Automation of
non-conventional crystallization techniques for screening and optimization. in _Macromolecular Crystallography: Conventional and High-Throughput Methods_ (eds. Sanderson, M.R. & Skelly,
J.V.) 45–58 (Oxford University Press, Oxford, 2007). Chapter Google Scholar * Bergfors, T. Seeds to crystals. _J. Struct. Biol._ 142, 66–76 (2003). Article CAS PubMed Google Scholar *
McPherson, A. & Shlichta, P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. _Science_ 239, 385–387 (1988). Article CAS PubMed Google Scholar *
Falini, G., Fermani, S., Conforti, G. & Ripamonti, A. Protein crystallization on chemically modified mica surfaces. _Acta Crystallogr. D_ 58, 1649–1652 (2002). Article PubMed Google
Scholar * Nanev, C.N. & Tsekova, D. Heterogeneous nucleation of hen-egg-white lysozyme-molecular approach. _Cryst. Res. Technol._ 35, 189–195 (2000). Article CAS Google Scholar *
Sanjoh, A., Tsukihara, T. & Gorti, S. Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening. _J. Cryst. Growth_ 232, 618–628 (2001).
Article CAS Google Scholar * D'Arcy, A., Mac Sweeney, A. & Habera, A. Modified microbatch and seeding in protein crystallization experiments. _J. Synchrotron Rad._ 11, 24–26
(2004). Article CAS Google Scholar * Chayen, N.E., Saridakis, E., El-Bahar, R. & Nemirovsky, Y. Porous silicon: an effective nucleation-inducing material for protein crystallization.
_J. Mol. Biol._ 312, 591–595 (2001). Article CAS PubMed Google Scholar * Chayen, N.E., Saridakis, E. & Sear, R.P. Experiment and theory for heterogeneous nucleation of protein
crystals in a porous medium. _Proc. Natl. Acad. Sci. USA_ 103, 597–601 (2006). Article CAS PubMed Google Scholar * Saridakis, E.E.G., Stewart, P.D.S., Lloyd, L.F. & Blow, D.M.
Phase-diagram and dilution experiments in the crystallization of carboxypeptidase G2 . _Acta Crystallogr. D_ 50, 293–297 (1994). Article CAS PubMed Google Scholar * Saridakis, E. &
Chayen, N.E. Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. _Biophys. J._ 84, 1218–1222 (2003). Article CAS PubMed PubMed Central
Google Scholar * Blow, D.M., Chayen, N.E., Lloyd, L.F. & Saridakis, E. Control of nucleation of protein crystals. _Protein Sci._ 3, 1638–1643 (1994). Article CAS PubMed PubMed
Central Google Scholar * Krengel, U. _ et al_. Preliminary X-ray crystallographic analysis of the secreted chorismate mutase from _Mycobacterium tuberculosis_: a tricky crystallization
problem solved. _Acta Crystallogr. F_ 62, 441–445 (2006). Article CAS Google Scholar * Gerdts, C.J. _ et al_. Time-controlled microfluidic seeding in nL-volume droplets to separate
nucleation and growth stages of protein crystallization. _Angew. Chem. Int. Ed._ 45, 8156–8160 (2006). Article CAS Google Scholar * Karpowich, N. _ et al_. Crystal structures of MJ1267
reveal an induced-fit effect at the ATPase active site of an ABC transporter. _Structure_ 9, 571–586 (2001). Article CAS PubMed Google Scholar * Garcia-Ruiz, J.M., Gonzalez-Ramirez,
L.A., Gavira, J.A. & Otalora, F. Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. _Acta Crystallogr. D_ 58, 1638–1642 (2002).
Article PubMed Google Scholar * Snell, E.H. & Helliwell, J.R. Macromolecular crystallization in microgravity. _Rep. Prog. Phys._ 68, 799–853 (2005). Article CAS Google Scholar *
Heijna, M.C.R. _ et al_. Magnetically controlled gravity for protein crystal growth. _Appl. Phys. Lett._ 90, 264105 (2007). Article Google Scholar * Talreja, S., Kim, D.Y., Mirarefi, A.Y.,
Zukoski, C.F. & Kenis, P.J.A. Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform. _J. Appl. Cryst._ 38,
988–995 (2005). Article CAS Google Scholar * Chayen, N.E. A novel technique to control the rate of vapour diffusion, giving larger protein crystals. _J. Appl. Cryst._ 30, 198–202 (1997).
Article CAS Google Scholar * Mayans, O. _ et al_. Structural basis for activation of the titin kinase domain during myofibrillogenesis. _Nature_ 395, 863–869 (1998). Article CAS PubMed
Google Scholar * Isupov, M.N. _ et al_. Crystallization and preliminary X-ray diffraction studies of a fungal hydrolase from Ophiostoma novo-ulmi. _Acta Crystallogr. D_ 60, 1879–1882
(2004). Article PubMed Google Scholar * Schubot, F.D., Cherry, S., Austin, B.P., Tropea, J.E. & Waugh, D.S. Crystal structure of the protease-resistant core domain of _Yersinia
pestis_ virulence factor YopR. _Protein Sci._ 14, 1679–1683 (2005). Article CAS PubMed PubMed Central Google Scholar * Khurshid, S., Govada, L. & Chayen, N.E. Dynamic screening
experiments to maximize hits for crystallization. _Cryst. Growth Des._ 7, 2171–2175 (2007). Article CAS Google Scholar * D'Arcy, A. Crystallizing proteins—a rational approach? _Acta
Crystallogr. D_ 50, 469–471 (1994). Article CAS PubMed Google Scholar * Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W.M. & Chayen, N.E. Separating nucleation and growth in
protein crystallization using dynamic light scattering. _Acta Crystallogr. D_ 58, 1597–1600 (2002). Article PubMed Google Scholar * Wilson, W.W. Light scattering as a diagnostic for
protein crystal growth—a practical approach. _J. Struct. Biol._ 142, 56–65 (2003). Article PubMed Google Scholar * Pantoliano, M.W. _ et al_. High-density miniaturized thermal shift
assays as a general strategy for drug discovery. _J. Biomol. Screen._ 6, 429–440 (2001). Article CAS PubMed Google Scholar * Chayen, N.E. Turning protein crystallization from an art into
a science. _Curr. Opin. Struct. Biol._ 14, 577–583 (2004). Article CAS PubMed Google Scholar * Nollert, P. From test tube to plate: a simple procedure for the rapid preparation of
microcrystallization experiments using the cubic phase method. _J. Appl. Cryst._ 35, 637–640 (2002). Article CAS Google Scholar * Peddi, A. _ et al_. M. High-throughput automated system
for crystallizing membrane proteins in lipidic mesophases. _IEEE Trans. Automat. Sci. Eng._ 4, 129–140 (2007). Article Google Scholar * Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P.
& Landau. E.M. X-Ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. _Science_ 277, 1676–1681 (1997). Article CAS PubMed Google
Scholar * Cherozov, V. _ et al_. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. _Science_ 318, 1258–1265 (2007). Article Google Scholar
* Snider, H., Barrends, T. & Dijkstra, D. Crystallization of phospholipase A in two biological oligomerization states. in _Methods and Results in Crystallization of Membrane Proteins_
(ed. Iwata, S.) 265–278 (International University Line, La Jolla, California, 2003). Google Scholar * Stock, D., Leslie, A.G. & Walker, J.E. Molecular architecture of the rotary motor
in ATP synthase. _Science_ 286, 1700–1705 (1999). Article CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS We acknowledge funding from the Engineering and Physical Sciences
Research Council UK (EP/D501113/1) and the European Commission OptiCryst project LSHG-CT-2006-037793. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Naomi E. Chayen is in the Department of
Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ,
UK., Naomi E Chayen * Emmanuel Saridakis is at the Laboratory of Structural and Supramolecular Chemistry, Institute of Physical Chemistry, National Centre for Scientific Research
“Demokritos”, Ag. Paraskevi, 15310 Athens, Greece., Emmanuel Saridakis Authors * Naomi E Chayen View author publications You can also search for this author inPubMed Google Scholar *
Emmanuel Saridakis View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Naomi E Chayen. SUPPLEMENTARY INFORMATION
SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–2, Supplementary Note 1, Supplementary Protocols 1–2 (PDF 514 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE
CITE THIS ARTICLE Chayen, N., Saridakis, E. Protein crystallization: from purified protein to diffraction-quality crystal. _Nat Methods_ 5, 147–153 (2008).
https://doi.org/10.1038/nmeth.f.203 Download citation * Published: 30 January 2008 * Issue Date: February 2008 * DOI: https://doi.org/10.1038/nmeth.f.203 SHARE THIS ARTICLE Anyone you share
the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer
Nature SharedIt content-sharing initiative