Oscillations with uniquely long periods in a microfluidic bubble generator

Oscillations with uniquely long periods in a microfluidic bubble generator

Play all audios:

Loading...

ABSTRACT Understanding spatiotemporal complexity1,2,3 is important to many disciplines, from biology4,5 to finance6. However, because it is seldom possible to achieve complete control over


the parameters that determine the behaviour of real complex systems, it has been difficult to study such behaviour experimentally. Here we demonstrate a simple microfluidic bubble generator


that shows stable oscillatory patterns (both in space and time) of unanticipated complexity and uniquely long repetition periods. At low flow rates, the device produces a regular stream of


bubbles of uniform size. As the flow increases, the system shows intricate dynamic behaviour typified by a stable limit cycle of order 29 bubbles per period, which repeats without change


over intervals of up to 100 periods and more. As well as providing an example of a well-characterized and experimentally tractable model system with which to study complex, nonlinear


dynamics, such behaviour demonstrates that it is possible to observe complex and stable limit cycles without active external control. Access through your institution Buy or subscribe This is


a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per


year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE


UNPREDICTABLE NATURE OF BUBBLE EVOLUTION Article Open access 01 December 2022 GALLOPING BUBBLES Article Open access 12 February 2025 UNIFIED FRAMEWORK FOR LASER-INDUCED TRANSIENT BUBBLE


DYNAMICS WITHIN MICROCHANNELS Article Open access 13 August 2024 REFERENCES * Schuster, H. G. _Deterministic Chaos: An Introduction_ (Wiley-VCH, Weinheim, 2003). MATH  Google Scholar  *


Cross, M. C. & Hohenberg, P. C. Pattern-formation outside of equilibrium. _Rev. Mod. Phys._ 65, 851–1112 (1993). Article  ADS  Google Scholar  * Aranson, I. S. & Kramer, L. The world


of the complex Ginzburg-Landau equation. _Rev. Mod. Phys._ 74, 99–143 (2002). Article  ADS  MathSciNet  Google Scholar  * Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. &


Gilles, E. D. Metabolic network structure determines key aspects of functionality and regulation. _Nature_ 420, 190–193 (2002). Article  ADS  Google Scholar  * Turing, A. M. The chemical


basis of morphogenesis. _Phil. Trans. R. Soc. Lond. B_ 237, 37–72 (1952). Article  ADS  MathSciNet  Google Scholar  * Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A theory


of power-law distributions in financial market fluctuations. _Nature_ 423, 267–270 (2003). Article  ADS  Google Scholar  * Gollub, J. P. & Cross, M. C. Nonlinear dynamics: Chaos in space


and time. _Nature_ 404, 710–711 (2000). Article  Google Scholar  * Nicolis, C. & Nicolis, G. Is there a climatic attractor? _Nature_ 311, 529–532 (1984). Article  ADS  Google Scholar  *


Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality—an explanation of 1/F noise. _Phys. Rev. Lett._ 59, 381–384 (1987). Article  ADS  Google Scholar  * Glass, L.


Synchronization and rhythmic processes in physiology. _Nature_ 410, 277–284 (2001). Article  ADS  Google Scholar  * Cladis, P. E. & Palffy-Muhoray, P. _Spatio-Temporal Patterns in


Nonequilibrium Complex Systems_ (Addison-Wesley, Reading, Massachusetts, 1994). Google Scholar  * Ecke, R. E., Hu, Y. C., Mainieri, R. & Ahlers, G. Excitation of spirals and


chiral-symmetry breaking in Rayleigh-Benard convection. _Science_ 269, 1704–1707 (1995). Article  ADS  Google Scholar  * Brunet, P. & Limat, L. Defects and spatiotemporal disorder in a


pattern of falling liquid columns. _Phys. Rev. E_ 70, 046207 (2004). Article  ADS  Google Scholar  * Ganan-Calvo, A. M. Generation of steady liquid microthreads and micron-sized monodisperse


sprays in gas streams. _Phys. Rev. Lett._ 80, 285–288 (1998). Article  ADS  Google Scholar  * Ganan-Calvo, A. M. & Gordillo, J. M. Perfectly monodisperse microbubbling by capillary flow


focusing. _Phys. Rev. Lett._ 87, 274501 (2001). Article  Google Scholar  * Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels.


_Appl. Phys. Lett._ 82, 364–366 (2003). Article  ADS  Google Scholar  * Garstecki, P., Stone, H. A. & Whitesides, G. M. Mechanism for flow-rate controlled breakup in confined geometries:


A route to monodisperse emulsions. _Phys. Rev. Lett._ 94, 164501 (2005). Article  ADS  Google Scholar  * Garstecki, P. et al. Formation of monodisperse bubbles in a microfluidic


flow-focusing device. _Appl. Phys. Lett._ 85, 2649–2651 (2004). Article  ADS  Google Scholar  * Feigenbaum, M. J. Quantitative universality for a class of non-linear transformations. _J.


Stat. Phys._ 19, 25–52 (1978). Article  ADS  Google Scholar  * King, A. A. et al. Anatomy of a chaotic attractor: Subtle model-predicted patterns revealed in population data. _Proc. Natl


Acad. Sci. USA_ 101, 408–413 (2004). Article  ADS  Google Scholar  * Ambravaneswaran, B., Phillips, S. D. & Basaran, O. A. Theoretical analysis of a dripping faucet. _Phys. Rev. Lett._


85, 5332–5335 (2000). Article  ADS  Google Scholar  * Coullet, P., Mahadevan, L. & Riera, C. Hydrodynamical models for the chaotic dripping faucet. _J. Fluid Mech._ 526, 1–17 (2005).


Article  ADS  MathSciNet  Google Scholar  * Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. _Phys. Rev. Lett._ 64, 1196–1199 (1990). Article  ADS  MathSciNet  Google Scholar  *


Ditto, W. L., Rauseo, S. N. & Spano, M. L. Experimental control of chaos. _Phys. Rev. Lett._ 65, 3211–3214 (1990). Article  ADS  Google Scholar  * Hunt, E. R. Stabilizing high-period


orbits in a chaotic system—the diode resonator. _Phys. Rev. Lett._ 67, 1953–1955 (1991). Article  ADS  Google Scholar  * Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N.


Controlling cardiac chaos. _Science_ 257, 1230–1235 (1992). Article  ADS  Google Scholar  * Hudson, P. J. & Bjørnstad, O. N. Vole stranglers and lemming cycles. _Science_ 302, 797–798


(2003). Article  Google Scholar  * Gilg, O., Hanski, I. & Sittler, B. Cyclic dynamics in a simple vertebrate predator-prey community. _Science_ 302, 866–868 (2003). Article  ADS  Google


Scholar  * Goldbeter, A. Computational approaches to cellular rhythms. _Nature_ 420, 238–245 (2002). Article  ADS  Google Scholar  * Langton, C. Computation at the edge of chaos: Phase


transitions and emergent computation. _Physica D_ 42, 12–47 (1990). Article  ADS  MathSciNet  Google Scholar  Download references ACKNOWLEDGEMENTS We would like to thank L. Mahadevan


(Harvard University) for helpful discussions. P.G. acknowledges a postdoctoral fellowship from the Foundation for Polish Science. We thank the Harvard MRSEC for the use of high-speed cameras


and microfabrication facilities. This work was supported by the US Department of Energy (DE-FG02-00ER45852). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemistry and


Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts, USA Piotr Garstecki, Michael J. Fuerstman & George M. Whitesides * Institute of Physical Chemistry, Polish


Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland Piotr Garstecki Authors * Piotr Garstecki View author publications You can also search for this author inPubMed Google Scholar *


Michael J. Fuerstman View author publications You can also search for this author inPubMed Google Scholar * George M. Whitesides View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Piotr Garstecki or George M. Whitesides. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial


interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION (PDF 90 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Garstecki, P., Fuerstman, M.


& Whitesides, G. Oscillations with uniquely long periods in a microfluidic bubble generator. _Nature Phys_ 1, 168–171 (2005). https://doi.org/10.1038/nphys176 Download citation *


Received: 07 July 2005 * Accepted: 14 October 2005 * Published: 04 December 2005 * Issue Date: 01 December 2005 * DOI: https://doi.org/10.1038/nphys176 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative